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IL-6 and the dysregulation of immune, bone, muscle, and
metabolic homeostasis during spaceflight

John Kelly Smith’

We have previously reported that exercise-related secretion of IL-6 by peripheral blood mononuclear cells is proportionate to body
weight, suggesting that IL-6 is gravisensitive and that suboptimal production of this key cytokine may contribute to homeostatic
dysregulations that occur during spaceflight. This review details what is known about the role of this key cytokine in innate and
adaptive immunity, hematopoiesis, and in bone, muscle and metabolic homeostasis on Earth and in the microgravity of space and
suggests an experimental approach to confirm or disavow the role of IL-6 in space-related dysregulations.
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INTRODUCTION

In 2016, NASA’s Human Research Program solicited research to
help address health issues associated with spaceflight, including
immune dysregulation and the risk of early onset osteoporosis
and substandard performance due to reductions in muscle mass,
endurance, and strength.

Currently, high intensity resistance and aerobic exercises are
recognized as being the most effective countermeasures available
to astronauts to mitigate the adverse effects of microgravity on
bone and skeletal muscle.? However, despite the implementation
of high impact exercise training programs, unacceptable bone loss
and muscle atrophy continue to occur during both short-term and
extended spaceflight missions.>

In a recent study involving 43 healthy adults,* we found that
6 months of combined resistance and aerobic exercise training
diminished bone resorption and enhanced bone formation by
changing the proportions of peripheral blood mononuclear cells
(PBMC) producing osteoclastogenic cytokines (interleukin (IL)-1q,
tumor necrosis factor (TNF)-a, and interferon (IFN)-y) and those
producing anti-osteoclastogenic cytokines (IL-4, IL-6, IL-10, and
transforming growth factor (TFG)-B1). Notably, post-exercise
increases in IL-6, a pleotropic cytokine involved in bone and
muscle homeostasis and immune regulation,” were proportionate
to body weight, a measure of one’s mass times the intensity of the
gravity field (9.8 /m/sec® on Earth) (Fig. 1). This finding raises the
possibility that the failure of exercise programs to attenuate bone
and muscle loss in the microgravity of space is related to
suboptimal production of this important cytokine by postural
(antigravity) muscles and by bone cells and their supporting
mesenchymal and immune cell network.

IL-6

IL-6 is a functionally pleiotropic growth and differentiation
cytokine with context-dependent inflammatory and anti-
inflammatory properties; it plays an important regulatory role in
innate and adaptive immunity, hematopoiesis, and in bone,
muscle, and metabolic homeostasis. It is produced after

stimulation by most nucleated cells, including monocytes,
macrophages, endothelial cells, fibroblasts (main sources),
T cells, B cells, granulocytes, mast cells, myocytes, osteoblasts,
osteoclasts, osteocytes, chondrocytes, glial cells and keratinocytes.
The main cellular targets are hepatocytes, leukocytes, T cells, B
cells, and hematopoietic cells.®

Binding of IL-6 to its transmembrane receptor (mIL-6R) leads to a
complex consisting of two IL-6 molecules (homodimer), two IL-6R
proteins, and two glycoprotein 130 (gp130) molecules. Dimeriza-
tion of gp130 activates cytokine receptor-associated Janus tyrosine
kinases (primarily Jak 1); in turn, the kinases activate cytoplasmic
signal transducer and activator of transcription 3 (STAT3) which
dimerizes and translocates to the nucleus where it initiates
transcription. The negative feedback of this signaling pathway is
regulated by suppressor-of-cytokine-signaling (SOCS) proteins 1
and 3 and the protein inhibitors of activated STATs.>”

Although expression of mIL-6R is restricted, being found
primarily on hepatocytes and some leukocyte subsets, IL-6 also
interacts with soluble IL-6R (sIL-6R), which on binding to its
ubiquitously expressed gp130 co-receptor can activate a variety of
cells (IL-6 trans-signaling). During inflammation, mIL-6R is cleaved
by the metalloprotease ADAM 17 and shed as sIL-6R from
activated cells, markedly increasing IL-6 trans-signaling and
expanding the sphere of influence of this key cytokine.®’ Low
levels of soluble isoforms of IL-6-R and gp130 normally present in
blood serve to neutralize non-inflammatory levels of IL-6, thus
protecting cells from overstimulation by IL-6 trans-signaling.”

IL-6 trans-signaling is primarily responsible for the proinflam-
matory activities of IL-6, whereas signaling via mIL-6R accounts for
most of its anti-inflammatory and metabolic activities.”

IL-6 AND IMMUNITY

On Earth

Innate immunity. In the early immune response, the source of IL-
6 is primarily from innate immune cells activated by toll-like

receptor (TLR) binding of pathogen-associated molecular patterns
(PAMPs) and by the secretion of IL-10/B, TNF-a, IFN-y, and/or
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Effect of body weight on IL-6 production by cultured peripheral blood mononuclear cells. This figure is from a publication on the effect

of long-term exercise on peripheral blood mononuclear cell (PBMC) production of osteoclastogenic and anti-osteoclastogenic cytokines.* a
Spontaneous production of IL-6 by cultured PBMC (N =41 subjects). b IL-6 production in PBMC cultures containing the T-cell mitogen
phytohemagglutinin (PHA) (N =41 subjects). c IL-6 production by PBMC of women in PHA + cultures (N = 23 subjects). d IL-6 production by
PBMC of men in PHA + cultures (N = 18 subjects). (Linear regression analyses with 95% confidence intervals)

granulocyte-macrophage colony stimulating factor (GM-CSF) by
monocytes and macrophages.® IL-6 usually enhances TLR-
mediated cytokine and chemokine production; however, IL-1f,
TNF-a, and IL-8 (CXCL8) production is suppressed by IL-6 when
TLR4 binds its ligand, lipopolysaccharide (LPS), thus providing
protection against endotoxemia.®

IL-6 plays an important role in leukocyte trafficking and the
transition from neutrophilic to monocytic infiltration at sites of
inflammation.’™"" IL-6 trans-signaling promotes leukocyte recruit-
ment to sites of acute inflammation by upregulating endothelial
cell (EC) expression of intracellular adhesion molecule-1 (ICAM-1)
and chemokines.” By inducing monocyte expression of macro-
phage colony stimulating factor receptors, IL-6 promotes the
differentiation of monocytes to macrophages.® It also can cause
dendritic cells to differentiate into macrophages'? and activate
anti-inflammatory IL-10" M2-like (M2d) macrophages.'*

Humoral immunity. 1L-6 controls the proliferation, maturation and
survival of B cells and plasmablasts and initiates T-cell-dependent
isotype switching and antibody production. In conjunction with IL-
1B as a cofactor, IL-6 prompts the differentiation of IL-10" B
regulatory (B1) cells® and triggers IL-21 production in CD4™ T cells
to drive STAT-3-dependent plasma cell development.'* IL-6 is
essential for T follicular cell (Tfh) differentiation; these cells are
critical to the ability of B cells to undergo isotype switching,
terminal differentiation, and high affinity antibody production.”

Cell-mediated immunity. IL-6 regulates the trafficking of CD4"
T cells, CD8" T cells, natural killer (NK) cells, dendritic cells,
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monocytes and macrophages by upregulating the expression of
chemokines CCL4, CCL5, CCL11, CCL17 and intracellular and
vascular adhesion molecules ICAM-1 and VCAM-1° It is an
important growth and differentiation factor for activated naive
CD4™ T cells: by upregulating their expression of nuclear factor of
activated T cells (NFATc2) or SOCS1, IL-6 promotes IL-4-mediated
Th2 cell differentiation'® or inhibits IFN-y-mediated Th1 differ-
entiation,'” respectively. With TGF-B as a cofactor, IL-6 drives the
differentiation of IL-21-producing Th17 cells; it can also convert
naturally occurring T regulatory (Treg) cells into Th17 cells'® and
increase Treg cell maturation by triggering the production of IL-27
by monocytes and macrophages.'®

IL-6 is also an important growth and differentiation factor for
activated naive CD8™ T cells. It can trigger their differentiation
into IL-21-producing cells with activity against the influenza
virus*® and synergize with IL-15 or IL-7 to stimulate T-cell
receptor (TCR) independent proliferation and effector func-
tions.?! In conjunction with IL-27 as a cofactor, IL-6 prompts the
secretion of IL-10 by IFN-y™ Th1, IL-4" Th2 and IL-17" Th17 cells.
It also facilitates T-cell survival, inhibits TNF-a and IL-1
synthesis and induces IL-2 secretion and IL-2R expression in
T cells. With IL-3 as a costimulant, IL-6 initiates the proliferation
of multipotential hematopoietic cells, including the maturation
of megakaryocytes.®

Acute Phase Response. IL-6 synergizes with IL-13, TNF-a, TGF-(3,
IL-8, and IL-22 to increase the production of acute phase proteins
(APP) by hepatocytes.”? APP such as C-reactive protein play a
protective role at sites of inflammation and infection.?®
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IN SPACE
Innate immunity

Studies in humans. Studies on monocytes, macrophages, and
TLRs done immediately after spaceflight have provided mixed
results. Berendeeva and associates documented variable increases
in the relative and absolute counts of PBMC expressing TLR2, TLR4,
and TLR6,%* findings like those described by Ponomarev et al. who
found an increase in serum levels of TLR2 and TLR4 ligands
(HSP60, and HSP70 and HMGT, respectively) accompanied by an
increase in the number of leukocytes expressing TLR2 and TLR4.%
In contrast, Rykova reported a decrease in the levels of circulating
monocytes and granulocytes expressing TLR2, TLR4 and TLRS6,
accompanied by a reduction in TLR4-mediated LPS-induced
cytokine production.?®

Crucian and associates found that monocyte expression of cell
surface markers important for antigen presentation (HLA-DR) and
for adhesion and tissue migration (CD62L) as well as the
production of IL-6, IL-10 and TNF-a by LPS-stimulated monocytes
were reduced following short-duration spaceflight. Importantly,
only IL-6 production was diminished in response to the pan-
leukocyte mitogen phorbol myristate acetate (PMA) + ionomy-
cin®’ In a later study involving in-flight sampling, Crucian and
associates found that IL-8 secretion was elevated in LPS-
stimulated monocytes but there was no statistically significant
change in the production of IL-12, TNF-q, IL-10, IL-6, or IL-1-B.*

Compared to non-astronaut ground controls, Kaur and associ-
ates found that intracellular levels of IL-6 and IL-1p were reduced
and levels of IL-8 and IL-1 receptor antagonist (IL-1ra), were
increased in LPS-stimulated monocytes taken both before and
after spaceflight; except for IL-1-ra values returned to normal
6-12 months post-spaceflight?® They also found that blood
monocytes had a reduced ability to phagocytose Escherichia coli,
elicit an oxidative burst, and degranulate; this impairment was
accompanied by a reduced expression of two surface markers
involved in phagocytosis, CD32 and CD64.%°

Studies in rodents and drosophila. Studies on the effects of
spaceflight and simulated microgravity on murine splenocytes
have also produced mixed results. Shen-An Hwang and associates
found that a 13-day spaceflight increased the percent of dendritic
cells expressing MHC | (CD11c¢"MHC I) and the ability of splenic
macrophages to phagocytose fluorescent-tagged beads and to
produce TNF-a when stimulated with a TLR-2 agonist but not
when stimulated with the TLR4 agonist LPS; IL-6 production was
unchanged as compared to ground controls.3' In contrast, Wang
et al. using simulated microgravity found that LPS-induced TNF-a
expression was impaired due to activation of heat shock factor-1, a
known repressor of the TNF-a promoter.3? Also using simulated
microgravity, Brungs et al. found that splenic macrophages
cultured with TLR-agonists had impaired production of reactive
oxygen species (ROS) caused by diminished tyrosine kinase
phosphorylation.®® Taylor and associates found that spaceflight
produced stress-related transcriptional responses that diminished
the ability of Drosophila to mount a TLR-mediated response to
fungal infection.®*

Humoral Immunity

Studies in humans. There are comparatively few studies on B-cell
function in space. Voss found there no significant changes in
serum immunoglobulin levels following a 10-day spaceflight>> and
Mills and associates found that mean circulating levels of CD19" B
cells increased in 11 astronauts following five 4-16-day shuttle
flights.>®

Studies in rodents and amphibians. Spaceflight is reported to
cause reductions in blood and splenic levels of B cells in
rodents.3”*® In addition, studies in the amphibian Pleurodeles
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waltl have shown that spaceflight can cause impaired antibody
responses and changes in IgM heavy-chain transcription.*

Cell-Mediated Immunity

Studies in humans. Studies in astronauts have shown impaired
delayed cutaneous hypersensitivity reactions and an increased
incidence of herpes-group virus shedding during spaceflights.*°
Crucian and associates found that virus-specific T-cell function was
diminished in 19 astronauts during 10-15-day shuttle flights; they
also noted in-flight dysregulation of CD8" T-cell subsets and
diminished leukocyte secretion of IFN-y, TNF-q, IL-10, IL-4, IL-5 and
IL-6 in response to PMA + ionomycin; importantly, these authors
noted significant differences in samples taken in-flight as compared
to those taken post-flight.® Other studies have documented post-
flight reductions in blood levels of CD4" T cells, CD8 * T cells, and
NK cells, increases in the proportion of T helper type 2 cells and
CD4/CD8 ratios, decreases in the cytotoxicity of NK cells, altered
plasma levels of cytokines, and variably impaired or enhanced
secretion of Th-1 and Th-2-type cytokines in response to T-cell-
receptor-specific and/or non-specific mitogens. 364144

Studies in rodents. In rodents, space travel decreases the masses
of lymph nodes, thymuses, and spleens and alters the distribution
of CD3™, CD4™, and CD8™ T cells and NK cells in blood, spleen,
and/or lymph nodes.*’*#%5™*” Also documented are consistent
decreases in mitogen-induced secretion of IL-2.38%6* Spaceflight
and simulated microgravity have been shown to reduce IL-2, IL-
2Ra, and IFN-y gene expression and secretion in anti-CD3/CD28
antibody-activated mouse splenocytes.*®

IL-6 AND BONE HOMEOSTASIS
On earth

IL-6 promotes bone formation by enhancing the differentiation of
osteoblasts precursors and by protecting osteoblasts from
apoptosis.>' ™ It protects against bone resorption by decreasing
receptor activator of nuclear factor kappa B ligand (RANKL)
expression in osteoclasts, and by stimulating the production of the
anti-osteoclastogenic cytokines IL-4, IL-10, and IL-1 receptor
antagonist while inhibiting the production of the osteoclastogenic
cytokines IL-1-a/B and TNF-a by immune cells.*®” IL-6 regulates
the expression of osteoprotegerin (OPG) in murine calvariae,”® and
is the main growth factor for B cells, the chief source of OPG in
bone marrow stroma;>*> OPG is a potent inhibitor of osteoclasto-
genesis, and has recently been shown to reduce bone resorption
when administered to mice during spaceflight.®

IL-6 is produced in osteocytes and osteoblasts in response to
bone loading signals and plays an important role in bone
remodeling.®'"%® In murine osteoclasts, IL-6 binding to IL-6R and
its coreceptor, gp130, releases osteoclast-derived coupling factors
and osteotransmitters that protect bone by upregulating osteo-
blast activity.%*

In Space

Space travel has been shown to accelerate astronaut bone loss to
1-1.6% per month, primarily in weight bearing bones®; this loss is
associated with an increase in bone resorption and a decrease in
bone formation®® and has been attributed to the reduction in
bone-loading signals normally transduced by osteocytes resident
in the lacunar-canalicular network of bone.®” Researchers have
found that osteocyte apoptosis in trabecular and cortical bone
occurs within 3 days of simulated weightlessness in mice and
precedes recruitment of osteoclasts.®® In addition, modeled
microgravity and hindlimb unloading has been shown to induce
osteoclast precursors to enhance RANKL-mediated
osteoclastogenesis.®®
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Bone formation is reduced, and bone remodeling is impaired in
IL-6 knockout (IL-67/) mice,”® and Harris and associates found that
orbital spaceflight caused impaired osteoblast function associated
with a reduction IL-6 mRNA expression.”' Using cultures of murine
osteoblasts, osteocytes, osteoclast precursors, and compressive
cyclic forces, Hao and associates found that IL-6 + sIL-6R increased
osteocyte-mediated osteoblast differentiation and inhibited
osteoclastogenesis and osteoclast differentiation under mechan-
ical loading via STAT3 and extracellular signal-regulated kinase
(ERK) signaling pathways”?

IL-6 AND MUSCLE HOMEOSTASIS
On Earth

IL-6, a myokine, plays an important role in energy homeostasis
and repair and remodeling of skeletal muscle. It activates skeletal
muscle 5 adenosine monophosphate activated protein kinase
(AMPK) and/or phosphatidylinositol-3-kinase (P13K), increasing
glucose uptake and mitochondrial oxidation of fatty acids and
enhancing exercise endurance.”>”*

IL-6 also plays a “pivotal” role in the response of skeletal muscle
to injury which is determined by both existing muscle fiber nuclei
(which are terminally differentiated) and by a population of multi-
potential Pax7 mononucleated satellites cells (SC).”> When
activated, SC migrate to the site of injury or remodeling and,
under the control of a network of transcription factors, proliferate
and differentiate into myocytes.”>”® IL-6 MKO mice have reduced
levels of SC proliferation and muscle repair capacity,”” and Ring
finger protein-13 (RNF-13) knockout mice have accelerated
skeletal muscle regeneration mediated in part by macrophage-
secreted IL-6.”® IL-6 upregulates the secretion of IL-4 and IL-10 in
immune cells and both cytokines play a positive role in
myogenesis.”>”® By increasing IL-6 secretion by myocytes, exercise
has been shown to promote extracellular matrix reorganization
and stem cell accumulation in the skeletal muscle stem cell
niche.”

In Space

In both humans and rodents, the primary effect of spaceflight on
skeletal muscle is fiber atrophy resulting in a decline in peak force,
power, and exercise tolerance®®; the atrophy mainly involves
antigravity muscles such as the soleus.®' At a molecular level,
microgravity-induced atrophy is due to increased proteasome
activity coupled with a reduction in protein synthesis and
mitochondrial biogenesis.®> As noted above, IL-6 plays an
important role in muscle repair and myogenesis.

Skeletal muscle-specific AMPKa1a2 knockout mice (mdKO) have
reduced exercise performance and fatigue resistance,®® findings
similar to those described in humans and rodents during space
flight. IL-6 knockout mice (IL-6 KO) and muscle-specific IL-6
knockout mice (IL-6 MKO) have similar decreases in exercise
tolerance,®* presumably due to a reduction in IL-6-mediated AMPK
secretion by exercising muscle. The observation that weightless-
ness impairs the ability of murine soleus muscles to oxidize free
fatty acids®' suggests that IL-6-mediated AMPK activation is
impaired in weight bearing muscles during spaceflight. Normally
during prolonged exercise there is a shift from carbohydrate
utilization to lipid oxidation, thereby enhancing exercise
tolerance.®*

In a study done on mice during a 91-day spaceflight, Sandona
and associates found that soleus muscles lost ~35% of cross-
sectional area whereas extensor digitorum longus (EDL) muscles
showed no atrophy.®' Soleus muscles underwent physiological
and morphological transformations, changing to a faster, more
glycolytic phenotype, with reductions in the proportion of slow
twitch type 1 and 2 A fibers, increases in the proportion of fast
twitch 2X and 2B fibers, and corresponding changes in myosin
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heavy-chain isoforms. Gene expression of muscle-specific growth
factors IL-6 and insulin-like growth factor (IGF)-1 was down-
regulated in soleus muscles and upregulated in EDL muscles. EDL
muscles also upregulated gene expression of stress-related
markers. They concluded that, in contrast to soleus muscles, EDL
muscles compensate for the effects of microgravity by increasing
the expression of IL-6 and IGF-1 and various stress proteins; they
posited that IGF-1 and IL-6 may be good candidates to counter the
adverse effects of space travel on antigravity muscles such as the
soleus.

IL-6 AND METABOLIC HOMEOSTASIS
On Earth

Central nervous system. When injected into the ventricles of
obese rats, IL-6 has been shown to restore the anorexigenic effects
of insulin and leptin by promoting IL-10-mediated inhibition of 1B
kinase [B/NFkB signaling and endoplasmic reticulum stress
responses.® IL-6 knockout mice develop late-onset obesity and
glucose intolerance.®

Pancreas. Using wild-type and IL-6 knockout mice with type 1
diabetes, Paula and associates found that exercise-induced
generation of IL-6 increased (-cell viability in cultured pancreatic
tissue by reducing the proinflammatory effects of IL-13 and IFN-y.2”

IL-6 has also been shown to increase insulin secretion by
promoting the production of the anorexigenic incretin glucagon-
like peptide-1 (GLP-1) by intestinal L and alpha cells.®

Liver. In diet-induced obese rodents, IL-6 increases mitochondrial
-oxidation of fatty acids in hepatocytes, alleviating hepatic
steatosis.®°

Adipocytes. Approximately one-third of IL-6 is estimated to
originate from adipose tissue where its effects are largely anti-
obesogenic and anti-inflammatory. IL-6 stimulates lipolysis and fat
oxidation in adipocytes,®® downregulates TLR4-induced TNF-q, IL-
8, and macrophage metalloproteinase-1 (MCP-1) production by
resident macrophages, and prevents mature onset obesity and
insulin resistance in mice.”’

T cells. Activated T cells undergo metabolic reprogramming that
promotes glycolytic flux and lactate production and increases the
production of lipids, proteins, nucleic acids and other carbohy-
drates. Mammalian target of rapamycin (mTOR) signaling pro-
motes Th1, Th2, and Th17 differentiation, whereas Treg cells are
generated when AMPK signaling is activated and mTOR activation
is suppressed. Unlike effector CD4" and CD8™ T cells, Tregs and
memory T cells oxidize fatty acids for fuel. Upon activation, T cells
also express insulin and leptin receptors and become sensitive to
insulin signaling and nutrient availability.’? Accumulation of
lactate and lactic acid at sites of inflammation has been shown
to differentially inhibit the motility of CD4" T cells and CD8*
T cells by their effects on subtype-specific transporters Sic5a12
and Sic16a1, respectively.”®

As previously noted, IL-6 stimulates AMPK activity in myocytes;
it is unclear as to whether this also occurs in T cells.

In Space

Pancreas. Subclinical diabetogenic changes, including alterations
in insulin secretion, insulin sensitivity, glucose tolerance, and
metabolism of protein and amino acids occur during spaceflight
and in simulated conditions of microgravity. Experiments in flight
and after flight, ground-based bedrest studies, and bioreactor
studies of pancreatic islets of Langerhans indicate that the
pancreas is unable to overcome peripheral insulin resistance and
amino acid dysregulation that occurs during space flight.**
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Table 1. Pleiotropic effects of IL-6

TARGET EFFECT

B cells Controls the proliferation, maturation and survival of B cells and plasmablasts; initiates T-cell-dependent and
-independent isotype switching and antibody production; promotes the differentiation of IL-10" B regulatory (B1) cells
[IL-1B], and IL-21 production in CD4" T cells to drive STAT-3 dependent plasma cell development.

T cells Regulates trafficking of lymphocytes, monocytes and macrophages and initiates transition from granulocytic to

Monocytes, dendrocytes
Hematopoietic progenitors

mononuclear cell infiltration at sites of inflammation; upregulates expression of surface markers involved in antigen
presentation and phagocytosis; promotes the differentiation of Th2 [IL-4], Th17 [TGF-f], Th22 [TNF-a], Treg [IL-27], and
Tfh [IL-21] cells; initiates the secretion of IL-10 by IFN-y™ Th1, IL-4* Th2 and IL-17" Th17 cells [IL-27]; facilitates T-cell
survival; inhibits Th1 differentiation [IFN-y] and TNF-a and IL-1§ secretion; enhances IL-2, IL-4, IL-10, IL-1ra secretion and
IL-2R expression; stimulates TCR independent CD8" T-cell proliferation and effector functions [IL-7 or IL-15].

Promotes monocyte and dendrocyte to macrophage differentiation and IL-10" M2 macrophage (M2d) activation.
Promotes proliferation of multipotential hematopoietic cells, including the maturation of megakaryocytes [IL-3].

Promotes bone formation by enhancing OB differentiation from mesenchymal cell precursors, by inhibiting OB

apoptosis, and by augmenting immune cell secretion of IL-4, IL-10 and IL-1ra; inhibits bone resorption by decreasing OC
RANKL expression, by upregulating OPG secretion in bone and B cells, and by inhibiting immune cell secretion of IL-10/p
and TNF-o; enhances OB activity in response to bone loading signals by releasing osteoclast-derived coupling factors/

Hepatocytes Initiates acute phase protein synthesis.
Bone

transmitters.
Muscle

cell niche accumulation.
Metabolic homeostasis

Increases glucose uptake and mitochondrial fatty acid oxidation by activating AMPK, P13K. Promotes myocyte
differentiation, proliferation, and response to injury. Promotes post-exercise extracellular matrix reorganization and stem

Restores CNS sensitivity to insulin, leptin; prevents obesity, glucose intolerance; increases pancreatic beta cell viability
and insulin secretion; induces lipolysis, fat oxidation in hepatocytes, adipocytes.

Cytokines bracketed by [] act as essential cofactors

necrosis factor-a

AMPK 5’ adenosine monophosphate activated protein kinase, CNS central nervous system, G/M granulocyte/monocyte, IFN-y interferon-y, IL interleukin, IL-Tra
interleukin-1 receptor antagonist, IL-2R interleukin 2 receptor, OB osteoblast, OC osteoclast, OPG osteoprotegerin, P13K phosphatidylinositol-3-kinase, RANKL
receptor activator of nuclear factor kappa B ligand, TCR T-cell receptor, Th T helper, Tfh T follicular helper, TGF-8 transforming growth factor-g, TNF-a tumor

Liver. Pecaut and associates measured liver transcriptomics and
metabolomics in female C57BL/6J mice after a 13-day flight on the
space shuttle Atlantis. Although the livers were depleted of
glycogen, functional gene analysis revealed both an increase in
glycogen synthesis and glycogenolysis, pathways that do not
normally occur simultaneously except in the glycogen-depleted
liver. They also noted an increase in hepatic fatty acid oxidation.®

Adipocytes. Spaceflight is associated with bone marrow adipo-
genesis due to redirected morphogenesis of mesenchymal cells.”®
However, there is little in the literature documenting metabolic
changes in adipocytes during spaceflight.

T cells

Using in-flight experiments and blood from human donors, Chang
and coworkers have shown that Con A and anti-CD28-stimulated
T-cell activation is impaired in microgravity due to down-
regulation of Rel/NF-kB, CREB, and SRF gene targets. The TNF
pathway was the major early downstream effector pathway
inhibited, potentially contributing to ineffective proinflammatory
responses during spaceflight.®”

Recombinant IL-6: effect and safety issues in humans

The reader is referred to a comprehensive review by Kammiuiller on
safety issues raised by the use of recombinant human IL-6 (hrIL-6)
as a therapeutic agent.”® Provided below are several studies on
the immune and metabolic effects of rhIL-6 in humans using well
tolerated doses that achieve plasma levels similar to those
reached during strenuous exercise.

Steensberg and associates administered recombinant human IL-
6 (rhiL-6) intravenously at a rate of 30 pg/hour for three hours to
six healthy young men achieving plasma levels of ~140 pg/mL
(equivalent to levels obtained during strenuous exercise) which
declined to preinfusion levels within an hour post-infusion. rhiL-6
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was well tolerated, with no changes noted in temperature, heart
rate, blood pressure, or plasma epinephrine levels. Plasma levels of
the anti-inflammatory cytokines IL-10 and IL-1ra increased
significantly during the infusions (8-fold and 26-fold, respectively)
whereas there were no changes in plasma TNF- a levels; plasma
cortisol levels also increased causing a transient neutrophilia and
lymphopenia. CRP levels rose 3 and 16 h post-infusion.”

In a study involving 18 healthy men receiving intravenous
glycerol and palmitate, Van Hall and associates found that both
low and high dose rhIL-6 stimulated lipolysis and fat oxidation.
Those receiving low dose rhiL-6 had mean plasma levels of
140 pg/mL and experienced no adverse side effects, whereas
those receiving high dose rhiL-6 had mean plasma levels of
319 pg/mL and developed ~30min of “chills and discomfort”.
Plasma levels of insulin and glucagon were unaffected, whereas
plasma adrenalin levels increased in the high dose group. Cortisol
levels rose in both treatment groups, retuning to base line within
2 h post-infusion.'® In a study involving eight healthy men the
same group found that a 4-h infusion of low dose rhIL-6 (30 pug/h)
selectively stimulated lipolysis in skeletal muscle but not in
adipose tissue. Again, this dose of rhlL-6 was well tolerated.'®”’

The reader is referred to Table 1 for a summary of the
pleiotropic effects of IL-6.

DISCUSSION

During spaceflight astronauts and cosmonauts experience a
unique set of stressors including the effects of microgravity,
suboptimal nutrition, social isolation, confinement, sleep depriva-
tion, deconditioning, atypical work environment, solar radiation,
and alterations in circadian rhythms.224%%2 Also extant are pre-
and postflight stressors, most notably those associated with
landing and the abrupt need to re-adapt to Earth’s gravity.”® And,
by necessity, studies on the immune system and bone and muscle
homeostasis have involved different flight times and variations in
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research protocols. In this regard, most space physiologists
identify the results of studies performed during long duration
orbital spaceflights as being much more analogous to future deep
space missions than short duration shuttle missions.

Despite these difficulties, studies have consistently shown that
spaceflight is associated with immune dysregulation, including
alterations in surface markers, tissue distribution, cytokine
production, phagocytic capacity, and anti-viral activity of immune
cells,**>° Also well documented are the accelerated losses in
bone and muscle mass and the loss of muscle strength and
endurance during spaceflight 5>77280-84

We have previously reported that long-term moderate intensity
exercise increases the proportion of PBMC producing anti-
inflammatory cytokines and cytokines with osteogenic and
myogenic properties, and that these changes are associated with
reductions in serum markers of bone resorption, increases in
markers of bone formation, and improvements in exercise
tolerance and muscle strength.* Because PBMC constantly
circulate through the highly vascular networks of bone and
muscle, they have the potential, supported by our findings, to
influence the physiology and ontogeny of muscle cells, and
osteoclasts, osteoblasts, osteocytes, and their precursors. PBMC
preparations also contain multipotential stem cells capable of
differentiating into a variety of tissues, including myocytes and
bone cells.'®

In our study, IL-6 was the only cytokine whose secretion was
proportionate to body weight, a measurement of the force of
gravity. In this regard, Wehland and associates, found that IL-6
secretion in human chondrocytes increased > 2-fold when the
cells were cultured under conditions of hypergravity (1.8 g),'* and
Ma and associates documented a significant increase in IL-6 gene
activation in thyroid cancer cells cultured under similar levels of
hypergravity.'® In contrast, IL-6 production by mitogen-
stimulated human PBMC is reduced in the microgravity of long
duration spaceflight,'® and short-duration space flight has been
found to dysregulate monocyte phenotype and reduce LPS-
stimulated monocyte expression of several cytokines, including IL-
6; notably, in this study, only IL-6 secretion was reduced postflight
in blood leukocytes cultured in the presence of phorbol myristate
and ionomycin.?” And, as previously noted, IL-6 gene expression in
murine soleus muscle has been shown to decrease in the
microgravity of spaceflight?® and spaceflight impairment in
osteoblast function has been attributed to a reduction IL-6 mRNA
expression.”’

As documented in this review, reductions in the secretion of IL-6
during spaceflight could adversely affect a variety of its immune
functions. This includes: the expression of intracellular and surface
markers involved in leukocyte trafficking and the transition of
neutrophilic to monophilic inflammatory responses; the expres-
sion of surface markers involved in antigen presentation and
phagocytosis; the augmentation of IL-2, IL-2R, IL-4, IL-10 and IL-1ra
and inhibition of IL-13 and TNF-a production; the promotion of T
and B-cell survival; the enhancement of T-cell-dependent and
-independent antibody production; the differentiation of mono-
cytes, macrophages, dendritic cells, B cells, and plasmablasts; the
initiation of the acute phase protein response and the prolifera-
tion of multipotential hematopoietic cells, including the matura-
tion of megakaryocytes, and, as a cofactor, the differentiation of
CD4" and CD8™ T cells, Th1 and Th2 cells, Th17 cells, Tregs, Tfh
ce”s.6,9722,27

Reductions in IL-6 secretion could also contribute to the
development of subclinical diabetes (pre-diabetes) reported to
occur during spaceflight since, as previously noted, IL-6 can
increase pancreatic beta cell viability, insulin secretion, and CNS
insulin sensitivity, and prevent the occurrence of obesity, glucose

intolerance, and insulin resistance in mice fed obesogenic diets.2>"
88,94
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D-P Hader and associates in reviewing gravireceptors in
eukaryotes noted that many eukaryotes use a mass such as a
statolith or total cell content to operate on gravireceptors (in
many cases a mechanosensitive ion channel) either by pulling or
pressing on an element of the cytoskeleton, ultimately resulting in
the activation or silencing of genes. In human cells, they noted a
direct correlation between changes in the cytoskeleton and
transcription alterations in microgravity and posit that the
adhesive interaction of the cytoskeleton with the extracellar
matrix is the basis for gravisensing.'®” Whatever the mechanism,
microgravity alters the expression of several transcription factors,
including nuclear factor kappa-light-chain-enhancer of B cells (NF-
kB); NF-kB upregulates IL-6 production in human lung epithelial
cells and smooth muscle cells when their cytoskeletons are
subjected to mechanical stress or stretching.'®'%® And cardiac
muscle AMPK expression is downregulated in microgravity''%; as
noted previously, IL- 6 enhances exercise endurance by activating
AMPK-mediated increases in glucose uptake and fat oxidation
within myocytes.”>”*

CONCLUSION

It is posited that secretion of IL-6 is particularly sensitive to
cytoskeletal derangements and extracellular adhesive changes
that occur under the force of gravity on Earth and in the
microgravity of spaceflight, and that the adverse effect of
spaceflight on immune, bone, muscle and metabolic homeostasis
is related, at least in part, to altered gravisensing and consequent
suboptimal production of this key cytokine.

Future direction

On Earth, plasma levels of IL-6 increase in an exponential fashion
(up to 100-fold) in response to exercise and decline rapidly in the
post-exercise period. The increase is related to exercise intensity,
duration, the mass of muscle recruited and one’s endurance
capacity.’’ Preflight and inflight studies measuring post-exercise
IL-6 plasma levels should be done to determine whether
production of this key myokine/cytokine is reduced during
spaceflight, in which case inflight administration of rhiL-6 may
prove useful in preventing some of the deleterious effects of
spaceflight, particularly on muscle and bone.
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