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Herbicides and heavy metals are hazardous substances of environmental pollution, resulting in plant stress and harming humans
and animals. Identification of stress types can help trace stress sources, manage plant growth, and improve stress-resistant
breeding. In this research, hyperspectral imaging (HSI) and chlorophyll fluorescence imaging (Chl-FI) were adopted to identify
the rice plants under two types of herbicide stresses (butachlor (DCA) and quinclorac (ELK)) and two types of heavy metal
stresses (cadmium (Cd) and copper (Cu)). Visible/near-infrared spectra of leaves (L-VIS/NIR) and stems (S-VIS/NIR)
extracted from HSI and chlorophyll fluorescence kinetic curves of leaves (L-Chl-FKC) and stems (S-Chl-FKC) extracted from
Chl-FI were fused to establish the models to detect the stress of the hazardous substances. Novel end-to-end deep fusion
models were proposed for low-level, middle-level, and high-level information fusion to improve identification accuracy. Results
showed that the high-level fusion-based convolutional neural network (CNN) models reached the highest detection accuracy
(97.7%), outperforming the models using a single data source (<94.7%). Furthermore, the proposed end-to-end deep fusion
models required a much simpler training procedure than the conventional two-stage deep learning fusion. This research
provided an efficient alternative for plant stress phenotyping, including identifying plant stresses caused by hazardous
substances of environmental pollution.

1. Introduction

Rice (Oryza sativa L.) is one of the main staple food in the
world. With the development of breeding techniques, high
yield and stress-resistant varieties have been developed and
promoted for planting to increase the rice yield. However,
the yield will reach the plateaus when the planting fields
no longer increase. On the other hand, climate instability
and biotic and abiotic stresses show great threats to rice
production. Although stress-resistant varieties have been
bred, they can only deal with a few stresses. These varieties

also suffer from a complex growth environment, resulting
in yield and quality loss.

Herbicides and heavy metals are the main hazardous
substances causing environmental pollution, resulting in
the abiotic stress of plants. Generally, the rice plants are
exposed to herbicides or heavy metals, which might not
cause death to the plants, and the plants under the threat
of relatively low concentrations of herbicides and heavy
metals might not show obvious differences in the symptoms.
Under this situation, it is hard to identify the stress types of
plants. Moreover, the stresses will affect plant growth, and
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different plant organs may respond differently. The acquisi-
tion of phenotyping traits of different organs can provide
complementary information of plants, improving the
precision and stability of plant growth status monitoring.
Accurately and automatically identifying abiotic stress types
can obtain plant growth information and find the optimal
solution to deal with the stresses. Knowing what happens
to the plants and how to treat them makes it possible to min-
imize the influence of abiotic stresses to stabilize the yield
and quality.

High-throughput phenotyping of plants can help
obtain a large number of phenotyping traits in digital
and automatic manners. The development of modern ana-
lytical techniques has made great contributions to high-
throughput plant phenotyping [1–5]. The numerous data
acquired by the analytical instruments contained various
information relating to plant growth status. The plant phe-
notyping traits can evaluate the plant growth status. High-
throughput phenotyping also helps study the relationship
between phenomics and genomics [6, 7]. Hyperspectral
imaging (HSI) [8–11] and chlorophyll fluorescence imag-
ing (Chl-FI) [11–13] are two widely used techniques for
high-throughput plant phenotyping, providing different
information on plant growth. HSI and Chl-FI have been
studied for heavy metal and herbicide stresses [14–17].

HSI integrates the spectroscopy technique and imaging
technique, capturing spectral information of pixels within
the image. The spectral information is related to the chemi-
cal compositions and physiological and biochemical reac-
tions. Image information relates to external information,
such as plant structure, color, and morphological features.
Full-range spectra, feature wavelengths, and spectral indices
derived from full-range spectra are mostly used for analysis.
Chl-FI has also been used for high-throughput phenotyping
of plants. It captures chlorophyll fluorescence signals from
the samples, which relates to photosynthesis. Chlorophyll
fluorescence kinetic parameters are mostly used for analysis,
and some studies have used chlorophyll fluorescence spectra
for analysis [18–20].

Previous studies have proved the effectiveness of HSI
and Chl-FI for plant stress phenotyping individually. The
combination of HSI and Chl-FI has also been studied for
plant stress phenotyping [21–23]. However, most of these
studies have analyzed HSI and Chl-FI separately [21–24].
Since HSI and Chl-FI acquired different phenotyping traits
based on different principles, the fusion of the features of
HSI and Chl-FI for plant stress type identification can be
explored to use complementary information of different
phenotyping traits. Information fusion has been widely used
for integrating multimodal or multisensor data to improve
analysis performances for different purposes with higher
precision and reliability. In the review of [25], the authors
discussed the potential of information fusion of HSI and
Chl-FI. In the review of [26], the authors also discussed the
potential of information fusion for plant stress phenotyping.
Various studies have shown the good performances of infor-
mation fusion for plant phenotyping, including the fusion of
data acquainted by different types of sensors (representing
different techniques) [27–35].

Deep learning has been the hottest topic in machine learn-
ing and artificial intelligence. With the ability to learn deep
and representative features from big data, deep learning has
been used in various fields, including plant phenotyping. Deep
learning has also been used for high-throughput plant pheno-
typing [26, 36–40]. According to previous studies, shallow
CNNmodels can work well on one-dimensional (1D) spectral
data [14, 41]. To our knowledge, no previous studies have used
the Chl-FKC as inputs of CNN. The 1D Chl-FKC is similar to
the VIS/NIR spectra. Due to the significant feature learning
ability, DL can fuse features from VIS/NIR spectra and Chl-
FKC to fully reveal the phenotyping information of plants.
Researchers have conducted deep learning-based information
fusion for plant phenotyping [38, 42, 43].

In general, there are three different levels of information
fusion, including low-level fusion (fusion of original data),
middle-level fusion (fusion of features extracted by a feature
extractor), and high-level fusion (decision fusion) [44–46].
However, most existing information fusion models are built
based on a two-stage training procedure, requiring individ-
ual feature extractors and classifiers. The first step is to train
a feature extractor or directly use a manually defined one to
produce the features for fusion. The second step is to train
another model for discrimination based on the fused
features obtained in the first step [27, 28, 33]. These infor-
mation fusion models are complex and need manual inter-
vention. Recent studies have developed end-to-end deep
fusion models for applications, combining feature extraction
and modeling in one model [47, 48]. The features are auto-
matically learned, fused, and fed into the classifier. The
end-to-end deep fusion models have simpler training proce-
dures and are more applicable for real-world applications.

This study focused on identifying different types of abi-
otic stresses using HSI and Chl-FI techniques. The specific
objectives were to (1) identify two types of herbicide stresses
(butachlor (DCA) and quinclorac (ELK)) and two types of
heavy metal stresses (cadmium (Cd) and copper (Cu)), (2)
explore the performances of the stress type identification
using different techniques (HSI and Chl-FI) and different
organs (leaves and stems), and (3) explore the stress type
identification using the three levels of end-to-end deep
fusion to fuse the information acquired by different tech-
niques (HSI and Chl-FI) and different organs (leaves and
stems).

2. Materials and Methods

2.1. Sample Preparation. The rice variety used in this study
was Zhongheyou 4, provided by the Institute of Crop Science
and Nuclear Technology Utilization, Zhejiang Academy of
Agricultural Sciences. The rice seeds were sowed onto the
seedbed. The rice seedlings were transplanted to the laboratory
for stress one month later. The rice seedlings were trans-
planted in plug trays with nutrient soil. Regular water manage-
ment and fertilizer management were conducted. After one
week of transplantation, the seedlings were used for treat-
ments with different stresses.

Two different herbicides were used, including butachlor
(DCA) and quinclorac (ELK). Two heavy metals were used,
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including copper (Cu) and cadmium (Cd). For butachlor
stress, butachlor solutions with a 50% active constituent
were purchased from the local pesticide shop, and the dos-
age of used butachlor solutions was 0 (control (CK)), 1.5,
3, and 6mL/L. For quinclorac stress, quinclorac powders
with a 99% active constituent were purchased, and the dos-
age of used quinclorac powder was 0 (CK), 0.56, 1.12, and
2.24 g/L. For Cu and Cd stresses, the concentration of Cu
and Cd was 0 (CK), 10, 30, and 60μmL/L. The different con-
centrations of herbicides and heavy metals were used to
include more sample variations under one type of stress. In
all, the number of samples under the treatments of CK,
Cd, Cu, DCA, and ELK was 240, 360, 360, 268, and 358,
respectively.

After the first time of stress, regular water management
and fertilizer management were conducted. The efficiency
of hyperspectral image acquisition and chlorophyll fluores-
cence image acquisition makes it unable to acquire a lot of
samples a day. Thus, the four stresses were conducted on
four successive days. After one week, the image acquisition
of the corresponding stresses was conducted on another 4
successive days for the second batch of samples. As for
hyperspectral image acquisition and chlorophyll fluores-
cence image acquisition, both leaves and stems were cut
from the seedling and used for image acquisition separately.

2.2. Hyperspectral Image Acquisition. An assembled hyper-
spectral imaging system (as described previously in [49])
was used to acquire hyperspectral images of rice leaves and
stems. The system covers the spectral range from 380 to
1030 nm, integrated with a spectrograph, a camera with a
lens, and a tungsten halogen light source. The samples could
be placed on a conveyer belt driven by a stepper motor. The
hyperspectral images were collected using line-scan mode
and calibrated by black-white calibration.

I = Iraw − Iblack
Iwhite − Iblack

, ð1Þ

where I denotes the calibrated spectral image. Iraw, Iblack , and
Iwhite denote the raw image, black image, and white image.

The system parameters were adjusted to acquire clear
and nondeformable images. The camera exposure time was
set as 0.027 s, the speed of the moving plate was set as
3.4mm/s, and the distance between the lens and the moving
plate was adjusted to 26 cm. It was expected to cover the
tested plant as much as possible, and the plant was cut into
segments and put symmetrically under the camera (on the
conveyor belt) for line-scan image collection.

2.3. Chlorophyll Fluorescence Image Acquisition. A pulse-
amplitude-modulated chlorophyll fluorescence imaging sys-
tem (FluorCam FC800, Photon Systems Instruments, Brno,
Czechia) (as described previously in [50]) was used to
acquire chlorophyll fluorescence images. This chlorophyll
fluorescence imaging system consists of a CCD camera
(1392 × 1040 resolution) with an industry lens SV-H1.4/6
(VS Technology, Tokyo, Japan). The light source is formed
by five light-emitting diodes (LED). An elevating table

(HTVS120, SPL, Hangzhou, China) is used to adjust the dis-
tance between the samples and the lens. The image acquisi-
tion procedure was the same as [51], while the system
parameters differed. When acquiring the chlorophyll fluo-
rescence images, the actinic lights, saturating flashes, expo-
sure time, and sensitivity were adjusted at 90%, 75%,
33.3μs, and 33.3%. The segmented plants were placed inside
a dark room (the area that the camera could cover) for chlo-
rophyll fluorescence image acquisition.

2.4. Spectral Data Extraction and Chlorophyll Fluorescence
Kinetic Curve Extraction

2.4.1. Spectral Curve Extraction. For hyperspectral images,
the leaves of a sample are identified as the region of interest
(ROI) of leaves (LROI), and the stem of a sample is also
identified as an ROI (SROI). Considering the fact that the
head and the end of the spectra contained obvious noises
caused by the instrument, only the visible/near-infrared
(VIS/NIR) spectra in the range of 454-957nm (396 wave-
bands) were used for analysis. The pixel-wise spectra within
the ROI were preprocessed by wavelet transform (wavelet
function Daubechies 8 with decomposition level 3). All
pixel-wise spectra within each ROI were averaged as the
spectrum of the samples. The VIS/NIR spectra of leaves
(L-VIS/NIR) and stems (S-VIS/NIR) were obtained for each
rice plant, respectively. For chlorophyll fluorescence images,
the leaves and the stem were identified as ROIs (similar to
the ROI definition in hyperspectral images), respectively.
Pixel-wise Chl-FKC within each ROI were averaged as the
chlorophyll fluorescence kinetic spectrum. The Chl-FKC of
leaves (L-Chl-FKC) and stems (S-Chl-FKC) were obtained
for each rice plant, respectively. Maximum normalization
was conducted to preprocess the VIS/NIR spectra and the
Chl-FKC for further modeling procedures.

2.4.2. Dataset Preparation. To establish models, the class
labels of the samples in the control group (CK) and the class
labels of the samples under the stresses of Cd, Cu, DCA, and
ELK were assigned as 0, 1, 2, 3, and 4, respectively. A typical
dataset split approach in the deep learning area was adopted.
For each group, the samples were randomly split into the
training, validation, and testing sets [52–54], using the ratio
of 4 : 1 : 1. The samples in the training, validation, and testing
sets were the same for each single data source. The details of
the dataset are listed in Table 1.

2.5. Classification Models

2.5.1. Conventional Machine Learning Methods. The support
vector machine (SVM) is a widely used pattern recognition
method [55]. For linearly separable issues, a linear classier
is developed. For nonlinear classification, SVM maps the
original data into high dimensions by kernel functions and
establishes hyperplanes to maximally classify the closest
training samples of different classes. In this study, SVM
was used to compare deep learning approaches.

2.5.2. Deep Learning Method. The convolutional neural net-
work (CNN) is a widely used deep learning algorithm. The
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extracted VIS/NIR spectra and Chl-FKC were used to iden-
tify the stress types in this study.

A 1D CNN architecture was designed as the base classi-
fier for processing each single data source. This model was
defined as CNN-S. Figure 1 shows the shallow CNN archi-
tectures used in this study. The first part was an attention
layer, which operated based on

Yattention = θRELU W1 ⋅ θRELU W2 ⋅ X + b1ð Þ + b2ð Þ ⋅ X, ð2Þ

where W1, W2, b1, and b1 are the trainable parameters
(weights and bias) in the attention layer, θRELU is the activa-
tion function, and X denotes the input. The second part was
a 1D convolution block consisting of three 1D convolution
layers (kernel size of 3, stride of 1; activated using RELU).
To reduce the dimension of features, a max-pooling layer
(pool size of 2, stride of 2) was added after the first convolu-
tion layer. The third part was a fully connected neural net-
work including three dense layers. The numbers of
neurons were 512, 128, and 5, respectively, using RELU acti-
vation. Furthermore, a batch normalization layer was added
before each convolution and dense layer. The SoftMax
Cross-Entropy was utilized as the loss function.

2.6. Fusion Strategies. Leaves and stems showed different
physiochemical characteristics under stress. During the
seedling stage of rice, the leaves and stems are all green,
and the VIS/NIR spectra and Chl-FKC of leaves and stems
are quite similar (Figures 2 and 3). Since HSI and Chl-FI
acquired different phenotyping traits based on different
principles, each technique can provide limited plant pheno-
typing information. Thus, the fact that the fusion of HSI and
Chl-FI can help identify rice stress types is worthy of inves-
tigation. There were two organs (leaves and stems) and two
techniques (HSI and Chl-FI). Five different fusion strategies
of data were conducted according to Table 2. It should be
noted that L-VIS/NIR, S-VIS/NIR, L-Chl-FKC, and S-Chl-
FKC of the same sample were used for fusion.

This study explored three different levels of information
fusion (low level, middle level, and high level). For each
information fusion level, end-to-end deep fusion models
were developed. For low-level fusion, the original data of
each type of feature were concatenated directly as a long vec-
tor and performed the classification task by the CNN-S
model according to the fusion strategies in Table 2.

For middle-level fusion, an end-to-end CNN architec-
ture for information fusion was proposed to fuse different
types of original spectra for plant stress type identification.
Each type of original feature was fed into the corresponding
feature extractor, and the model required only a one-stage
training. The fusion strategies for the end-to-end CNN were
based on Table 2. The middle-level fusion model fused the
deep features for further classification. In Figure 4, the
end-to-end CNN model for middle-level fusion using all
the four types of features is presented. Four single CNN-S
models were employed for processing different data sources.
In particular, the last dense layer of the CNN-S was
removed. Therefore, the 128-dimension output (4 vectors
from the second dense layer of each CNN-S submodel)
was considered the deep features. They were weighted and
concatenated for fusion.

The middle-level fusion could be described using

Ymid = φConcat θRELU W1ð ÞF1, θRELU W2ð ÞF2, θRELUð
� W3ð ÞF3, θRELU W4ð ÞF4Þ,

ð3Þ

where φConcat means that this function concatenates all
inputs to generate a vector; F1, F2, F3, and F4 are the deep
features from L-VIS/NIR, S-VIS/NIR, L-Chl-FKC, and S-
Chl-FKC, respectively.

For high-level fusion, another end-to-end CNN model
was designed (shown in Figure 5). In this paper, high-level
fusion could also be understood as decision fusion, which
provides the final decision on classification based on the out-
put of different classifiers. Different from the mentioned
middle-level fusion model, the high-level fusion model used
four complete CNN-S models to process the four data
sources. Then, the outputs of the four submodels (four vec-
tors with a shape of 5 ∗ 1) were concatenated and further fed
into another dense layer with five neurons. It should be
pointed out that a new loss function was proposed especially

Table 1: Descriptions of the dataset.

Data source Number of features
Number of samples

Training Validation Testing

L-VIS/NIR 396 1060 265 261

S-VIS/NIR 396 1060 265 261

L-Chl-FKC 286 1060 265 261

S-Chl-FKC 286 1060 265 261
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Figure 1: The architecture of the CNN model with a single type of
input. “1D-Conv” means 1D convolution, and “Max Pool” denotes
the max-pooling layer.
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for this deep decision fusion model; see

Loss = ℓ y, yFð Þ + ℓ y, y1ð Þ + ℓ y, y2ð Þ + ℓ y, y3ð Þ + ℓ y, y4ð Þ, ð4Þ

where yF denotes the output of the whole decision fusion-
based deep learning model; y1, y2, y3, and y4 are the outputs
of four submodels; and ℓ denotes the Cross-Entropy loss.
This loss function could simultaneously promote the final
classification loss and that of the submodels as small as pos-
sible. Moreover, due to the constraint of the loss function on
the output of submodels, the fused y1, y2, y3, and y4 were
forced to approach the expected probability distribution.
Thus, the combination of them was a typical decision fusion.

To evaluate the superiority of the proposed methods,
two-stage middle- and high-level fusion approaches were
also used for comparison. In this study, only the two-stage
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Figure 2: Average VIS/NIR spectra of the leaves (a). Average VIS/NIR spectra of the stems (b).
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Figure 3: Average Chl-FKC of the leaves (a). Average Chl-FKC of the stems (b).

Table 2: The fusion strategies used in this study.

Fusion strategy
L-VIS/
NIR

S-VIS/
NIR

L-Chl-
FKC

S-Chl-
FKC

Fusion 1 ✓‡ ✓ × ×
Fusion 2 × × ✓ ✓

Fusion 3 ✓ × ✓ ×
Fusion 4 × ✓ × ✓

Fusion 5 ✓ ✓ ✓ ✓

‡The symbol ✓means that the corresponding features were used for fusion,
and the symbol × means that the corresponding features were not used for
fusion.
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fusion of all the four types of features was implemented. As
for middle-level fusion, feature extraction, feature fusion,
and modeling were conducted separately. The features were

learned and extracted from CNN-S models using each single
type of feature, and all the features extracted from the four
types of features were concatenated. The fused features were
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Figure 4: The architecture of the end-to-end CNN model for middle-level fusion using all the four types of features. HSI: hyperspectral
imaging; FL: fluorescence; 1D-Conv: 1D convolution. W1 to W4 were the weights for fusion.
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Figure 5: The architecture of the end-to-end CNN model for end-to-end high-level fusion using all the four types of features. HSI:
hyperspectral imaging; FL: fluorescence; 1D-Conv: 1D convolution. y1 to y4 were the outputs of the single model.
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then fed into a CNN-S model. As for high-level fusion, the
predicted probability distribution vectors of the CNN-S
models using four data sources were first extracted. Then,
the averaged probability distribution vectors were used to
make the final decision.

2.7. Model Performance Evaluation and Software. The classi-
fication accuracy was evaluated by the ratio of the number of
correctly classified samples to the number of total samples.
SVM was conducted on scikit-learn (version: 1.0.1) in
Python 3.7, and CNN was conducted using the MXNet
framework (Amazon, Seattle, WA, United States) with
Python 3.7.

3. Results

3.1. Profiles of VIS/NIR Spectra and Chl-FKC. Figure 2 shows
the average VIS/NIR spectra of the leaves (Figure 2(a)) and
stems (Figure 2(b)) of the healthy rice plants and the plants
under the stresses of Cd, Cu, DCA, and ELK. Figure 3 shows
the average Chl-FKC of the leaves (Figure 3(a)) and stems
(Figure 3(b)). As shown in Figures 2 and 3, typical hyperspec-
tral profiles of plants can be found for the leaves and stems of
rice plants, as well as the Chl-FKC. Differences can be found
for the leaves and stems under different stresses. However,
no particular regulation (for example, which stress has higher
reflectance or fluorescence intensity) could be found. There
were variations during the measurement caused by the sam-
ples, instruments, and measurement conditions. Thus, it was
difficult to identify the stress types by observing the differences
in spectral curves or Chl-FKC. Further investigation should be
conducted for stress type identification.

3.2. Model Establishment Using a Single Type of Feature. The
full VIS/NIR spectra and Chl-FKC of leaves and stems were
used as inputs of SVM and CNN-S models. Table 3 shows
the statistical results of the classification models. To con-
struct SVM and CNN-S models, the training sets and vali-
dation sets were used, and the optimal models were selected
according to the classification performances of the valida-
tion sets. For SVM, the kernel function was chosen as
“rbf.” The optimization ranges of parameters C and g were
both ½10−8, 10−7, 10−6,⋯, 106, 107, 108�. For all deep learn-
ing models in this study, the number of epochs was set as
500. A scheduled learning rate was used by starting with
0.005 for the first 100 epochs, which was reduced to one-
tenth by every 100 epochs. The batch size was set as 128.
The statistical results of SVM and CNN-S models are
shown in Table 3.

Both the CNN-S and SVM models performed well for L-
VIS/NIR and S-VIS/NIR. CNN-S models obtained slightly
better results than the corresponding SVM models, with
the classification accuracy of the training, validation, and
testing sets all over 90%. For L-Chl-FKC and S-Chl-FKC,
both CNN-S models and SVM models failed to obtain satis-
factory results, with the classification accuracy of the train-
ing, validation, and testing sets over 70%. CNN-S models
and SVM models obtained close results. It could be noted
that overfitting occurred for both the SVM and CNN models

using chlorophyll fluorescence induction kinetic spectra. For
VIS/NIR spectra, the classification models of leaves per-
formed better than the corresponding models of stems, indi-
cating that leaves were more suitable for rice stress type
identification when using HSI. For Chl-FKC, the classifica-
tion models of leaves obtained close results to those of stems.

Figure 6 shows the confusion matrix of CNN models
using the four data types. No particular regulation could be
found for the misclassification of samples among different
classes. One sample under one type of stress could be mis-
classified as any other type of stress. The results of the con-
fusion matrix showed the feasibility to identify the stress
types of Cd, Cu, DCA, and ELK using HSI and Chl-FI.

3.3. Model Establishment Using Fused Datasets. For low-level
fusion, the fused datasets were constructed according to the
fusion strategies in Table 2. The fused datasets were also
used as inputs of the CNN-S models with the same architec-
tures as Figure 1. The parameter settings of the CNN-S
models for fused datasets were the same as those of the
CNN-S models for a single type of feature. The results of
the CNN models using the fused datasets are presented in
Table 4. The CNN-S model using the fusion of L-VIS/NIR
and S-VIS/NIR obtained slightly better results than that
using VIS/NIR spectra of leaves and stems individually.
The CNN-S model using the fusion of L-Chl-FKC and S-
Chl-FKC obtained significantly better results than that using
features of leaves and stems individually. For fusion of VIS/
NIR spectra and chlorophyll fluorescence induction kinetic
spectra of leaves, the performance of the CNN model was
worse than that of the CNN-S model using L-VIS/NIR and
significantly better than that of the CNN-S model using L-
Chl-FKC. A similar phenomenon could be found for stems.
Classification models using the fusion of L-VIS/NIR and L-
Chl-FKC showed better classification performances than
the corresponding models using the fusion of S-VIS/NIR
and S-Chl-FKC. The CNN-S model using the fusion of
VIS/NIR spectra and Chl-FKC of leaves and stems showed
good performances, and the performances were close to
those of the CNN-S model using L-VIS/NIR.

As for the end-to-end fusion approach for middle-level
fusion, the original VIS/NIR spectra and Chl-FKC of leaves
and stems were fed into an end-to-end deep learning fusion

Table 3: The classification results of SVM and CNN models using
L-VIS/NIR, S-VIS/NIR, L-Chl-FKC, and S-Chl-FKC.

Dataset type Model
Accuracy (%)

Training Validation Testing

L-VIS/NIR
SVM 100 91.7 92.0

CNN 98.8 95.1 92.7

S-VIS/NIR
SVM 96.2 87.9 94.7

CNN 98.4 91.3 92.0

L-Chl-FKC
SVM 100 74.3 75.5

CNN 100 77.4 75.5

S-Chl-FKC
SVM 92.9 78.1 78.9

CNN 99.9 75.8 76.2
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model (shown in Figure 4) according to the fusion strategies
in Table 2. By fusing L-VIS/NIR and S-VIS/NIR, the CNN
model obtained good results, with the classification accuracy
of the training, validation, and testing sets over 90%.TheCNN
model using the fusion of L-Chl-FKC and S-Chl-FKC
obtained worse results, with the classification accuracy of the
training, validation, and testing sets over 80%. When L-VIS/
NIR and L-Chl-FKC were fused, the corresponding CNN
model obtained good performances, with the classification

of all the three sets over 90%. The classification accuracy
of the training, validation, and testing sets in the CNN
model using the fusion of S-VIS/NIR and S-Chl-FKC was
over 80%. When VIS/NIR spectra and Chl-FKC of leaves
and stems were all fused, the corresponding CNN model
obtained the best performances, with the classification accu-
racy of all the three sets over 95%. The CNN model using
the fusion of L-VIS/NIR and S-VIS/NIR obtained slightly
better results than that using L-VIS/NIR and S-VIS/NIR
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Figure 6: Confusion matrix of CNN-S models using VIS/NIR spectra of leaves and stems and Chl-FKC of leaves and stems, respectively. (a)
The confusion matrix of the training, validation, and testing sets (from left to right) of the CNN-S model using VIS/NIR spectra of leaves. (b)
The confusion matrix of the training, validation, and testing sets (from left to right) of the CNN-S model using VIS/NIR spectra of stems. (c)
The confusion matrix of the training, validation, and testing sets (from left to right) of the CNN-S model using Chl-FKC of leaves. (d) The
confusion matrix of the training, validation, and testing sets (from left to right) of the CNN-S model using Chl-FKC of stems.
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individually. The CNN model using the fusion of L-Chl-
FKC and S-Chl-FKC obtained equivalent or better results
than that using L-Chl-FKC and S-Chl-FKC individually.
As for the two-stage fusion approach of middle-level fusion,
the deep features extracted from the VIS/NIR spectra and
Chl-FKC of leaves and stems by the corresponding CNN-
S models were all used for fusion. Better performances were
obtained, with the classification accuracy of the training,
validation, and testing sets all over 97%.

As for high-level fusion, an end-to-end CNN model for
decision fusion was also applied. The classification results
were the best, and the classification accuracy of the training,
validation, and testing sets was 100%, 97.4%, and 97.7%. A
two-stage high-level fusion approach was also used for com-
parison, and close results were obtained. The classification
accuracy of the training, validation, and testing sets was
100%, 97.7%, and 97.7%.

The high-level fusion showed the best performances of
rice stress type identification compared with low-level fusion
and middle-level fusion. High-level fusion depended on the
outputs of each single model. The results of the classification
models using each single type of feature illustrated the
potential of different types of features for rice stress type
identification. The modeling performances varied for each
type of feature. High-level fusion could reduce the interfer-
ence by the defects of different decision models using differ-

ent features, producing excellent performances. The overall
results illustrated the effectiveness of high-level fusion for
rice stress type identification.

Compared with end-to-end fusion models, the two-stage
information fusion approaches were more complex. The fea-
tures were extracted by the trained and optimized models for
two-stage middle-level fusion. Moreover, one more classifier
should be trained on the combined features. The whole pro-
cedure was complex, with more computation and manual
intervention (here, 5 models should be trained and opti-
mized). For two-stage high-level fusion, the predicted prob-
ability distribution vectors of the CNN-S model using each
type of feature were first extracted. A decision-making pro-
cedure was implemented to make the final decision. End-
to-end models for information fusion showed a simpler
operation with only one-stage calculation.

As shown in Table 4, the models using the fusion of L-
Chl-FKC and S-Chl-FKC obtained better results than those
using L-Chl-FKC and S-Chl-FKC individually. The results
indicated that combining Chl-FKC features could improve
classification performances. Since the CNN-S models using
L-VIS/NIR and S-VIS/NIR individually obtained good
performances, the models using the fusion containing the
features of L-VIS/NIR and S-VIS/NIR all obtained good
performances. The results were not good when CNN-S
models were built using L-Chl-FKC and S-Chl-FKC individ-
ually. The fusion of Chl-FKC features and the corresponding
VIS/NIR features showed better results than the models
using the corresponding Chl-FKC features and obtained
lower or close results than the models using the correspond-
ing VIS/NIR features. Due to the gap between the perfor-
mances of models using VIS/NIR spectra and the
corresponding Chl-FKC individually, the fusion of Chl-
FKC features and the corresponding VIS/NIR features
obtained the performances between the performances of
the models using each type of feature individually.

The fusion of all the features showed relatively better
performances. By fusing all the types of features, the comple-
mentary information relating to rice stress type identifica-
tion hidden in the obtained features could be revealed for
rice stress type identification.

Furthermore, the confusion matrices of the three levels
of information fusion using the Fusion 5 strategy were
explored (shown in Figure 7). Although Cd and Cu were
both heavy metal stresses and DCA and ELK were herbi-
cide stresses, no particular rules could be found for the
misclassification of samples among different classes. The
good performances of the classification of rice plants
under different stress types showed that information
fusion of phenotyping traits of leaves and stems acquired
by HSI and Chl-FI had great potential for rice stress type
identification.

4. Discussion

The effectiveness of HSI and Chl-FI for high-throughput
plant stress phenotyping has been widely verified in various
studies [10, 13, 56–60]. In this study, VIS/NIR spectra
acquired by HSI and chlorophyll fluorescence induction

Table 4: The classification results of the CNN models of each
fusion level.

Fusion level Fusion strategy
Accuracy (%)

Training Validation Testing

Low level

Fusion 1 99.9 97.4 94.6

Fusion 2 100 79.2 80.5

Fusion 3 100 91.7 89.3

Fusion 4 100 85.3 85.8

Fusion 5 100 95.1 93.1

Fusion 5-TwoStage§ / / /

Middle level

Fusion 1 97.6 95.1 92.3

Fusion 2 99.9 84.5 82.8

Fusion 3 100.0 95.5 91.6

Fusion 4 99.6 84.9 85.4

Fusion 5 100 95.1 96.6

Fusion 5-TwoStage|| 100 97.4 97.3

High level

Fusion 1 99.6 95.5 95.4

Fusion 2 100 94.3 93.5

Fusion 3 99.5 89.1 87.0

Fusion 4 100 86.4 85.1

Fusion 5 100 97.4 97.7

Fusion 5-TwoStage¶ 100 97.7 97.7

§Low-level fusion directly fuses the raw data as the input of the model,
which does not need a two-stage training. ||The two-stage-based middle-
level fusion model fuses the deep features extracted by single models
(CNN-S). Another CNN classifier is trained for processing the fused
features. ¶The two-stage-based high-level fusion model fused 4 predicted
probability distribution vectors (each includes 5 elements). The averaged
probability distribution vectors are for making the final decision.
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kinetic spectra acquired by Chl-FI of leaves and stems of rice
plants were used to identify the stress types, and the results
were promising.

In previous studies, SVM has been widely used as a
conventional machine learning method to compare with
deep learning methods for 1D spectral analysis. The results
between SVM and deep learning methods were quite close
[61–64]. This study found similar trends for plant stress
type identification using VIS/NIR spectra and chlorophyll
fluorescence induction kinetic spectra of leaves and stems.
The 1D VIS/NIR spectra and chlorophyll fluorescence
induction kinetic spectra have simple data structures, and
the potential of CNN models for deep feature learning
could not be fully revealed. On the other hand, the num-
ber of samples was not large enough, which were suitable
for SVM. The potential of CNN models for big data could
not be fully revealed.

Moreover, variations can be found between VIS/NIR
spectra and chlorophyll fluorescence induction kinetic
spectra for stress type identification. As for HSI, the classi-

fication performances of CNN models showed slightly bet-
ter results than those of SVM models. As for Chl-FI, the
classification performances of CNN models using Chl-
FKC showed close results to those of SVM models. Models
using VIS/NIR spectra performed better than those using
chlorophyll fluorescence induction kinetic spectra. In some
other studies, the performances for plant phenotyping
using features of HSI were better than those using features
of Chl-FI [18, 22, 65]. Although spectral indices calculated
from VIS/NIR spectra are widely used for analysis, the full-
range spectra are also widely used for analysis. Unlike VIS/
NIR spectra, Chl-FI parameters calculated from Chl-FKC
were more widely used for analysis in Chl-FI rather than
the full-range Chl-FKC. The results illustrated the potential
of stress type identification using Chl-FKC, and more
efforts should be made to improve the performances. VIS/
NIR can reflect the physiological and biochemical changes
under different stresses, and Chl-FI is an efficient technique
to assess the status of plant photosynthesis. VIS/NIR spec-
tra may provide more information than Chl-FKC.
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Figure 7: Confusion matrices of the three levels of end-to-end information fusion using the Fusion 5 strategy. (a) The confusion matrix of
the training, validation, and testing sets (from left to right) of low-level fusion. (b) The confusion matrix of the training, validation, and
testing sets (from left to right) of middle-level fusion. (c) The confusion matrix of the training, validation, and testing sets (from left to
right) of high-level fusion.
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Both leaves and stems showed promising results for
plant stress type identification, and the performances of
leaves were better than those of stems. In general, leaves
were more likely to be used for plant phenotyping. Fewer
studies have studied the high-throughput phenotyping of
stems [66–73]. The overall results showed that stems can
be an efficient alternative for plant phenotyping in addition
to leaves. Stems and leaves showed different phenotyping
traits under different stresses. The good performances indi-
cated that the combinations of leaves and stems have the
great potential to provide more information for plant stress
phenotyping.

HSI and Chl-FI acquired different phenotyping traits of
leaves and stems. The fusion of VIS/NIR spectral features
and Chl-FKC features combined different aspects of features
of plants. The results showed that using the fusion of VIS/
NIR spectral features and Chl-FKC features had the poten-
tial to improve the performances of plant stress type identi-
fication. In some other studies, the authors also fused data
from different sensors to improve the performances of plant
phenotyping [30, 74, 75].

With the advantage of deep learning on feature learn-
ing and classification tasks, end-to-end CNN models were
designed to implement the information fusion of pheno-
typing traits acquired from leaves and stems by HSI and
Chl-FI. The most widely used two-stage information
fusion consisted of training or manually selecting features,
concatenating features manually, and training an indepen-
dent classifier using fused features. The end-to-end deep
fusion models combined all these steps into one model,
and the whole procedure was implemented using one-
stage training. These models were much simpler and did
not need manual intervention to extract or select appro-
priate features. By obtaining the phenotyping traits, these
phenotyping traits could be directly fed into the end-to-
end deep fusion models, which had great potential for
real-world application.

With the development of advanced phenotyping tech-
niques, various aspects of phenotyping traits can be
obtained. How to fully reveal the information relating to
plant growth status from various aspects of phenotyping
traits is of importance. Information fusion provided an
effective alternative to combine different aspects of pheno-
typing traits to reveal the phenotyping information related
to plant growth status fully. The effectiveness of informa-
tion fusion for rice stress type identification proved that
information fusion was promising for plant growth status
evaluation. On the other hand, different organs have dif-
ferent phenotyping traits, even measured by the same
techniques. Thus, different organs could be analyzed to
evaluate the plant growth status. The combination of phe-
notyping traits of different organs will provide more infor-
mation of plants, and how to effectively fuse the
phenotyping traits of different organs remains a challeng-
ing issue. This study provided an efficient alternative for
the fusion of the phenotyping traits of different organs
for plant phenotyping, which could enhance the high-
throughput phenotyping performances, including the abi-
otic stresses caused by environmental factors.
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