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Abstract

Identifying cooperating modules of driver alterations can provide
insights into cancer etiology and advance the development of
effective personalized treatments. We present Cancer Rule Set
Optimization (CRSO) for inferring the combinations of alterations
that cooperate to drive tumor formation in individual patients.
Application to 19 TCGA cancer types revealed a mean of 11 core
driver combinations per cancer, comprising 2–6 alterations per
combination and accounting for a mean of 70% of samples per
cancer type. CRSO is distinct from methods based on statistical co-
occurrence, which we demonstrate is a suboptimal criterion for
investigating driver cooperation. CRSO identified well-studied
driver combinations that were not detected by other approaches
and nominated novel combinations that correlate with clinical
outcomes in multiple cancer types. Novel synergies were identified
in NRAS-mutant melanomas that may be therapeutically relevant.
Core driver combinations involving NFE2L2 mutations were identi-
fied in four cancer types, supporting the therapeutic potential of
NRF2 pathway inhibition. CRSO is available at https://github.com/
mikekleinsgit/CRSO/.
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Introduction

Carcinogenesis usually involves the deregulation of multiple genetic

pathways. Most recent estimates are that this deregulation requires

2–8 “hits” to enable a precursor cell to become neoplastic (Vogel-

stein et al, 2013; Tomasetti et al, 2015; Anandakrishnan et al, 2019).

Identifying a small number of driver mutations among an excess of

passenger mutations is challenging. Nevertheless, many methods

have been developed. Generally, these methods identify genes

mutated significantly more than the background mutation rate

would predict and their output is a list of significant genes or

regions found across a whole cohort. Well-known examples include

MutSigCV (Lawrence et al, 2013) and dNdScv (Martincorena et al,

2017) for identification of significantly mutated genes (SMGs), and

GISTIC2 (Mermel et al, 2011) for identification of significant somatic

copy number variations (SCNVs).

Although useful in identifying cancer genes, these statistical

enrichment methods do not attempt to identify co-occurring

mutations. For example, activating mutations in KRAS/NRAS are

frequently accompanied by loss of function of CDKN2A/B in

melanoma, lung, pancreatic, and other cancers. A major reason for

co-occurrence is that loss of the G1/S checkpoint (CDKN2A/B) is

necessary to avoid oncogene-induced senescence caused by KRAS

oncogenic signaling (Aguirre et al, 2003; Courtois-Cox et al, 2008;

Schuster et al, 2014). Thus, mutations in the G1/S checkpoint

pathway and in the RAS pathway often cooperate to produce a pro-

growth phenotype. Many methods have been developed that

identify mutually exclusive candidate driver genes (Miller et al,

2011; Leiserson et al, 2013; Leiserson et al, 2015; Wu et al, 2015;

Hou et al, 2016; Bokhari & Arodz, 2017; Gao et al, 2017), but there

are comparatively few that identify functionally relevant modules

of co-occurring gene alterations in individual patients. This extra

layer of biological information and its possible relevance to ther-

apy is not captured by any of the above methods, and it would

be beneficial to develop new approaches that identify groups of

cooperating mutations.

From a biological perspective, co-occurrence of driver alterations

clearly does occur (Ulz et al, 2016; Wang et al, 2017; VanderLaan

et al, 2017; Kim et al, 2019), and appears to be a requirement for

most carcinogenesis events, as evidenced by the insufficiency of

BRAF and RAS hotspot mutations to transform benign colon polyps

and nevi into invasive carcinoma (Pollock et al, 2003; Ju�arez et al,

2017). However, statistical approaches to identifying co-occurrence

have given mixed results. For example, Canisius et al (2016)

concluded that, after accounting for patient-specific mutation
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frequencies, there is no evidence of statistically significant co-occur-

rence of somatic mutations in cancer. Conversely, Mina et al (2017)

did identify pairwise oncogenic synergies in multiple cancer types

based on a model of sequential evolution using their SELECT algo-

rithm. Using mathematical modeling of cancer evolution, Mina et al

argue that statistically significant co-occurrence emerges only by

conditioning on the sequence of alterations, consistent with the lack

of traditional co-occurrence demonstrated by Canisius et al (2016).

Zhang et al (2014) found evidence of statistically significant

co-occurrence at the level of the pathway but did not investigate at

the gene level. Thus, current approaches can identify pairwise

combinations of driver mutations in a subset of individuals.

However, methods to detect combinations of three or more drivers

and methods that attempt to identify driver combinations within

every sample in a cohort (or at least within a large proportion of

samples) are needed.

Here, we describe Cancer Rule Set Optimization (CRSO), a

method to identify modules of cooperating alterations that are essen-

tial and collectively sufficient to drive cancer in individual patients.

CRSO is developed as part of a theoretical framework that assumes

the existence of specific combinations of two or more alterations

called rules that cooperatively drive cancer if found in the same host

cell. Rules are assumed to be minimally sufficient, meaning that

exclusion of any of the alterations renders the remaining collection

of alterations insufficient to drive cancer. CRSO seeks to find a collec-

tion of rules called a rule set that represents all of the unique minimal

combinations that can explain all of the given tumors in the study

population, i.e., every sample is required to harbor all of the alter-

ations in at least one of the rules. CRSO is robust to heterogeneous

mutational rates within the cohort as it uses alteration-specific

passenger probabilities that reflect how likely specific observations

would have occurred by chance. The output of CRSO can provide

biological insights to cancer causation, as well as infer the likely

driver combinations in individual patients. We show that CRSO can

identify known and novel combinations of driver alterations in 19

tissue types from The Cancer Genome Atlas (TCGA) (Cancer

Genome Atlas Network, 2013; Tomczak et al, 2015) and that some of

these combinations correlate with clinical outcomes.

Results

CRSO overview

CRSO finds combinations of genomic alterations (referred to as

events) that are predicted to cooperate to drive cancer in individual

patients. The inputs into CRSO are two event-by-sample matrices: D

and P. D is a binary alteration matrix, such that Dij = 1 if event i

occurs in sample j, and 0 otherwise. P is a continuous valued

penalty matrix, where Pij is the negative log of the probability of

event i occurring in sample j by chance, i.e., as a passenger event.

Three primary event types were considered: coding mutations iden-

tified as candidate drivers by dNdScv (Martincorena et al, 2017), as

well as copy number amplifications and deletions identified as

candidate drivers by GISTIC2 (Mermel et al, 2011). The version of

CRSO presented here was restricted to SCNVs and coding muta-

tions because candidate drivers for these alteration classes can be

readily generated by statistical enrichment methods. However,

CRSO models can include additional alteration types, such as gene

fusions and aneuploidies.

In order to calculate passenger probabilities, mutations and copy

number variations were first represented as a categorical event-by-

sample matrix,M.Mij can take one of several values called observation

types, that depend on the type of event i. Mutation events take values

in the set {Z, HS, L, S, I}, corresponding to wild type, hotspot muta-

tion, loss mutation, splice site mutation, or in-frame indel (Materials

and Methods). Amplification events take values in {Z, WA, SA}, corre-

sponding to wild type, weak amplification, and strong amplification,

respectively. Similarly, deletion events take values in {Z, WD, SD},

corresponding to wild type, weak deletion (hemizygous), and strong

deletion (homozygous), respectively. Two additional event types,

referred to as hybrid mutDels and mutAmps, were defined to represent

genes that were identified by both dNdScv and GISTIC2 in the same

tumor type (Materials and Methods). Figure 1A shows an example of

the input matrices using a miniature dataset that was extracted from

TCGA melanoma (SKCM) data for the purposes of illustration.

The CRSO model defines a rule as a collection of two or more

events that drive tumors harboring all of the events in the collection.

Rules are defined to be minimally sufficient, meaning that any strict

subset of events within the rule are insufficient to cause cancer. A

rule set is defined as a collection of rules that account for all mini-

mally sufficient driver combinations within the entire cohort. Under

a proposed rule set, every sample is assigned to at most one rule in

the rule set. Two rules are defined to be family members if one rule

is a strict subset of the other. Rule sets cannot contain any two rules

that are family members because it is a contradiction for both rules

to be minimally sufficient.

CRSO is a stochastic optimization procedure over the space of

possible rule sets. When a sample is assigned to a rule in a rule set

RS, the events that comprise the rule are considered to be drivers

within that sample. The objective function score for RS, J(RS), is

defined to be the reduction in total statistical penalty under RS

compared to the null rule set (Materials and Methods). Figure 1B

shows an example of a rule set consisting of two rules applied to the

miniature melanoma dataset. The total penalty is greatly reduced

once samples are assigned to rules and the corresponding events are

designated as drivers. The coverage of a rule set is the percentage of

samples that can be assigned to at least one rule in the rule set. In

Fig 1B, the coverage of RS is 80%.

The goal of CRSO is to find the rule set that achieves the best

balance of J(RS), coverage and rule set size, which we call the core

rule set. CRSO uses a four-phase procedure (Fig 1C) to first find the

highest scoring rule set of size K for K ∈ {1. . . 40}. The core rule set is

then determined from among all of the solutions of size K. A subsam-

pling process is used to identify an expanded list of generalized core

rules (GCRs). A confidence score is determined for each GCR to be the

frequency of inclusion in the subsampled iterations. The subset of

GCRs that have confidence levels above 50 comprise the consensus

GCRs (con-GCR), and by definition cannot contain family members.

The full CRSO methodology is presented in Materials and Methods.

We applied CRSO to 19 cancer types obtained from TCGA

(Table 1). The average number of events per cancer type was 86.4.

There was a wide distribution of the number of candidate drivers

per patient within individual cancers. In 17 out of 19 cancer types,

the median number of total candidate drivers (SMGs plus SCNVs)

was ≥ 6, and in 6 cancer types, the median number of total
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candidate drivers was ≥ 10 (Appendix Fig S1). CRSO identified an

average of 11.1 core rules, covering an average of 70.3% of samples

per cancer type. Of the 210 total core rules identified, 137 (65%), 47

(22%), 13 (6%), 12 (6%), and 1 (< 0.1%) consisted of 2, 3, 4, 5,

and 6 events, respectively. The output of each CRSO run is a

detailed report containing summaries and visual representations of

the results (Datasets EV1–EV19).

CRSO performance on simulated data

In order to assess CRSO’s ability to detect known driver combina-

tions, we initially used simulations with known ground truth rule

sets. Ten simulated datasets with ground truth rule sets of size ntr

were randomly generated for each ntr ∈ {2. . . 20}, for a total of 190

simulations. Each dataset contained 100 events and 400 samples,

A

B

C

Figure 1. CRSO at a glance.

A CRSO representation of small dataset extracted from TCGA melanoma (SKCM). Candidate driver events identified by dNdScv and GISTIC2. Data are first represented as
categorical matrix M, where each event can take one of several observation types, depending on the event type. Event types are indicated by the suffix, -M for
mutations, -A for amplifications, and -MD for hybrid mutDels. Wild-type observations are represented as Z for all event types. Mutations are hotspot (HS), loss (L),
splice site (S), or in-frame indel (I). Amplifications are either weak (WA) or strong (SA). Similarly, deletions are either weak (WD) or strong (SD). MutDel hybrid events
can take values in any of the mutation or deletion observation types. Events in M are represented as a binary matrix D for making rule assignments (the square at
position ij is blue if sample j harbors event i and is gray if sample j is wild type for event i). The penalty matrix P contains penalties for each possible observation-
specific, patient-specific, event-specific passenger probabilities.

B Objective function calculated for an example rule set. Under the proposed rule set, the assigned events are designated as drivers, and the corresponding penalties are
reduced to 0.

C Workflow of four-phase procedure for identifying the best rule sets of size K, for K in 1 to 40.
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chosen to approximate the mean number of events and samples

across the TCGA datasets. Passenger rates for events and samples

were sampled from a pooled distribution of real data passenger rates

(Materials and Methods, Appendix Fig S2). We evaluated CRSO

using 3 metrics: sensitivity, precision, and rule assignment accu-

racy. Sensitivity was calculated to be the percentage of ground truth

rules included in the consensus GCRs (con-GCRs). Precision was

calculated to be the percentage of con-GCRs that are in the ground

truth rule set. Assignment accuracy was the percentage of samples

identically assigned in the core RS assignment and the ground truth

assignment.

The mean sensitivity was at least 0.85 for all ntr ∈ {2. . . 20} and

was ≥ 0.90 for 16/19 ntr values (Appendix Table S3, Fig 2A). The

mean precision was 0.73 for ntr = 2 and was ≥ 0.96 for the other 18

true rule set sizes (Appendix Table S3, Fig 2B). The lowest mean

accuracy was observed for ntr = 2, at 0.76, and was above 0.80 for

all other ntr values. Starting with ntr = 3, for which the mean sensi-

tivity was 1.0 and the mean accuracy was 0.98, the general trend

was that sensitivity and accuracy decreased as ntr increased. For

ntr = 2, 3 simulations performed poorly with accuracies below 0.4

and the other 7 simulations all had accuracies greater than 0.90

(Appendix Fig S3), suggesting that CRSO may be susceptible to

over-fitting when the number of true rules is only 2.

Across 190 simulated datasets, CRSO was able to navigate an

intractable search space of possible rule sets (e.g., for a library of

1,500 rules, there are > 1045 possible rule sets of size ≤ 20) and iden-

tify ground truth rules comprising between 2 and 6 events with high

precision and high sensitivity. We compared CRSO’s performance on

the simulated datasets with that of pairwise co-occurrence tests—a

popular strategy for detecting driver-gene cooperation. For each

simulation, the Fisher’s exact test was performed for all pairs of

events, and the detected co-occurrences were compared to the

ground truth duos, i.e., the superset of all pairs of events that co-

occur within at least one ground truth rule. Events with 0 or 1 occur-

rence were excluded. Multiple-hypothesis correction for each simula-

tion experiment was performed using a false discovery rate of 5%.

Sensitivities were calculated as the percentage of true pairwise inter-

actions that were identified as statistically co-occurrent. Precisions

were calculated as the percentage of identified pairwise interactions

that were part of at least one ground truth rule.

The mean sensitivity achieved by the Fisher’s test was 0.53 �
0.18 over all ntr and ranged from a high of 0.88 for ntr = 3 to a low

of 0.30 for ntr = 20 (Fig 2A). The mean precision achieved by the

Fisher’s test was 0.41 � 0.09 over all ntr and ranged from a low of

0.29 for ntr = 2 to a high of 0.60 for ntr = 19 (Fig 2B). The mean

sensitivities and precisions achieved by CRSO outperformed those of

the Fisher’s test for all ntr, with an average sensitivity improvement

of 0.4 and an average precision improvement of 0.57 (Fig 2).

To better understand the limitations of pairwise co-occurrence

tests, we applied the Fisher’s exact test to a version of the simula-

tions having uniform passenger rates across samples and events,

and to a version of the simulations with zero passenger events.

Appendix Fig S2 shows an example simulation with zero passenger

events (Dz), uniformly distributed passenger events (Du), and

Table 1. Summary of 19 TCGA tissue types investigated with CRSO.

Cancer Full name Samples Events (M/C) RCT Rules Kc Cov MRS con-GCRs

BLCA Bladder urothelial CA 392 113 (47/66) 0.033 1730 14 76 2.21 15

BRCA Breast invasive CA 963 90 (28/62) 0.03 449 11 58 2 13

CESC Cervical and endocervical cancers 191 82 (23/59) 0.031 173 12 53 2.08 15

COAD Colon AD 362 97 (35/62) 0.039 1792 14 81 3.64 10

ESCA Esophageal CA 184 92 (12/80) 0.054 1894 13 84 3.23 10

GBM Glioblastoma multiforme 273 78 (15/63) 0.033 186 11 77 2.27 10

HNSC Head and neck squamous cell CA 505 94 (25/69) 0.032 926 10 68 2.5 7

KIRC Kidney renal clear cell CA 433 39 (13/26) 0.014 66 10 52 2 11

LGG Brain lower-grade glioma 513 67 (19/48) 0.031 210 5 65 2.4 6

LIHC Liver hepatocellular CA 366 75 (18/57) 0.03 146 12 56 2 16

LUAD Lung AD 478 93 (22/71) 0.031 291 10 60 2.1 11

LUSC Lung squamous cell CA 178 112 (37/75) 0.045 1588 14 83 2.93 10

OV Ovarian serous cystAD 455 77 (6/71) 0.075 1990 12 86 3.08 12

PAAD Pancreatic AD 126 64 (11/53) 0.032 592 6 74 3 3

PRAD Prostate AD 492 73 (13/60) 0.03 301 10 51 2.5 6

READ Rectum AD 120 67 (13/54) 0.042 1260 12 89 3.17 9

SKCM Skin Cutaneous Melanoma 290 71 (20/51) 0.031 197 10 69 2 9

STAD Stomach AD 391 121 (37/84) 0.031 1690 13 64 2.46 14

UCEC Uterine Corpus Endometrial CA 242 136 (39/97) 0.037 1515 11 84 2.36 7

Full Name: AD short for adenocarcinoma, CA short for carcinoma. Events: total number of events as determined by dNdScv and GISTIC2, (M/C) is number of
mutations and CNVs. RCT: rule coverage threshold, chosen to be 0.03 or the smallest threshold satisfied by at most 2,000 rules, except in the case of KIRC. Rules:
number of rules in starting rule library. Kc: core rule set size. Cov: core rule set coverage. MRS: mean core rule set size. con-GCRs: number of consensus
generalized core rules.

4 of 28 Molecular Systems Biology 17: e9810 | 2021 ª 2021 The Authors

Molecular Systems Biology Michael I Klein et al



realistically distributed noise rates that were used for the CRSO

performance evaluation (Dr). The mean sensitivity for Du was

0.47 � 0.20 across all ntr and was comparable to the mean sensitiv-

ity for Dr (Appendix Fig S5A). The mean precision for Du was

0.96 � 0.03 across all ntr and was far superior to the those for Dr

(Appendix Fig S5B). The precision results suggest that unaccounted-

for heterogeneity in passenger rates across samples and events lead

to an excess of false positives, consistent with the findings of Cani-

sius et al (2016). The precision was always 1.0 for Dz, since it is

impossible to have false positives in the absence of noise. The mean

sensitivity for Dz was 0.76 � 0.11 across all ntr and ranged from a

high of 1.0 for ntr = 2 to a low of 0.64 for ntr = 20 (Fig 2A). The

sensitivities for simulations without any noise show that many false

negatives result directly from the ground truth rule set structure.

Application to TCGA melanoma data

We next present results from 290 TCGA cutaneous melanomas (SKCM,

Fig 3). We use this as an exemplar dataset as SKCM is a heterogeneous

cancer type with some known driver combinations (Gen, 2004; Dankort

et al, 2009; Griffin et al, 2017; Stramucci et al, 2018). We used as input,

20 SMGs from dNdScv, 34 SCNV deletions and 20 SCNV amplifications

from GISTIC2 narrow peak calls. Three genes, CDKN2A, PTEN, and

B2M, were represented as hybrid "mutDel" events as they were both

significantly mutated and deleted in the dataset (see Materials and

Methods). Figure 3 shows the frequencies (Fig 3A) and passenger

penalties (Fig 3B) of the 25 most frequent events.

The candidate rule library contained 197 rules that satisfied the

coverage threshold of 3%, of which 165 consisted of two events and

32 consisted of three events. The core rule set was determined to be

the best rule set of size K = 10, as this was the smallest rule set that

exceeded both the performance and coverage thresholds of at least

90% (Appendix Fig S6A and B). There were no valid rule sets that

satisfied the minimum samples assigned (msa) threshold of 9

samples for K ≥ 18. Figure 4 shows the optimal assignment under

the core RS and the corresponding reduction in penalty (Fig 4B and

C). Thirty percent of the SKCM patients do not satisfy any of the

core rules, indicated by the gray color bar in Fig 4A.

Generalized core (GC) analysis using 100 subsampling iterations

identified 9 con-GCRs (Materials and Methods). Although all of the

melanoma con-GCRs contained 2 events, comparison of the GCRs

with GC duos reveals that some con-GCRs appear as part of larger

rules in some GC iterations (Appendix Fig S7). For example, BRAF-

M + CDKN2A-MD and BRAF-M + PTEN-MD are observed as core

rules in 83 and 84% of GC iterations, respectively, but are both

observed as core duos in 100% of GC iterations. The difference in

GCD and GCR confidence scores indicates that CRSO is 100% confi-

dent that BRAF-M + PTEN-MD and BRAF-M + CDKN2A-MD are both

essential combinations in a subset of melanoma patients, but is

approximately 84% confident that these duos are independently suf-

ficient to produce melanomas.

The core RS and con-GCRs can be considered complementary

best rule sets, with the core RS providing the single best performing

RS and corresponding assignment over the full dataset, and the con-

GCRs providing a robust set of rules with quantified confidence

scores. The union of the melanoma core RS and con-GCRs comprise

11 distinct rules and are dominated by rules that contain either

BRAF or NRAS mutations (Table 2). Of the 11 rules, 5 contain BRAF,

5 contain NRAS, and only 1 rule, B2M-MD + FMN1/SNORD77-D,

contains neither. Hotspot mutations in BRAF and NRAS define the

two major subtypes of melanoma that are mutually exclusive, with

50% of patients harboring BRAFV600E mutations and 30% of

patients harboring NRAS hotspot mutations (Cancer Genome Atlas

Network, 2015a). CRSO prioritized rules containing these events

because it is improbable that these highly recurrent hotspot muta-

tions would have happened by chance.
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Figure 2. Performance of CRSO and Fisher’s tests applied to 190 ground truth simulations.

Results are grouped according to ground truth rule set size (NTR). The group denoted “All” is the global mean over all NTR.
A Mean sensitivities of CRSO predictions evaluated against ground truth rules (light blue bars) and Fisher’s test predictions evaluated against ground truth duos

(orange bars).
B Mean precisions of CRSO predictions evaluated against ground truth rules (light blue bars) and Fisher’s predictions evaluated against ground truth duos (orange

bars).
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Expected melanoma combinations detected by CRSO

We categorized the 11 rules as either expected (5 rules) or poten-

tially novel (6 rules) based on literature review. The 5 expected

rules involve combinations of either BRAF or NRAS with well-stud-

ied tumor suppressors: (i) NRAS-M + TP53-M, (ii) BRAF-M + TP53-

M, (iii) NRAS-M + CDKN2A-MD, (iv) BRAF-M + CDKN2A-MD, and

(v) BRAF-M + PTEN-MD. The first 4 of these rules are instances of

co-occurring MAPK3 pathway activation with P53 inactivation—a

synergy that is known to promote carcinogenesis (Gen, 2004; Stra-

mucci et al, 2018). Evidence in multiple cancer types supports the

cooperation between activating mutations in KRAS and loss of the

G1/S checkpoint by inactivation of CDKN2A or TP53 (Aguirre et al,

2003; Courtois-Cox et al, 2008; Schuster et al, 2014). CRSO

A

B

Figure 3. CRSO representation of TCGA melanoma dataset.

A Binary representation of top-25 most frequent events. Horizontal bars on the right show event frequencies across the population.
B Penalty matrix for top-25 most frequent events. Horizontal bars on the right show total event penalties.

Data information: Event types indicated by suffixes: -A for amplifications, -D for deletions, -M for mutations, and -MD for mutDel hybrid events.
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identified KRAS-M + TP53-M as a consensus GCR in 3 other cancer

types, LUAD, PAAD, and STAD, and identified KRAS-M + CDKN2A-

MD as a con-GCR in LUAD and PAAD. Co-occurrence of BRAFV600E

and CDKN2A loss defines a subset of pediatric brain tumors that are

responsive to combined treatment with BRAF and CDK4/6 inhibitors

(Huillard et al, 2012). Unlike CDKN2A and TP53, PTEN was inferred

to exclusively cooperate with BRAF. Supporting the minimal suffi-

ciency of BRAF-M + PTEN-MD, co-occurrence of BRAFV600E and

PTEN loss was shown to induce metastatic melanoma in mouse

models, while BRAFV600E alone only produced benign nevi in the

mice (Dankort et al, 2009). PTEN loss is a mechanism of primary and

acquired resistance to BRAF inhibitors, inspiring the development of

combination strategies co-targeting the BRAF/MEK and PI3K/AKT

pathways in tumors harboring both BRAFV600E and PTEN loss

(Fedorenko et al, 2011; Manzano et al, 2016; Griffin et al, 2017).

These 5 rules exemplify CRSO’s ability to identify combinations

with experimental evidence of being minimally sufficient to drive

cancer, and with established utility as biomarkers and sources of

rational combination strategy. Although these combinations are not

novel, CRSO prioritized these rules without any prior biological

knowledge. By contrast, 2 published methods for systematically iden-

tifying driver combinations were applied to the same TCGAmelanoma

dataset and did not identify any of these 5 combinations (Mina et al,

2017; Al Hajri et al, 2020). Since most strategies are based on pairwise

co-occurrence, the omission of these well-studied synergies in mela-

noma further demonstrates the inappropriateness of statistical co-

occurrence as a criterion for detecting driver combinations.

Novel melanoma combinations detected by CRSO

The other 6 rules in Table 2 involve lesser-known drivers and may

represent novel biological subtypes of melanoma. NRAS-M + HULC-

A was prioritized as both a con-GCR (conf. = 71) and as part of the

core RS. HULC is a long non-coding RNA that has been identified as

A

B

C

Figure 4. Melanoma core rule set assignment.

A Heatmap of the binary alteration matrix D under core rule set assignment. Events are ordered by frequency. Samples are ordered according to rule set
membership, as indicated by the color bar. The right-most group (gray bar) are not assigned to any rule. For each sample, assigned events are shown in black, and
unassigned events are shown in blue.

B, C Heatmaps of the passenger penalty matrix P before and after assignment to the core rule set.

Data information: Event types indicated by suffixes: -A for amplifications, -D for deletions, -M for mutations, and -MD for mutDel hybrid events.
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a driver of tumorigenesis in multiple cancers (Yu et al, 2017; Klec

et al, 2019; Ghafouri-Fard et al, 2020), including liver cancer,

osteosarcoma, cervical cancer, pancreatic, stomach, and ovarian

cancers (Panzitt et al, 2007; Zhang et al, 2016; Chen et al, 2017a;

Wang et al, 2020; Li et al, 2020; Lu et al, 2020). HULC expression is

a predictor of poor prognosis across multiple cancers (Peng et al,

2014; Jin et al, 2016; Fan et al, 2017; Chen et al, 2017b), and HULC

silencing enhanced the effectiveness of chemotherapy in stomach

cancer cell lines (Zhang et al, 2016). The involvement of HULC in

the tumorigenesis of a subset of NRAS-mutant melanomas appears

to be unreported and merits further investigation as a possible novel

discovery with therapeutic implications.

NRAS-M + SMYD3-A (conf. = 40) was identified as part of the

CRSO core RS. SMYD3 is a member of the histone lysine methyl-

transferases enzyme family, and upregulates transcription of a

plethora of oncogenes in multiple cancer types, including CDK2 and

MMP2 in hepatocellular carcinomas (Wang et al, 2019), BCLAF1 in

bladder cancer (Shen et al, 2016), androgen receptors in prostate

cancer (Liu et al, 2013), EGFR in renal cell carcinoma (Liu et al,

2020a), and MYC and CTNNB1 in colon and liver cancers (Sarris

et al, 2016). Mazur et al (2014) showed that SMYD3 methylation

of MAP3K2 leads to upregulation of MAP kinase signaling and

promotes carcinogenesis in RAS mutated lung and pancreatic

cancers. The authors further showed that preventing SMYD3

catalytic activity in mouse models with oncogenic RAS mutations

inhibited tumor development (Mazur et al, 2014). This presents a

direct biological link between SMYD3 expression and RAS muta-

tions, and nominates SMYD3 as a drug target for RAS-driven

cancers. As with HULC, the possible role of SMYD3 in melanoma

appears to be unreported.

CRSO identified two synergies exclusive to BRAF-M with very

high confidence: BRAF-M + HIPK2/TBXAS1-A (conf. = 97) and

BRAF-M + RN7SKP254-A (conf. = 98). Although we annotated

amplifications according to the GISTIC2 narrow peak regions, these

two amplification events are part of large wide peak regions contain-

ing many genes. The wide peak annotated by HIPK2 and TBXAS1

contains 72 genes, including BRAF. BRAF amplification is a

mechanism of acquired resistance to BRAF inhibitors in BRAFV600E

melanomas (Corcoran et al, 2010; Villanueva et al, 2013; Nathanson

et al, 2013; Stagni et al, 2018). Whereas overall patients harboring

BRAF-M had longer progression-free intervals (PFIs) than BRAF WT

patients (Fig 5A), those patients harboring both BRAF-M and HIPK2/

TBXAS1-A had shorter PFI compared to patients harboring BRAF-M

without HIPK2/TBXAS1-A (Fig 5B, Cox proportional hazards

P = 0.016, PAdj = 0.084, explained below in subsection “Associations

of rules with patient outcomes”). Because TCGA tumors are primary

and treatment-naive, this observation suggests that BRAF amplifi-

cation and BRAFV600E may be a sufficient combination for tumor

formation, and a cause of intrinsic resistance to BRAF inhibition.

The wide amplification peak annotated by RN7SKP254 is on chro-

mosome 15q26.2 and contains 169 genes. Four genes were classified

as cancer genes based on the Sanger Institute Cancer Gene Census

(Sondka et al, 2018): BLM, IDH2, NTRK2, and CRTC3. This rule was

prioritized by CRSO as the second highest confidence rule (98%)

despite ranking 32nd in coverage (6.6%) and 21st in SJ ranking,

suggesting that this amplification may merit further investigation.

Known and novel findings in TCGA

In this section, we highlight some findings from the TCGA CRSO

results. Appendix Table S6 presents all con-GCRs and provides a

concise snapshot of the results from all cancer types.

Known 3-gene combinations in brain and colorectal cancers

One of the distinguishing features of CRSO is the ability to identify

functionally relevant co-occurrences involving 3 or more events.

The rule ATRX-M + IDH1-M + TP53-M was identified as a con-GCR

in both LGG (conf.: 71) and GBM (conf.: 63), despite only occurring

in 3.7% of GBM samples. This 3-gene combination defines a well-

known subtype of brain cancers with differential prognosis, and has

been experimentally shown to induce carcinogenesis (Jiao et al,

2012; Cancer Genome Atlas Network, 2015d; Modrek et al, 2017).

Similarly, the well-studied combination of APC-M + KRAS-M + TP53-M

Table 2. Melanoma core RS and consensus generalized core rules (con-GCRs).

Rule Core Type P1-rank Conf Coverage SJ % Assigned

NRAS-M + TP53-M Both 4 100 6.6% (r = 29) 168 (r = 8) 89

BRAF-M + RN7SKP254-A Both 11 98 6.6% (r = 32) 137 (r = 21) 63

BRAF-M + HIPK2/TBXAS1-A Both 6 97 7.9% (r = 13) 161(r = 10) 52

CDKN2A-MD + NRAS-M Both 2 84 14% (r = 2) 327 (r = 2) 68

BRAF-M + PTEN-MD Both 3 84 11% (r = 3) 227 (r = 3) 68

BRAF-M + CDKN2A-MD Both 1 83 26% (r = 1) 524 (r = 1) 86

HULC-A + NRAS-M Both 5 71 6.6% (r = 28) 167 (r = 9) 58

B2M-MD + FMN1/SNORD77-D Both 10 66 9% (r = 6) 144 (r = 36) 54

ADAM18-M + NRAS-M Core 9 48 6.9% (r = 20) 146 (r = 11) 45

NRAS-M + SMYD3-A Core 15 40 5.5% (r = 40) 131 (r = 20) 62

BRAF-M + TP53-M Con-GCR 8 51 8.3% (r = 9) 156 (r = 7) –

Core Type: Core RS, con-GCR, or both. P1-rank is the phase 1 ranking of rule. Confidence (conf) is generalized core rules confidence level, con-GCRs defined as
rules with confidence above 50. Coverage is the percentage of samples that cover the rule (and ranking among all rules in the rule library). SJ is the single-rule
performance (and ranking). % Assigned is the percentage of samples that satisfy a rule are assigned to the rule (applicable only to core rules).
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in colorectal cancers (Fearon & Vogelstein, 1990; Cho & Vogelstein,

1992; Smith et al, 2002) was identified as a con-GCR in READ (conf.:

79) and as a non-consensus GCR in COAD (conf.: 42).

CRSO prioritized NFE2L2 combinations in multiple cancers

NFE2L2 mutations were identified as part of a con-GCR in 4 cancer

types: LUSC, HNSC, ESCA, and BLCA. All of the con-GCRs involv-

ing NFE2L2 ranked very low in terms of single-rule metrics

(Table 3), suggesting that NFE2L2 is accounting for samples not

accounted for by any higher-ranking rules. NFE2L2 encodes NRF2,

a key transcription factor that regulates cellular response to oxida-

tive stress (Rojo de la Vega et al, 2018). Initially, NRF2 activation

was identified as a mechanism of cellular protection against cancer

(Zhang, 2006; Li & Kong, 2009). However, we now have evidence

that constitutive NRF2 activation via mutations in KEAP1 or recur-

rent NFE2L2 exon 2 deletions can drive tumor proliferation and

metastasis (Goldstein et al, 2016; Rojo de la Vega et al, 2018).

NFE2L2 mutations have recently been shown to define subtypes

with differential prognosis in lung and head and neck cancers (Frank

et al, 2018; Namani et al, 2018; Xu et al, 2020; Liu et al, 2020b).

Several upcoming clinical trials are designed to explore the therapeu-

tic benefit of compounds that inhibit NRF2 in advanced cancer

patients harboring mutations in NFE2L2 or KEAP1 (ClinicalTrials.gov,

NCT02417701; ClinicalTrials.gov, NCT04267913; ClinicalTrials.gov,

NCT03872427). The rules containing NFE2L2 may help identify

subsets of patients that are sensitive to NFE2L2 inhibition.

CRSO prioritized a rare combination in head and neck cancers

The rule CASP8-M + HRAS-M was identified in HNSC as the third

highest ranking GCR (conf. = 73) even though it ranks 591st in

coverage and 301st in SJ out of 926 rules. Patients that have

these two mutations and are also wild type for TP53 have been

shown to define a biologically distinct subtype characterized by

low SCNV burden (Cancer Genome Atlas Network, 2015c). The

prioritization of CASP8-M + HRAS-M despite low coverage (3.8%)

demonstrates CRSO’s capability to systematically identify non-

obvious, biologically meaningful combinations among the myriad

of possible combinations.

CRSO prioritized rules containing ALB mutations in liver cancer

Two high confidence GCRs were identified in LIHC involving ALB

mutations: ALB-M + CTNNB1-M (conf. = 98) and ALB-M + TP53-

M (conf. = 80). ALB was experimentally shown to be a tumor

suppressor in hepatocellular carcinomas (Nojiri & Joh, 2014), and

has been discussed as an important part of the somatic mutation

landscape (Cancer Genome Atlas Network, 2017). Cooperations

involving ALB have not been systematically reported, and the

two combinations we identified may help inform context-depen-

dent treatments of ALB mutant patients. Evidence of the rele-

vance of these rules on PFI is presented below in “Associations

of rules with patient outcomes”.

CRSO identified a novel 3-gene combination in bladder cancer

ARID1A-MD + SOX4-A + TP53-M was identified as a con-GCR in

BLCA (conf. = 79, coverage = 7%). SOX4 over-expression has been

studied experimentally and has been reported to be an important

contributor in bladder cancer tumorigenesis (Shen et al, 2015;

Moran et al, 2019). The hypothesis that SOX4 cooperates with

ARID1A and TP53 to initiate bladder carcinogenesis is novel and

may merit further experimental investigation.

Associations of rules with patient outcomes

We evaluated whether stratifying patients according to con-GCRs

predicted by CRSO instead of individual driver events provided

extra prognostic information. We restricted this analysis to events

that appear in more than one con-GCR (referred to as multi-rule

events), since these events are predicted by CRSO to occur in

distinct genetic contexts. For every con-GCR, R, containing a multi-

rule event, E, we applied a univariate Cox proportional hazards

(Cox-PH) analysis to compare the progression-free intervals (PFIs)

of samples that satisfy R versus samples that harbor E but do not

satisfy R. PFI data were obtained from a recently published resource

for TCGA outcome analysis (Liu et al, 2018), and the use of PFI
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Figure 5. BRAFmelanomas with HIPK2/TBXAS amplification have poor PFI.

HIPK2/TBXAS1-A annotates an amplified region that contains BRAF and defines
a subtype of BRAF mutant SKCM patients with poor PFI.
A BRAF patients have improved PFI compared to non-BRAF patients.
B SKCM patients with BRAF + HIPK2/TBXAS1-A have worse PFI than patients

with only BRAF.

Data information: P values calculated from Kaplan–Meier estimator.
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as primary endpoint is consistent with the authors’ recommenda-

tions for best practices. The result of each test is summarized

with a Z score, as recommended in Smith and Sheltzer (2018).

Positive Z scores indicate better outcomes in the cohort satisfying

R versus the cohort that only harbors E, and negative Z scores

indicate the opposite.

For each cancer type, each multi-rule event, E, was tested against

all of the GCRs that include E, provided that both the rule and event

classes contained at least 10 patients. A total of 289 tests were

performed across the 19 cancer types, and 21 (7.3%) associations

were identified as having a Cox-PH |Z| ≥ 1.96. Standard multiple-

hypothesis correction procedures such as Bonferroni correction

are not appropriate because the comparisons within a given

cancer type are not independent. Instead, a permutation test was

performed in order to address the multiple hypotheses associated

with each multi-event rule. For each multi-rule event, the PFIs of

the samples that contain the event were scrambled 1,000 times,

and the smallest P value attained by any of the rule versus event

comparisons was stored for each iteration. An adjusted P value,

PAdj, was defined to be the fraction of iterations that have

permuted P values smaller than the P value calculated from the

real data. We identified 17 associations for which both Cox-PH |Z|
≥ 1.96 and PAdj ≤ 0.15 (Table 4).

CRSO combinations refine the classification of IDH1-mutant LGGs

IDH1 mutations occur in 78% of LGGs and are a biomarker for

improved outcome in LGG patients (Cancer Genome Atlas Network,

2015d) (Fig 6A). Differential outcomes were detected between the

event/rule pairings IDH1-M versus IDH1-M + IC-M and IDH1-M

versus IDH1-M + PIK3CA-M that could further stratify IDH1 mutant

samples (Fig 6). Among the patients with IDH1-M (n = 397), those

that also have CIC-M (n = 99) have better PFI than those that are

CIC wild type (n = 298, Fig 6B, Cox-PH Z = 2.5, PAdj = 0.047). On

the other hand, the 31 IDH1-mutant samples that also harbor

PIK3CA-M have worse PFI than those that are PIK3CA wild type

(n = 366, Fig 6C, Cox-PH Z = −2.1, PAdj = 0.139). Collectively,

these results suggest that LGG patients could be stratified into 4

Table 3. Consensus GCRs involving NFE2L2.

Tissue Rule Confidence Coverage SJ NE

LUSC NFE2L2-MA + CSMD3-M + SOX2-A 79 (r = 3) 8.4% (r = 230) 168 (r = 8) 3

HNSC NFE2L2-MA + CDKN2A-MD + TP53-M 50 (r = 7) 8.7% (r = 77) 137 (r = 21) 3

ESCA NFE2L2-MA + ACTRT/MYNN-A + TP53-M 59 (r = 9) 6.0% (r = 1280) 161(r = 10) 3

BLCA NFE2L2-MA + CDKN2A-MD 51 (r = 15) 5.6% (r = 337) 327 (r = 2) 2

SJ is single-rule objective function score. NE is number of events. Ranking (r) is shown in parentheses.

Table 4. Significant PFI associations among consensus GCRs.

Tissue Event Rule NR NE Z P PAdj

BLCA ARID1A-MD ARID1A-MD + SOX4-A + TP53-M 28 100 2.986 0.0028 0.006

BLCA FGFR3-MA CDKN2A-MD + FGFR3-MA 44 41 −2.536 0.0112 0.021

BLCA TP53-M ARID1A-MD + SOX4-A + TP53-M 28 167 2.457 0.014 0.083

BRCA PIK3CA-MA CCND1/ORAOV1-A + PIK3CA-MA 109 298 −2.167 0.0302 0.077

BRCA TP53-M PIK3CA-MA + TP53-M 130 163 2.574 0.0101 0.043

KIRC RNA5SP200-A BAP1-M + RNA5SP200-A 12 96 −3.179 0.0015 0.005

LGG IDH1-M CIC-M + IDH1-M 99 298 2.499 0.0124 0.047

LGG IDH1-M IDH1-M + PIK3CA-M 31 366 −2.1 0.0357 0.139

LGG TP53-M ATRX-MD + IDH1-M + TP53-M 191 59 2.12 0.034 0.055

LIHC ARID1A-MD ARID1A-MD + CTNNB1-M 23 61 −2.886 0.0039 0.006

LIHC CTNNB1-M ARID1A-MD + CTNNB1-M 23 74 −2.27 0.0232 0.079

LIHC TP53-MD ALB-M + TP53-MD 13 111 −2.351 0.0187 0.150

OV d2 (n = 15) d2 (n = 15) + 4 Events 59 121 −2.255 0.0242 0.062

SKCM BRAF-M BRAF-M + HIPK2/TBXAS1-A 21 119 −2.407 0.0161 0.084

UCEC PIK3CA-M PIK3CA-M + PTEN-MD 89 38 2.221 0.0264 0.056

UCEC PIK3CA-M CTNNB1-M + PIK3CA-M 40 87 1.984 0.0472 0.110

UCEC PIK3CA-M PIK3CA-M + TP53-M 32 95 −3.751 0.0002 0.000

Each experiment consisted of comparing the samples satisfying the rule with the samples harboring the event, but not satisfying the rule. NR and NE are number
of samples in the rule and event classes, respectively. Z scores (Z) and p values (P) were calculated using univariate Cox-PH. Positive Z score indicates that the
patients satisfying the rule have better prognosis than those who only satisfy the event. PAdj is adjusted p value based on a permutation test (described in text).
The rule “d2(n = 15) + 4 Events” is short for “d2(n = 15) + FKSG52/PDE4D-D + MECOM-A + MYC-A + TP53-M”.
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groups: IDH1 wild type, IDH1 mutant + CIC mutant, IDH1 mutant +
PIK3CA mutant, and IDH1 mutant + CIC/PIK3CA wild type. PIK3CA-M

appears to nullify the improvement in PFI conferred by IDH1, and

that CIC-M enhances the improvement in PFI (Fig 6D). The

improved prognosis of IDH1-M + CIC-M relative to other IDH1

mutant LGGs has been previously reported and has been
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Figure 6. CRSO rules refine the stratification of IDH1-mutant lower-grade gliomas (LGG).

A IDH1 mutations define a subset of LGG patients with better PFI.
B Patients with IDH1 and CIC have better PFI than patients with IDH1 only.
C Patients with IDH1 and PIK3CA have worse PFI than patients with IDH1 only.
D LGG patients can be stratified into four classes: IDH1 wild type (WT), IDH1 and CIC (C + I), IDH1 + PIK3CA (I + P), and IDH1 mutant samples that are wild type for both

PIK3CA and CIC (I). Samples harboring IDH1, PIK3CA, and CIC were excluded from panel D (n = 14).

Data information: P values calculated from Kaplan–Meier estimator.
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independently characterized by p1/q19 co-deletions, which overlap

highly with CIC mutations (Jiao et al, 2012; Brat et al, 2015; Cancer

Genome Atlas Network, 2015d). We did not find literature evidence

of the poor prognosis of IDH1 tumors harboring PIK3CA mutations

in LGGs.

CRSO identifies potential multi-gene biomarkers in liver cancer

LIHC patients with both ARID1A-MD and CTNNB1-M (n = 23) had

worse PFI expectancy than patients with ARID1A-MD but not

CTNNB1-M (Table 4, n = 61, Cox-PH Z = –2.89, PAdj = 0.006). The

patients satisfying this rule also had worse PFI expectancy than

those with CTNNB1-M but not ARID1A-MD (n = 74, Cox-PH

Z = –2.27, PAdj = 0.079). Surprisingly, neither ARID1A-MD nor

CTNNB1-M is a biomarker individually (Fig 7A and B), and yet

together they appear to define a subtype with significantly worse

prognosis (Fig 7C and D).

A second subtype with poor prognosis in LIHC was defined by

ALB-M + TP53-M. Across all LIHC patients, those harboring TP53-M

had shorter PFI than those with TP53 wild-type tumors (Fig 8A).

Patients harboring TP53-M + ALB-M had shorter PFI than

those harboring either event individually (Fig 8B and C), or neither

event (Fig 8D).

CDKN2A and FGFR3 co-mutation status suggest a 3-tier
stratification of BLCA tumors

FGFR3-MA + KDM6A-MD and FGFR3-MA + CDKN2A-MD are the

1st and 3rd highest confidence GCRs in BLCA. The association

between CDKN2A and prognosis is complicated in bladder cancer,

as both p16 protein over-expression and complete lack of expres-

sion have been shown to be biomarkers of poor prognosis in blad-

der cancers (Shariat et al, 2004; Worst et al, 2018). In our study,

CDKN2A deletion and CDKN2A mutations were combined into a

single hybrid event, resulting in a simple association between

CDKN2A-MD status and poor PFI (Fig 9A). We found that FGFR3-

MA confers improved PFI within CDKN2A wild-type tumors (Fig 9

A), but does not associate with any PFI difference in tumors

harboring CDKN2A-MD (Fig 9B and C). These results suggest a 3-

tier classification, with CDKN2A-MD defining a tier with poorer

prognosis, CDKN2A/FGFR3 double wild type defining a tier with

intermediate prognosis, and FGFR3-MA+/CDKN2A-MD- defining a

tier with improved prognosis (Fig 9D).

Comparison with SELECT

We compared the CRSO TCGA results with the pairs of co-occur-

rences identified by Mina et al (2017) using SELECT. Sixteen TCGA

cancer types were analyzed by both SELECT and CRSO (Table 5).

For each tissue, we compared the total coverage of all statistically

co-occurrent pairs identified by SELECT within a curated set of 505

pan-cancer mutations and CNVs (Mina et al, 2017), versus the

coverages of the core rule sets identified by CRSO (Table 5).

Although both methods identified a similar mean number of syner-

gies per cancer type (10.4 � 10.2 for SELECT versus 11.1 � 2.2 for

CRSO), the CRSO core rules covered an average of 68% of samples

(SD = 12%) per cancer type compared to an average of 19% of

samples (SD = 11%) covered by the SELECT synergistic pairs. The

large discrepancy in coverage is because CRSO does not require

statistical co-occurrence between the events in a cancer rule. CRSO’s

ability to identify a likely driver combination in the majority of

samples, and to identify combinations of more than 2 events,

may facilitate precision oncology advances that could benefit

many patients.

For each cancer type, we compared the CRSO con-GCDs (conf.

≥ 50) with the co-occurring pairs detected by SELECT using the

subset of mutation events that overlap between the datasets. Copy

number events were excluded because they were processed and

defined differently in Mina et al (Materials and Methods). In total,

99 duos were identified by either CRSO or SELECT, 5 duos were

identified by both algorithms, 19 duos were identified by SELECT

only, and 75 duos were identified by CRSO only (Appendix Table S7).

The large discrepancy in the number of pairs is partially because the

common mutation set represents a larger fraction of the CRSO event

pool. Additionally, a single CRSO rule can contain 3, 6, or 10 duos if it

contains 3, 4, or 5 events. Of the 19 duos identified by SELECT that

were not con-GCDs, 13 had coverage below the CRSO rule-inclusion

threshold of 3% (6 had coverages ≤ 1%). Of the 6 duos with coverage

≥ 3% identified by SELECT only, 4 were identified by CRSO but did

not achieve 50% confidence threshold, and only 2 were not identified

at all by CRSO.

CRSO identified many well-known and high coverage combina-

tions that were missed by SELECT, including IDH1 + {ATRX/TP53/

CIC/PIK3CA} in LGG, BRAF + {PTEN/TP53} in SKCM, and many

high coverage combinations involving PIK3CA in UCEC. Many of

the CRSO con-GCDs missed by SELECT consisted of a common

tumor suppressor such as TP53 and ARID1A cooperating with a

growth-promoting oncogene. Tumor suppressors that can cooperate

with many genes appear to be independent from all of them and are

overlooked by approaches that rely on statistical co-occurrence.

Supporting this explanation, Mina et al (2017) reported that both

mutual exclusivity and co-occurrence are found at higher rates

between genes that are within the same pathway. Additional factors

may contribute to the differences in results between CRSO and

SELECT. For example, SELECT combinations were identified across

a pan-cancer cohort and then were evaluated within individual

cancer types post hoc, whereas CRSO was applied directly to individ-

ual cancer types.

Recurrent driver combinations across tissues

Many driver alterations are recurrently identified by GISTIC2 and

dNdScv in multiple different cancer types. In order to determine

whether any driver combinations are also shared across multiple

cancers, we looked for overlap among the GCDs for each cancer

type that achieve a minimum confidence value of 10. Across the

19 cancer types, there are 624 distinct duos and 79 of them

(13%) were identified in at least two cancer types. In some cases,

the SCNV regions identified by GISTIC2 in different cancers can

share overlapping genes. This analysis would consider these to be

distinct events, suggesting that we may be missing additional

recurrences involving driver genes that appear as part of non-

identical SCNV regions.

Thirty duos were identified in 3 or more cancers (Table 6). Of

these, 24 contain at least one of TP53 or CDKN2A, highlighting the

ubiquity of these tumor suppressors across human cancers. Most of
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the highly recurrent duos consist of TP53 or CDKN2A paired with

the well-known drivers, including PIK3CA, PTEN, RB1, KRAS, EGFR,

SMAD4, MYC, and BRAF. Some of the recurrent duos in Table 6

involve lesser-known copy number events, such as LRP1B-D, FKSG52/

MIR582/PDE4D-D, CCSER1/RN7SKP248-D, CSMD1-D, CCND1/ORAOV1-A,

GMDS-D, and CASC8-A. The recurrent identification of duos involving

these events in 3 or more cancer types suggests that they may be

more important than is currently appreciated.
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Figure 7. Co-occurrence of ARID1A + CTNNB1 defines a subtype with poor PFI in liver hepatocellular carcinoma (LIHC).

A ARID1A-MD is not a single-gene biomarker in LIHC.
B CTNNB1-M is also not a single-gene biomarker in LIHC.
C, D LIHC patients with ARID1A-MD and CTNNB1-M define a subtype with significantly worse prognosis compared to all other patients.

Data information: P values calculated from Kaplan–Meier estimator.
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Comparison of TCGA results using simpler penalty matrices

The P matrices used in the TCGA experiments were calculated using

patient-specific, event-specific, and observation-type-specific passenger

probability estimations. For some user applications, it may be difficult

to calculate these exact passenger probabilities. We repeated the

TCGA experiments using three simplified versions of the penalty

matrix to compare the results with those obtained with the original

penalties. Designating the original penalty matrix as PO, we define

the 3 modified penalty matrices in order of increasing simplification:
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Figure 8. Co-occurrence of ALB + TP53 defines a subtype with poor PFI in LIHC.

A TP53 correlates with worse PFI in LIHC.
B, C ALB + TP53 patients have worse PFI than patients with only one mutation.
D LIHC patients with ALB + TP53 define a subtype with significantly worse prognosis compared to all other patients.

Data information: P values calculated from Kaplan–Meier estimator.
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• PFC (fixed, cancer specific) assigns a fixed penalty for each obser-

vation type (e.g., hotspot, loss, etc.) to be the mean penalty of all

instances of the observation type within the given cancer type.

• PFG (fixed, global) uses the fixed value for each observation type

across all cancers. The penalties in PFG were calculated by averag-

ing over the cancer-specific mean penalties across the 19 cancer

types.

• PU (uniform) uses a single fixed penalty for all events correspond-

ing to the assumption that all non-wild-type observations have

passenger probability of 0.1 (the results are the same for any fixed

probability).

We ran CRSO for all 19 cancer types using PFC, PFG, and PU and,

i.e., we compared the results with those obtained from PO. For each

pairwise comparison, i.e., PO versus PFC, PO versus PFG, and PO

versus PU, we quantified the rule-agreement (Table 7) as the

percentage of con-GCRs identified in either experiment that were

identified in both experiments. We quantified the duo-agreement

analogously (Table 7).

The mean rule-agreement was 60, 61, and 34% for PO versus

PFC, PO versus PFG, and PO versus PU, respectively, and the respec-

tive mean duo-agreements were 69, 69, and 46%. These results

suggest that using a uniform fixed penalty changes the CRSO results

much more than using a penalty that is fixed for each observation

type. Using an observation-specific fixed penalty regardless of

cancer type (PFG) performed as well as using a cancer-specific,

observation-specific fixed penalty (PFC). The rule-agreement

between PO and PFG was at least 75% in 8 cancer types, suggesting
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Figure 9. BLCA outcomes depend on CDKN2A and FGFR3.

C+/C− indicates tumors positive/wild type for CDKN2A-MD. F+/F- indicates tumors positive/wild type for FGFR3-MA.
A CDKN2A-MD is a single-gene biomarker for poor PFI in bladder cancer.
B FGFR3-MA is a biomarker for improved survival among CDKN2A wild-type samples.
C FGFR3-MA status does not correlate with PFI in CDKN2A-MD tumors.
D Proposed 3-tier stratification of BLCA defined by C+, C−/F−, and C−/F+.

Data information: P values calculated from Kaplan–Meier estimator.
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that using a fixed value for all observations of a given type can be

a convenient approximation in the absence of more refined passen-

ger probabilities. The penalties used in PFC and PFG are available

for download.

Discussion

We developed CRSO as a stochastic optimization procedure for

predicting combinations of alterations that are minimally sufficient

to drive cancer in individual patients. We applied CRSO to 19 TCGA

cancer types, using SMGs identified by dNdScv (Martincorena et al,

2017) and SCNVs identified by GISTIC2 (Mermel et al, 2011) as

input features. An optimal core rule set was determined for each

cancer type, as well as sets of generalized core rules, trios and duos,

along with confidence scores. Across 19 TCGA cancer types, CRSO

prioritized biologically important events and combinations with

literature support that would not be prioritized based on single-

event analysis or other tools.

Several characteristics of CRSO distinguish it from other available

methods for detecting biological cooperation from tumor genetic

variants. Most approaches can only detect pairwise synergies,

whereas CRSO is able to identify combinations of 3 or more events.

CRSO accounts for passenger event probabilities by optimizing over

a probabilistic representation of genetic alterations in addition to the

binary representation used by most approaches. CRSO optimizes for

coverage of the population and minimization of passenger penalties,

using a minimal number of rules.

Although CRSO uses passenger probabilities as a basis for priori-

tizing events and rules, this does not mean that unassigned events

should generally be considered to be passenger events that are func-

tionally neutral. For example, in some cases essential driver events

are unassigned because they occur in samples that do not satisfy

any rules in the rule library, e.g., CRSO would miss samples with

only one essential driver in our dataset, suggesting that the cooper-

ating partners for these events are missing entirely or under-repre-

sented in the dataset because of insufficient sample size (e.g., the

unassigned samples in Fig 4A with BRAF and NRAS hotspots).

Another scenario is that an unassigned event in a covered sample

provides the tumor with selective advantages despite not having

been minimally essential. More generally, CRSO is a multi-objective

optimization procedure that is forced to designate only a subset of

events as essential drivers because of constraints on rule set size

and coverage. Without experimental validation, neither the func-

tional consequences of individual alterations, nor the functional

interactions between events can be proven by CRSO alone. Rather,

we hypothesize that some of the rules identified by CRSO are of

biological and clinical significance, and that the probability of a rule

being of biological significance is positively correlated to its general-

ized core confidence score. The value of CRSO is in its ability to

prioritize combinations that are likely to be biologically important

from an exponentially large search space of possible combinations.

We highlighted several novel combinations from among the high

confidence rules inferred by CRSO in 19 TCGA cancer types

(Appendix Table S6). NRAS-M + HULC-A and NRAS-M + SMYD3-A

were identified as core rules that may represent distinct mechanisms

of carcinogenesis in NRAS-mutant melanomas. CRSO identified

NFE2L2 as con-GCRs in 4 cancer types as part of 4 distinct rules that

had comparatively low coverage and single-rule performance. The

CRSO findings support that NFE2L2-mediated NRF2 activation may

be an essential driver in multiple cancers types.

Examples were presented in multiple cancer types of significant

differences in patient PFIs that were found based on rules identified

by CRSO. In all of these examples, the PFI differences could not

Table 5. Coverages of SELECT pairs and CRSO core RS for 16 TCGA cancer types.

Select_Cov CRSO_Core_Cov Select_Num_Pairs CRSO_Num_Rules

BLCA 0.38 0.75 20 14

BRCA 0.27 0.58 29 11

CESC 0.05 0.53 2 12

ESCA 0.29 0.84 10 13

GBM 0.38 0.77 3 11

HNSC 0.28 0.68 9 10

KIRC 0.07 0.52 2 10

LGG 0.06 0.65 2 5

LIHC 0.09 0.56 0 12

LUAD 0.2 0.6 7 10

LUSC 0.15 0.83 2 14

OV 0.2 0.86 32 12

PRAD 0.1 0.51 7 10

SKCM 0.11 0.69 9 10

STAD 0.28 0.64 24 13

UCEC 0.11 0.84 9 11

Average 0.19 0.67 10.4 11.1

All SELECT predicted synergies for each cancer type were extracted, and coverage for the cancer type was calculated using the union of covered samples.
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have been identified by consideration of individual alterations.

Rather, these differences appear to be a consequence of specific

combinations of alterations whose co-occurrences define subtypes

with better or worse prognosis. These combinations, as well as

other combinations in Table 4 that were not discussed, merit further

investigation as prognostic biomarkers. Evaluating these findings on

independent datasets is a necessary next step toward determining

whether any of the combinations are reliable biomarkers that can

assist clinical stratification. Incorporating information about patient

treatments may help refine this analysis. The interpretability of

potential biomarkers identified by CRSO may provide actionable

information that goes beyond current clinical stratification, such as

suggesting combination treatments or identifying specific alterations

as drug targets.

CRSO is a tool for prioritizing biologically relevant combinations

that may merit further investigation from a huge space of possible

combinations, and it is inevitable that some identified combinations

will be false positives, and some important biological combinations

will be missed. The coverages achieved by the core rule sets in dif-

ferent cancers range from a low of 51% in prostate adenocarcinoma

(PRAD) to a high of 89% in rectum adenocarcinoma (READ)

cancers, revealing that a substantial subset of patients in every

cancer type were not assigned to any rule. One strategy for account-

ing for these samples would be to expand the set of mutations and

SCNVs included as events by relaxing the significance threshold

used for dNdScv or GISTIC2, or by including additional events iden-

tified by other approaches. Another reason CRSO might not assign

some tumors to any rule is the possibility that the tumor was driven

by a single genetic alteration.

The rules identified by CRSO are further limited by the types of

events that are used as inputs. We chose to use SCNVs and SMGs

because these are the most common types of driver alterations in

cancer, and can be systematically prioritized by statistical enrich-

ment methods. However, many other types of alterations were

Table 6. Generalized core duos (GCDs) identified in at least 3 cancer
types.

Duo Recurrence Cancer types

PIK3CA + TP53 8 BLCA, BRCA, COAD, ESCA, HNSC,
LUSC, READ, UCEC

CDKN2A + TP53 7 BLCA, ESCA, GBM, HNSC, LUAD,
LUSC, PAAD

PTEN + TP53 7 BRCA, COAD, GBM, LIHC, LUSC,
PRAD, UCEC

RB1 + TP53 6 BLCA, BRCA, GBM, LIHC, LUAD,
LUSC

CSMD1-D + TP53 5 BRCA, ESCA, HNSC, LUSC, READ

SMAD4 + TP53 5 COAD, ESCA, PAAD, READ, STAD

KRAS + TP53 5 COAD, LUAD, PAAD, READ, STAD

FKSG52/PDE4D-D +
TP53

5 ESCA, HNSC, OV, READ, STAD

CDKN2A + LRP1B-D 4 BLCA, ESCA, HNSC, LUSC

MYC-A + TP53 4 BRCA, ESCA, OV, STAD

LRP1B-D + TP53 4 ESCA, HNSC, LIHC, LUSC

CDKN2A + EGFR 4 GBM, HNSC, LUAD, LUSC

ARID1A + PIK3CA 3 BLCA, STAD, UCEC

ARID1A + TP53 3 BLCA, LIHC, STAD

CDKN2A + NFE2L2 3 BLCA, HNSC, LUSC

CDKN2A + PIK3CA 3 BLCA, GBM, HNSC

CCND1/ORAOV1-A +
TP53

3 BLCA, BRCA, LIHC

PIK3CA + PTEN 3 CESC, COAD, UCEC

KRAS + PIK3CA 3 COAD, READ, UCEC

KRAS + SMAD4 3 COAD, PAAD, READ

BRAF + TP53 3 COAD, LUAD, SKCM

FLRT3/MACROD2-D
+ TP53

3 COAD, READ, STAD

GMDS-D + TP53 3 ESCA, READ, STAD

CCSER1-D + TP53 3 ESCA, READ, STAD

CCSER1-D +
FKSG52/PDE4D-D

3 ESCA, READ, STAD

NFE2L2 + TP53 3 ESCA, HNSC, LUSC

CDKN2A + PTEN 3 GBM, LUSC, SKCM

CASC8-A + TP53 3 HNSC, LUSC, READ

NF1 + TP53 3 LUAD, LUSC, OV

ARID1A + KRAS 3 PAAD, STAD, UCEC

Table 7. Comparison using simplified penalties.

PO versus PFC PO versus PFG PO versus PU

BLCA 67 (58) 75 (56) 37 (40)

BRCA 79 (79) 71 (79) 35 (45)

COAD 29 (80) 36 (82) 29 (72)

CESC 41 (40) 30 (31) 23 (28)

ESCA 67 (79) 58 (72) 5.6 (43)

GBM 54 (68) 40 (65) 55 (62)

HNSC 44 (75) 21 (60) 21 (40)

KIRC 82 (82) 82 (82) 64 (64)

LGG 44 (67) 83 (89) 29 (40)

LIHC 94 (94) 65 (65) 24 (26)

LUAD 75 (67) 75 (62) 43 (38)

LUSC 38 (56) 38 (57) 29 (42)

OV 77 (92) 62 (95) 50 (92)

PAAD 100 (80) 100 (67) 29 (31)

PRAD 50 (50) 56 (69) 17 (26)

READ 45 (68) 80 (91) 12 (43)

SKCM 73 (62) 80 (73) 70 (58)

STAD 47 (62) 59 (68) 50 (58)

UCEC 36 (47) 56 (44) 18 (30)

Mean 60 (69) 61 (69) 34 (46)

PO: original penalty matrix. PFC: simplified penalty matrix in which all
observations of the same type within the same cancer are assigned a fixed
value. PFG: further simplified penalty matrix in which all observations of the
same type assigned a fixed value, regardless of cancer type. PU: simplest
penalty matrix in which a single fixed penalty is used for all observations.
Each cell shows the rule-agreement score, and the duo-agreement score is
shown in parentheses.
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omitted that may contribute to cancer formation, including germline

alterations, arm level CNVs, gene fusions, chromosomal transloca-

tions, and epigenetic alterations. For example, TMPRSS2-ERG

fusions are observed in 40% of prostate cancers (Cancer Genome

Atlas Network, 2015b), and p1/q19 chromosomal co-deletions are

observed in 30% of lower-grade gliomas (Brat et al, 2015). CRSO

supports inclusion of any binary-encoded event of interest. In case it

is hard to calculate passenger probabilities for an event of interest,

we recommend assigning a penalty equal to 1.05 times the largest

penalty in each sample that harbors this event. Doing so would

ensure that the event has maximum priority in the samples that

harbor it. Using a much larger penalty compared to those associated

with SCNVs and mutations could adversely impact the coverage of

CRSO by over-prioritizing rules that cover very few samples.

Although CRSO is generally robust to the exclusion of some driver

events (Appendix Table S5), it is likely that exclusion of very high

frequency driver events, such as TMPRSS2-ERG fusion, will lead to

identification of some false positives.

CRSO uses the focal amplification and deletion peaks identified

by GISTIC2 as input features. Some GISTIC2 peaks contain many

genes, making it difficult to identify the genes of biological signifi-

cance. In the absence of tools analogous to CancerEffectSizeR (Can-

nataro et al, 2018), we relied on a crude approach to estimate SCNV

passenger probabilities based on alterations rates in control cyto-

bands. Filtering out deletions and amplifications that do not have a

corresponding impact on gene-expression dosage may refine the

candidate driver SCNVs. Another potential refinement would be to

disallow rules involving multiple co-directional copy number events

that are nearby on the same chromosome, since the co-occurrence

of these events may be artifacts due to proximity. Only a small frac-

tion of all core rules were in this category, and none of them were

discussed in this study.

It may be of interest to apply CRSO to established subtypes of

TCGA cancer types such as melanomas that are wild type for both

BRAF and NRAS or basal-like breast cancers, which have limited

treatment options and poor prognosis (Bernard et al, 2009; Cancer

Genome Atlas Network, 2012). We recommend running dNdScv and

GISTIC2 on the smaller cohort to identify subtype-specific candidate

drivers and running CancerEffectSizeR to quantify the effects.

Network-based stratification (NBS) is an unsupervised strategy

for identifying tumor subclasses by integrating binary somatic muta-

tion profiles with public gene–gene interaction network databases

(Hofree et al, 2013). NBS identified subtypes that are predictive of

clinical outcomes in ovarian, uterine, and lung cancers (Hofree

et al, 2013). Liu and Zhang (2015) used NBS to identify pan-cancer

subtypes characterized by different biological processes. These

studies, as well as other network-based algorithms (Ciriello et al,

2013; Zhang et al, 2018), have identified tumors that are function-

ally similar at the pathway level and help elucidate the biological

processes that characterize specific subtypes. By contrast, CRSO

provides insights into specific alteration combinations that achieve

pathway dysregulation in individual tumors. Future work can lever-

age these complementary strategies by applying CRSO within

subtypes identified by network-based approaches in order to iden-

tify rules that correspond to specific functional subtypes.

Dash et al (2019) adapted the weighted set cover algorithm

(Chvatal, 1979) to identify sets of two-hit combinations that discrim-

inate normal and cancer samples with high accuracy. Al Hajri et al

(2020) extended this approach to include 3-hit and some 4-hit

combinations. Motivating these methods is the assumption that

combinations that occur only in tumors are likely to be cooperating

drivers. There are many differences in the mutational landscapes of

tumors and normal tissue, and it is possible that many combinations

involving passenger mutations are also likely to be observed almost

exclusively in tumors. Dash et al considered all genes containing

any coding mutation, and only identified 9 confirmed cancer genes

(according to COSMIC) across the union of the 3 most frequent

combinations in 17 TCGA cancer types, missing well-known drivers

such as CDKN2A, BRAF, PIK3CA, EGFR, and many others. Specific

genes were not discussed in the multi-hit version.

We developed CRSO as an approach to infer essential driver

combinations that co-occur in many patients. CRSO is highly flexible

and easy for researchers to use. The results represent testable

hypotheses that are easy to interpret. We hope that CRSO will prove

helpful in identifying biologically meaningful and clinically action-

able combinations of driver alterations. From a broader perspective,

we envision that wide-spread adoption of CRSO by domain experts

will propel a shift in the precision oncology community from single-

gene thinking toward multi-gene thinking, and that patients will be

classified and treated according to driver combinations. For exam-

ple, we suggest that development of a cancer combination census,

analogous to the Sanger Institute Cancer Gene Census (Sondka et al,

2018), would accelerate therapeutic advances by nominating novel

therapeutic strategies and refining clinical trial recruitment based on

driver combinations. This census would be comprehensive, and

include tiers based on the strength of evidence of specific combina-

tions in specific cancer types. For example, one tier would consist

experimentally validated driver combinations, such as BRAF + PTEN

in melanomas and ATRX + IDH1 + TP53 in gliomas, and lower tiers

would consist of computationally predicted combinations nomi-

nated by methods such as CRSO and SELECT, with varying amount

of literature support.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source identifier or catalog number

Software

R version 4.0.2 www.r-project.org N/A

RStudio version 1.2.5019 www.rstudio.com N/A
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Reagents and Tools table (continued)

Reagent/Resource Reference or source identifier or catalog number

R packages
ggplot2
survival
survminer
foreach
doMPI
cancereffectsizeR

Wickham (2016)
Therneau (2015)
Kassambara and Kosinski (2018)
Microsoft and Weston (2017)
Weston (2017)
Cannataro et al (2018)

N/A

Data

TCGA data Genome Data Analysis Center (2016) (Data ref: Grossman et al, 2016a) Firehose 2016 01 28 run. https://doi.org/10.7908/C11G0KM9.

TCGA outcome data (Liu et al, 2018) https://doi.org/10.1016/j.cell.2018.02.052

Computing resources

Yale HPC Cluster Yale Center for Research Computing N/A

Methods and Protocols

Representation of TCGA inputs
TCGA data from 19 cancer types (Table 1) were obtained from the

January 28, 2016, GDAC Firehose (Grossman et al, 2016b; Data ref:

Grossman et al, 2016a). Candidate driver mutations were defined to

be the set of significantly mutated genes (SMGs) identified by

dNdScv as significantly mutated using the threshold qsuball < 0.1—
using tissue-specific mutational covariates developed within Canna-

taro et al (2018). Candidate copy number variations were defined to

be the set of genomic regions identified by GISTIC2 as amplified or

deleted, using the threshold q-residual < 0.25.

The inputs into CRSO are two event-by-sample matrices: D and

P. D is a binary alteration matrix, such that Dij = 1 if event i occurs

in sample j, and 0 otherwise. P is a continuous valued penalty

matrix, where Pij is the negative log of the probability of event i

occurring in sample j by chance, i.e., as a passenger event. In order

to calculate passenger probabilities, TCGA mutations and copy

number variations were first represented as a categorical event-

by-sample matrix, M. Mij can take one of several values called

observation types. The possible observation types for event i differ

according to the event type of event i. Three primary event types

were considered: mutations, amplifications, and deletions. Muta-

tions were represented at the gene level, whereas both copy number

types were represented at the region level as defined by the GISTIC2

narrow peaks. Mutation events take values in the set {Z, HS, L, S,

I}, corresponding to wild type, hotspot mutation, loss mutation,

splice site mutation, or in-frame indel. Amplification events take

values in {Z, WA, SA}, corresponding to wild type, weak amplifi-

cation, and strong amplification. Similarly, deletion events take

values in {Z, WD, SD}, corresponding to wild type, weak deletion

(hemizygous), and strong deletion (homozygous).

The entries of D only depend on whether an observation is wild

type or not. That is, Dij equals 0 if Mij is wild type, and equals 1

otherwise. By contrast, the entry Pij is highly sensitive to specific

observation type of event i that is observed in sample j. For exam-

ple, suppose TP53 is identified as an SMG within a cancer popula-

tion. Some tumors may contain one of many nonsense point

mutations within TP53, whereas other tumors may contain a highly

recurrent missense mutation, or a splice site mutation that produces

an alternative isoform of the TP53 protein. Although all of these

alterations are TP53 mutations, they occur with very different

passenger probabilities, sometimes spanning multiple orders of

magnitude. The dual representation defined by D and P reflects the

assumption that different types of alterations within the same event

are functionally similar but probabilistically distinct. This represen-

tation also allows CRSO to account for sample-specific differences in

passenger probabilities, which can sometimes be very substantial.

Wild-type events are defined to have passenger probability of 1, so

that if Mij = Z then Pij = 0.

TCGA mutational observation types
The MAF files for each TCGA dataset are annotated with many dif-

ferent mutation types (Appendix Table S1). To account for the fact

that different kinds of mutations occur at different baseline probabil-

ities, mutations were subdivided into four observation types:

hotspots (HS), loss mutations (L), splicing mutations (S), and in-

frame insertions and deletions (I).

• Hotspot mutations: A hotspot mutation was defined to be any

SNP that leads to an alteration at a specific amino acid posi-

tion that is observed in at least three samples within the

population. Silent mutations and intronic mutations do not

lead to amino acid changes and by definition cannot be

hotspots. Most hotspot mutations are missense mutations, but

the definition allows for other recurrent SNPs, such as splice

site mutation or nonsense mutations to be hotspots as well.

Note that the definition of hotspot does not require three

instances of the exact same substitution, but rather three

instances of substitutions at the same amino acid position.

This choice is motivated by the fact that multiple amino acid

changes in known hotspots such BRAFV600 and NRASQ61 are

observed.

• Loss mutations: A loss mutation was defined as one occurring in

a given gene if any mutation is detected except for those muta-

tions that are silent, intronic, splice site, hotspot, in-frame inser-

tions, or in-frame deletions. The definition of loss mutations

includes missense mutations, nonsense mutations, frame-shift

indels, and the other rarely observed mutations types shown in

Appendix Table S1. All of these mutation types were combined

under the general category of loss mutations because the majority

of non-recurrent mutations will lead to loss of function.
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• In-frame indels: In-frame indels are mutations that are in-frame

deletions or in-frame insertions. In-frame insertions/deletions

were categorized separately from frame-shift indels because in-

frame indels have been shown to be much more likely than

frame-shift indels to produce gain of function alterations (Yang

et al, 2010).

• Splicing mutations: Splicing mutations are the fourth most

common class of point mutation behind missense, silent and

nonsense mutations (Appendix Table S1). Splicing mutations can

present as point mutations within exons that lead to exon-exclu-

sion as well as point mutations within introns that lead to intron

inclusion. Because of this, many splice site mutations are not

annotated with a specific amino acid change. Splicing mutations

encompass only those splice sites that are non-recurrent single

amino acid substitutions. When a splicing mutation occurs as a

SNP at a recurrent amino acid position, it was designated as a

hotspot mutation because this designation permits more accurate

calculation of the associated passenger probabilities.

Passenger probability calculation for mutations
Passenger probabilities were calculated for every observed muta-

tion. These passenger probabilities are patient-specific, gene-speci-

fic, and observation-type-specific. Mutation rates for every possible

amino acid substitution in each SMG were calculated as described

in Cannataro et al (2018). These rates are calculated by incorporat-

ing both gene-level estimates of mutation rate (Martincorena et al,

2017) and tumor-type-specific mutational processes that affect

nucleotide substitution rates (Rosenthal et al, 2016).

Hotspot and loss mutation passenger probabilities were calcu-

lated based on the mutation rates of individual amino acid substitu-

tions calculated directly from the cancereffectsizeR R package

(Cannataro et al, 2018). Hotspot mutation probabilities were calcu-

lated for each gene as the sum of the rates of all possible amino acid

substitutions at hotspot positions. The loss mutation probability for

a gene was calculated as the sum of the rates of all possible amino

acid substitutions, except for those that occur at hotspot positions.

Non-recurrent splice site substitutions were not excluded because

the analysis did not include annotation of all possible splice site

amino acid positions. The impact of excluding these sites will be

minor, since the number of amino acids per protein is much larger

than the number of splice junctions.

Control genes were used to calculate the in-frame indel and

splice site probabilities. Control genes were defined to be all genes

that are expressed above RSEM = 0 (RNAseq by Expectation Maxi-

mization) in at least 5% of samples and were not identified by

dNdScv as SMGs. Population-level in-frame indel mutation probabil-

ities were calculated to be the frequency of in-frame indel mutations

per control gene per sample. Population-level splice site mutation

rates were calculated to be the average number of splice site muta-

tions per sample per control gene. The frequencies of in-frame

indels and splice site mutations were assumed to be proportional to

the number of amino acids in the protein product of each gene. A

gene length adjustment factor was defined for each gene to be the

number of amino acids in the gene protein product divided by 480

(approximate mean number of amino acids per protein). Gene-

specific probabilities for both in-frame indels and splice site muta-

tions were calculated to be the respective population-level probabili-

ties multiplied by the gene length adjustment factors.

Mutation frequencies can vary greatly across patients within the

same cancer type. To account for this, a patient adjustment factor

was used that is based on the number of point mutations in each

patient. Mutation counts for each patient were determined to be the

total number of point mutations observed outside of the SMGs iden-

tified by dNdScv. Tumors for which 0 mutations were identified

were assigned a mutation count of 1. In general, we do not want to

remove outliers with large mutation counts because we want the

penalties for observations in these samples to be down weighted

accordingly. However, there were a few cases where one or two

patients had such extreme outliers that they had mutation counts

more than 100 times larger than the 90th percentile for the cohort.

To mitigate the impact of these extreme outliers, a maximum muta-

tion count was chosen to be the 10 times the 75th percentile of all

mutation counts. Patients with mutation counts above the maxi-

mum were assigned the maximum mutation counts. Patient adjust-

ment factors were defined to be the patient’s mutation count

divided by the mean mutation count across the population. The

patient-specific probabilities for every mutational observation are

the product of the population-level probabilities and the patient

adjustment factors.

TCGA copy number observation types
The outputs of GISTIC2 are a set of significantly amplified copy

number regions and a set of significantly deleted copy number

regions. Each of the significant amplifications/deletions was repre-

sented as a single event. To do so, the copy number results were

first represented at the gene level by a discrete gene-by-sample

matrix of focal copy number status, MG, and then the scores of indi-

vidual genes within each region were combined to obtain event

level features. The entries of MG take values in {SD, WD, Z, WA,

SA}, corresponding, respectively, to strong deletions (SD), weak

deletions (WD), wild type (Z), weak amplifications (WA), and

strong amplifications (SA). MG was constructed by thresholding the

continuous value matrix from “focal_data_by_genes.txt". Focal copy

number values in [−0.3, 0.3] were designated as copy neutral, as

per the noise threshold recommendation in the GDC CNV pipeline

(Grossman et al, 2016b; Data ref: Grossman et al, 2016a). Values

above 0.3 were designated as amplifications, and values below −0.3
were designated as deletions. To designate copy number alterations

as strong or weak, the sample-specific thresholds provided in the file

“sample_cutoffs.txt" were used.

The peak genes for each amplification/deletion were extracted

from the tables in the files “table_amp.conf_99" /“table_del.conf_99".

For each amplification peak, each sample was assigned to the maxi-

mum copy number value attained by any of the peak genes within

that sample (i.e., the extreme method). Because the amplification

peaks were selected for having evidence of significant amplification,

amplification events are only allowed to take values in {Z, WA, SA}.

If a deletion is observed within an amplification event, it is assigned

to be wild type. This procedure results in a discrete matrix of amplifi-

cation peaks by samples, MAMP, that takes values in {Z, WA, SA}.

Each row in MAMP corresponds to an amplification event identified

by GISTIC2. A deletion event matrix, MDEL, was prepared analo-

gously. Deletion peaks were assigned to the minimum copy number

value attained by any of the genes in the peak. Amplifications

observed within deletion peaks were assigned to be wild type, so that

MDEL takes values in {SD, WD, Z}.
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Passenger probability calculation for copy number events
It is difficult to estimate copy number probabilities at the gene level

because of the strong dependence between genes that are near each

other. Copy number passenger probabilities were instead estimated

at the cytoband level, using control cytobands as the basis for esti-

mating probabilities. Control cytobands were defined to be all cyto-

bands that do not contain any genes that are within any of the

significant wide regions reported in “table_amp.conf_99" and

“table_del.conf_99".

A control cytoband matrix, MC, was constructed by assigning

each cytoband to the mode of the cytoband’s genes observed in each

sample from MG. Consider MC to be an n x m matrix, and consider

CSD, CWD, CWA, and CSA to be the counts of each observation type

observed in the population. A population rate for each observation

type was defined as follows:

μSD ¼CSD=ðn∗mÞ

μSA ¼CSA=ðn∗mÞ

μWD ¼ CSDþCWDð Þ=ðn∗mÞ

μWA ¼ CSAþCWAð Þ=ðn∗mÞ

The probabilities for WA and W were defined to be the frequency

of observing any amplification or deletion to ensure that µWD and

µWA are always larger than µSD and µSA, respectively.
To account for variation in copy number rates between patients,

patient-specific adjustment factors were introduced for amplifi-

cations and deletions. Let CAMP
j and CDEL

j denote the number of

control cytobands amplified and deleted in patient j, respectively.

The amplification and deletion adjustment factors for each patient

were defined to be:

fAMP
j ¼ CAMP

j þ0:5
� �

= mean C
!AMP

� �
þ0:5

� �

fDELj ¼ CDEL
j þ0:5

� �
= mean C

!DEL
� �

þ0:5

� �

The addition of 0.5 to the counts ensures non-zero probabilities for

all patients. The sample-specific probabilities for SD and WD were,

respectively, calculated as μSD,j ¼ μSD∗ f
DEL
j and μWD,j ¼ μWD∗ f

DEL
j . The

sample-specific probabilities for SA and WA were calculated

analogously.

TCGA hybrid events
When a particular gene within a tissue type is identified by dNdScv

as an SMG and is also identified by GISTIC2 as part of a SCNV, the

SMG and SCNV were combined into a special event type called

hybrid events. This reflects the assumption that the SCNV and SMG

are exerting similar functional changes in the tumor cells. Support-

ing this assumption is the observation that oncogenes are frequently

amplified and tumor suppressors are frequently deleted in the same

cancer types. If the SCNV was a deletion, the hybrid event was

denoted as “gene-MD", for mutations/deletion, and if it was an

amplification, it was denoted as “gene-MA", for mutation/amplifi-

cation. The hybrid events could take values in any of the mutation

types or any of the copy number types. A single hybrid event could

also take two values if it was observed as an SCNV and an SMG in

the same patient. For example, if CDKN2A loss mutation and

CDKN2A weak deletion co-occur in a patient, this observation

would have been denoted as “L,WD". In such cases, the penalty

associated with the combined observation was the sum of the penal-

ties of each observation independently (recall that penalties are -log

probabilities). By increasing the penalty associated with co-occur-

ring alterations of the same gene, the algorithm is encouraged to

assign the event as a driver.

Two exceptions were encountered among the 19 TCGA cancer

types that required special handling. In rectum adenocarcinoma

(READ), KRAS was identified as part of an amplification peak and

as part of a large deletion peak. Since KRAS is a known oncogene

that is often part of amplification peaks in other cancer types, we

chose to represent KRAS as KRAS-MA. The deletion peak was

retained in the dataset as an ordinary deletion event, but it was not

annotated as a KRAS hybrid event. In kidney renal clear cell carci-

noma (KIRC), both ARID1 and MTOR were found to be part of the

same deletion peak. Since ARID1-MD is observed in multiple cancer

types whereas MTOR-MD is never observed in other cancer types,

we chose to represent this deletion event as part of ARID1-MD.

CRSO optimization criteria
CRSO is an optimization procedure over the space of possible rule

sets. The ability of a rule set to account for the distribution of events

in the population is quantified by an objective function. Consider a

rule set RS = (r1, . . ., rk), and suppose each sample has been

assigned to one rule in RS, or to the null rule. The null rule is implic-

itly included in every rule set as an assignment placeholder for

samples that do not satisfy any of the rules in RS. When a sample is

assigned to a rule, the events that comprise the rule are considered

to be essential drivers within that sample and therefore do not

contribute to the statistical penalty under RS. The statistical penalty

under RS is the sum of the penalties of all of the not assigned events

under RS. A penalty matrix, PRS, is derived by modifying the full

penalty matrix, P, such that the penalties of all assigned events are

changed to 0. For example, suppose sample j is assigned to a rule

containing events x and y. This is represented in PRS by assigning

PRSxj and PRSyj to be 0, instead of the original values they took in P.

The objective function score for RS, J(RS), is defined to be the

reduction in total statistical penalty under RS compared to the null

rule set: JðRSÞ¼∑Pij�∑PRSij In cases when a sample satisfies

multiple rules in RS, the sample is always assigned to the rule that

maximizes J(RS), i.e., the rule with largest cumulative penalty in

the sample.

Four-phase procedure for identification of best RS of size K
Given D, a starting rule library is built by identifying all rules that

contain at least 2 events and occur in a minimum percentage of

samples. Except where otherwise indicated, a minimum rule cover-

age threshold was chosen to be the larger of 3% of the population,

or the minimum threshold that at most 2,000 rules satisfy. CRSO

uses a four-phase procedure (Fig 1C) to find the best scoring rule set

of fixed size, K, for K ∈ {1 . . . 40}. The core rule set is subsequently

chosen from among the best rule sets of size K. Finding the best rule

set of size K from among n rules is computationally intractable, and

so we developed a heuristic procedure involving random sampling
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to approximate the global optima for each K. The four-phase proce-

dure involves several parameter choices that require specification.

The methodology is presented using the default parameter values

(Appendix Table S2) that were used for the presented applications

to 19 TCGA cancer types.

• Phase 1: Stochastic rule prioritization. In phase 1, an iterative

stochastic procedure is used to rank all of the rules in the rule

library according to how likely they are to be included in the best

performing rule set. For each rule, a rule importance score is

calculated based on the average contribution of the rule within

many random subsets of rules. Consider a set of rules RS. The

contribution of rule rj within RS is defined to be the percentage

decrease in performance when rj is excluded from RS. Randomly

sampled rule sets are allowed to contain family members, i.e., are

not required to be valid, because we want to allow for direct

competition between rules that are family members. To determine

the rule importance score, multiple iterations (parameterized by

p1.spr) of sampling multiple sizes of rule sets are evaluated sepa-

rately in order to make fair comparisons between rules across a

broad range of rule set sizes. For each rule set sample size, a Z

score is determined from the distribution of average contributions,

and the rule importance score is determined to be the average of

the Z scores from different sampling sizes. The sizes of the

random rule sets depend on the rule library size, as shown in

Appendix Table S2. Once the importance scores are obtained for

each rule in the rule pool, the 25% of rules (denoted as p1.cut.-

size) that have the smallest contribution scores are eliminated.

The procedure proceeds until there are at most 24 rules, at which

point the remaining rules are ranked according to a final round of

importance score calculation. The purpose of using an iterative

procedure rather than ranking all the rules once is to enforce

direct competition among the strongest scoring rules. Our results

on both simulations and real data show that the algorithm is

highly robust to the choice of p1.cut.size and p1.spr and that these

choices matter more for very large rule libraries.

• Phase 2: Exhaustive rule set evaluation. In phase 2, a subset of

the top rules from phase 1 are exhaustively evaluated to deter-

mine the best rule set of each K. In contrast to phase 1, only valid

rule sets that do not contain family members are considered in

phase 2. For each K, the candidate rule pool is determined to be

the maximum number of top rules that can be exhaustively evalu-

ated with at most 200,000 rule sets. This computational parameter

(denoted as p2.mnrs) was chosen to balance run time with depth

of coverage. The number of rules that can be exhaustively evalu-

ated for a given K and p2.mnrs is referred to as the pool size and

depends on the rule-family network between rules. For example,

it is possible that no valid rule sets exist of size K = 8 within the

top 20 rules, whereas ≈ 126,000 valid rule sets would exist if none

of the rules were family members. Since less computation is

required to determine if a rule set is valid than to evaluate it, a

larger computational parameter (p2.max.compute) is used to

determine the pool sizes that lead to approximately p2.mnrs.

• Phase 3: Neighbor rule set expansion. Phase 2 results in identifi-

cation of best rule sets of sizes K = 1. . . 10. However, because of

computational constraints only a subset of top rules can be

considered by phase 2 for inclusion among the best size-K rule

sets. In phase 3, the number of rules that can be included in the

top rule sets is increased by making the assumption that the

global best size-K rule sets will overlap highly with the size-K rule

sets determined from phase 2. Consider as an example that in

phase 2 the best rule set of size K = 8 is identified from among

the top n = 30 rules. Denote this rule set as RSK. The dL neighbors

of RSK are defined to be the set of all rule sets that contain K−L
common rules with RSK. In phase 3, the search for the best

performing rule sets is expanded to include rule sets that are dL
neighbors of RSK and contain L rules from outside of the initial

top 30 rule pool, for L = 1, 2, 3. For each L, the number of new

rules that can be considered is determined subject to a computa-

tional constraint (p3.mrns). A similar expansion of candidate rule

sets is performed by considering rule sets that overlap highly with

RSK−1, allowing for consideration of new rule sets of size K that

contain rules that are within RSK−1 but absent from RSK. This

choice is motivated by the observation the best rule set of size K

tends to overlap highly with the best rule set of size K−1.
• Phase 4: Expansion to larger K. Phase 3 results in best rule sets

of sizes K = 1. . . 10 using an expanded rule pool compared to

phase 2. In phase 4, the best rule set of size K+1 is sought using a

similar procedure to the neighbor expansion of phase 3. The top 3

rule sets of size K are used as seed rule sets. The candidate rule

sets of size K+1 that are considered in phase 4 are the rule sets

that share K, K−1 or K−2 rules in common one of the best 3 rule

sets of size K. The maximum number of rule sets evaluated is

constrained by the parameter p4.mrns. If for some K’ there are no

valid rule sets that satisfy the msa requirement, then the algo-

rithm stops searching for larger rule sets, and the maximum K is

determined to be Kmax = K’−1.

Determination of core RS and generalized core rules
In general, larger rule sets perform better than smaller rule sets

because the samples in D have more assignment opportunities. On

the other hand, larger rule sets may be more likely to reflect noise

in the dataset rather than true biological signal, i.e., over-fitting.

Fixing the size of the rule set enforces competition between rules

based on the number of events covered per sample, the passenger

rate of events covered and the number of samples covered. To miti-

gate the impact of over-fitting, CRSO requires that every rule in a

rule set is assigned to a minimum number of samples, denoted as

the msa parameter, for minimum samples assigned. The default

msa parameter is 3% of the population. Rule sets that do not satisfy

the msa threshold are automatically assigned an objective function

score and coverage of 0, i.e., they are discarded.

The four-phase procedure results in a list of best rule sets of size

K, for K ∈ {1. . . Kmax}, where Kmax is the largest K for which a valid

rule set exists and satisfies the msa threshold. Typically, Kmax is

much lower than 40, as large rule sets are constrained by the msa

requirement as well as the requirement that rule sets do not contain

family members, i.e., are valid. The goal of CRSO is to find the rule

set that achieves the best balance of objective function score,

sample coverage and rule set size, which is called the core rule set.

The core rule set is defined to be the smallest of the best rule sets of

size K that achieves 90% of the maximum coverage and perfor-

mance. Using a fixed threshold is a heuristic for automatically

choosing a core rule set. In some cases, closer inspection of the

results and the convergence curves of performance and coverage

can help identify a better choice if a clear plateau is observed. To
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evaluate the stability of the core rule set and automatically identify

a more robust set of rules, 100 iterations of a subsampling proce-

dure are used to identify generalized core rules (GCRs).

In each iteration, a subset of samples is randomly chosen without

replacement, and a core rule set is determined by evaluating the top

100 phase 4 rule sets for each K. Instead of using a fixed subset size,

the subset size of each iteration is uniformly drawn between 67 and

85% of the full dataset, and the core coverage and performance

thresholds are both uniformly drawn to be between 85 and 99% of

the maximum coverage and performance attained by any rule set

over the subset. The purpose of randomizing the subset sizes and

coverage/performance thresholds in each iteration is to encourage

identification of rules that are robust to different experimental

conditions. The full set of GCRs consists of all rules that appear in

any of the subsampled cores. After performing 100 iterations, a con-

fidence score is determined for each GCR to be the frequency of

inclusion in the subcore iterations. The subset of GCRs that have

confidence levels above 50 by definition cannot contain family

members, and are a valid rule set. We refer to this rule set as the

consensus GCR (con-GCR). The consensus GCR represents a robust

estimate of the highest confidence rules for a given dataset that are

most likely to reflect true biological cooperation.

In some cases, there can be a lack of high confidence GCRs, typi-

cally occurring when the core rule set contains many rules with

many events. In such a situation, there may be sets of 2 events

(duos) or 3 events (trios) that recur often within the subcores of

each iteration. We calculate generalized core duos (GCDs) and

generalized core trios (GCTs), to better identify recurrent pairwise

and three-way synergies. Generalized core events (GCEs) are also

calculated and represent the frequency of individual events being

part of subsampled core rule sets.

CRSO reports from 19 TCGA cancers
The CRSO reports in the Datasets EV1–EV19 provide a detailed

presentation of the CRSO findings for all 19 TCGA cancer types.

Each report contains seven sections, which we prefix with SR to

indicate that we are referring to sections in the supplemental

reports. SR Section 1 presents a basic overview of the dataset and a

summary table of the parameters. Default parameter values

(Appendix Table S2) were used for all cancers, with 2 exceptions: In

kidney renal clear cell carcinoma (KIRC), the rule coverage thresh-

old and msa were reduced to 1.4% because of sparsity of eligible

rules, and in colon adenocarcinoma (COAD) the max.nrs.p2 and

max.considered.p2 were increased to 106 and 107, respectively,

because many of the top phase 1 rules were family members leading

to a sparsity of valid phase 2 rule sets. SR Section 2 shows heatmaps

of the binary matrix D and the penalty matrix P for the 20 most

frequent events. SR Section 3 presents a summary of the K best rule

sets identified by the four-phase procedure. SR Section 4 presents a

deeper dive into the core rule set. SR Section 4.1 is a table showing

different characteristics of the core rules, including the coverage,

phase 1 importance rank, and single-rule performance. SR

Section 4.2 shows an event-by-rule breakdown of the core rule set.

SR Section 4.3 shows heatmaps of P before and after assignment to

the core rule sets. This is a visual representation of how well the

rule set accounts for observations in D. SR Section 5 presents the

generalized core analysis, consisting of GCRs, GCTs, GCDs, and

GCEs, and SR Section 6 is a table summarizing the core RS rules and

the consensus GCRs, similar to Table 2. SR Section 7 is a dictionary

of copy number events.

The objective function scores and coverages converged at dif-

ferent rates for different cancer types (Appendix Fig S8). To evaluate

the impact of phases 3 and 4, we compared for each tissue the

performance of the core RS post-phase 2 with the performance of

the final core RS and with the performance of the core RS post-

phase 3. The mean increases in J and coverage from phase 2 to

phase 4 were 14 and 8.3%, respectively (Appendix Fig S9A). The

mean increases in J and coverage from phase 2 to phase 3 were 1.2

and 0.6%, respectively (Appendix Fig S9B). Note that the core RS

were identical post-phase 3 and post-phase 2 in 10/19 cancer types.

Simulation methods
In order to evaluate whether CRSO could identify the ground truth

rule sets, ten simulation datasets consisting of ntr true rules were

produced for each ntr ∈ {2. . . 20}, for a total of 190 simulations.

To challenge CRSO to solve problems similar to those presented by

the real data, the passenger probability distributions, rule size distri-

bution, and ground truth rule set network structure were informed

by the characteristics of the 19 TCGA input datasets, and the CRSO

results for these cancer types.

The size of each synthetic rule was sampled from a distribution

of rule sizes, ds
!

of all 194 aggregated consensus-GCRs, so that each

synthetic rule consisted of 2, 3, 4, 5, or 6 events with approximate

probabilities 73, 19, 4, 3, and 1% respectively. The distributions of

events across the con-GCRs in the TCGA datasets were non-uniform,

with some events being part of many rules and many events being

part of a few rules. We therefore defined an event inclusion proba-

bility vector, plnc
!

, by averaging over the distribution of the ordered

event inclusion fractions over the set of cancer types that comprise

between ntr−5 and ntr+5 consensus GCRs, and then normalizing to

sum to 1. The following procedure was used to construct a simu-

lated dataset of size ntr:

1 Determine the ground truth rule set RSGT:

a Make rule 1:

i Choose number of events in rule, rs, by sampling from ds
!

ii Sample rs distinct events from the pool of events using

probabilities plnc
!

b For rule j in 2 through ntr:

i Make a random rule as in step 1

ii If rule j is distinct and not a family member with any prior

rules proceed. Otherwise restart rule j.

2 Assign samples to rules in RSGT and populate a matrix of true

drivers, denoted by D0:

a Determine the rule coverage distribution for the rules in RSGT
such that each rule is assigned to at least 3% of samples. First

each rule is assigned probability 3% and then the remaining

probability is added by randomly partitioning the excess prob-

ability interval.

b Determine a fraction of rules uniformly sampled between 0.01

and 0.20 that will be assigned to the null rule.

c Initialize 100 × 400 matrix D0 representing the ground truth

drivers in each sample. Assign samples to rules or to the null
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rule according to the above probabilities. D0 (i, j) = 1 if and

only if sample j is assigned to a rule containing event i. Other-

wise D0 (i, j) = 0.

3 Add noise sampled from empirical distributions to populate

simulation matrix D and P:

a Determine event-specific passenger rates, pe
!
, by sampling with

replacement from the pool of TCGA passenger event rates.

The pool of TCGA passenger event rates consisted of the

pooled frequencies of all non-driver events in each cancer

type, where driver events are any event that is part of at least

one con-GCR. Passenger event rates below 0.02 were excluded

from the pool in order to make the simulation more challeng-

ing to CRSO.

b Determine sample adjustment factors, as
!
, from the pool of

TCGA passenger sample adjustment factors. TCGA passenger

sample adjustment factors for each cancer type were defined

as the fraction of non-driver events in each sample normalized

across the tumor population to have mean 1.

c Define a passenger probability matrix, Pprob, so that Pprob(i, j) =
min(pe(i) ∗ as(j), 0.95).

d Use Pprob to populate D and P. For entry (i, j):

i If D0 (i,j) = 1, then D(i,j) = 1 and P(i,j) = −log(Pprob(i,j)).
ii If D0 (i, j) = 0, then generate a uniform random value u.

If u ≤ Pprob(i, j), then D(i, j) = 1 and P(i,j) = −log
(Pprob(i,j)). If u > Pprob(i,j), then D(i,j) = 0 and P(i,j) = 1.

CRSO was applied to each simulation with the default parameters

(Appendix Table S2), except for a few modifications to reduce

computational cost. The p1.ntpr was reduced from 40 to 20, max

rule sets evaluated for phases 2, 3, and 4 were reduced by 50%, and

the number of GC iterations was reduced from 100 to 40. The upper

limit for the max library size was removed. The starting rule library

sizes for the 190 simulations ranged from a low of 192 rules to a

high of 5,447 rules, and were between 350 and 2,000 for 182 out of

190 simulations (Appendix Fig S4).

Phase 1 performance analysis and parameter optimization
We evaluated the performance of phase 1 on the simulations in

order to assess whether alternative parameter choices would

improve CRSO’s overall performance. Phase 1 prioritizes rules

based on their contribution to random rule sets, and is critical for

reducing the search space of possible rule sets, which would other-

wise be computationally intractable. This is an inherently heuristic

strategy whose performance is mathematically difficult to evaluate

without knowledge of the ground truth rule set. A phase 1 score

was defined for each of the 190 simulations to quantify the similar-

ity of the phase 1 ranking to the maximum possible ranking, corre-

sponding to all true rules in the top ntr positions:

Given a rule library of RL rules, the phase 1 results can be repre-

sented as a ranking of rules, denoted by rp1
!
. As a baseline for

comparison, we order the rules in the rule library according to

decreasing coverage across the population, which we denote by

rcov
!

. Given knowledge of the ground truth rule set and a ranking, r
!
,

we define y( r
!
, x) to be the fraction of ground truth rules identified

by position x, for all x ∈ {1 . . . RL}. We then define

AUCð r!Þ¼∑yð r!,xÞ from x = 1 to xmax, where xmax is the minimum

between 50 and the position of the last ground truth rule within

rcov
!

. The maximum possible AUC corresponds to a ranking in which

all ntr true rules are ranked in the top ntr positions, and we denote

this by AUCmax. The AUC of the frequency ranking is defined to be a

baseline AUC: AUC0 = AUC(rcov
!

). Finally, we define the phase 1

score of the ranking rp1
!

to be Sp1(rp1
!
) = (AUC(rp1

!
) − AUC0)/

(AUCmax − AUC0). In case AUC0 = AUCmax, we define Sp1(rp1
!
) =

AUC(rp1
!
)/AUCmax. This happened only 3 times in the 190 simula-

tions, and ntr equaled 2 for all 3 cases.

The mean phase 1 score was more than 0.94 for all ground truth

rule set sizes, indicating that phase-1 rankings successfully priori-

tized the ground truth rules (Appendix Table S4). Phase-1 rankings

were far superior at prioritizing ground truth rules compared to

coverage or SJ rankings for all ntr. In 186 out of 190 (0.98) total

simulations, 100% of ground truth rules were identified within the

top 40 rules post-phase 1. By comparison, this was the case for 30

simulations (16%) using coverage rankings and for 19 simulations

(10%) using single-rule performance (SJ) rankings. On average,

99.8% of true rules were identified among the top 40 phase 1 rules,

compare to 64% for coverage rankings and 58% for SJ ranking (see

Appendix Table S4 for breakdown by ntr).

The simulation results suggest that the phase 1 procedure is very

effective at prioritizing ground truth rules using the default parame-

ters of p1.ntpr = 20 and p1.cs = 0.25. In order to understand how

the parameter choices impact the phase 1 performance, we

performed phase 1 over a grid of parameter values for each of the

190 simulations. Specifically, we evaluated phase 1 using a grid of

parameter pairs (p1.cutsize, p1.ntpr).

First we compared the performance of p1.cutsize = 1, corre-

sponding to all of the rules ranked in a single pass through, versus

p1.cutsize = 0.5, corresponding to 50% of rules being eliminated in

each iteration. We found that p1.cutsize = 0.5 was statistically supe-

rior over the 190 simulations for each p1.ntpr ∈ {1, 2, 10, 20, 40}.

We also found that was p1.ntpr = 10 is significantly better than

p1.ntpr ≤ 2 in for all p1.cutsize values. There was no statistical

performance difference between p1.ntpr = 10 and either p1.ntpr =
20 or 40 for any cut size. There was no statistically significant dif-

ference between p1.cutsize pairs (.50, .25), (.25, .10), or (.50, .10)

for any p1.ntprs > 1. There was no statistical difference between

(p1.cutsize = 0.5, p1.ntpr = 10) and (p1.cutsize = 0.1, p1.ntpr =
40). We can conclude that a pairing of (p1.cutsize = 0.5, p1.ntpr =
10) is optimal since no benefit is gained by reducing p1.cutsize or

increasing p1.ntpr, both of which incur a computational cost.

Accordingly, we conclude that the parameters used in the simula-

tions and in the TCGA experiments were sufficient to optimize

phase 1 performance, but the same level of performance could have

been achieved using less computation.

Robustness of CRSO to missing features
The rules that can be identified by CRSO depend on the collection of

events included in the inputs. In order to test the robustness of

CRSO to the exclusion of important features, CRSO was applied to

TCGA melanoma data excluding a single event, for each of the top

15 events. The results were compared to the results from the full

dataset. We calculated several metrics for each event excluded.

First, we summarize the excluded event E by calculating:

(i) frequency in the population, (ii) percentage of GCDs containing

E, and (iii) percentage of weighted GCDs, calculating by summing
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over the confidence scores of the GCDs that contain E and dividing

by the sum of all GCD confidence scores. These are reflections

of the event’s importance to the full results, and can be thought

of as unavoidable losses in the case of missing events (see

Appendix Table S5, columns 2–4).
Next we calculate the agreement of the smaller dataset (i.e.,

dataset with event excluded) with the full dataset results that do not

contain the event. Consider the truth to be the full input results.

Eligible duos are those duos identified in the full results that do not

contain E, since it is possible for these duos to be identified in the

event-excluded results. Retention is the percentage of eligible duos

from the full results that are also identified in the event-excluded

results. Weighted retention accounts for the confidence scores of the

retained/not retained rules, and is calculated by summing over the

confidence scores of all retained duos and dividing by the sum of

the confidence scores of all eligible duos.

Rules or duos that are missing from the full dataset can be gained

in the smaller dataset results. Considering the full input results to be

the ground truth, these gained duos are false positives. The false-

positive rate (FPR) for each exclusion experiment is the percentage

of smaller dataset results that were identified in the full dataset

results. Weighted FPR is the summed confidence scores of the

gained duos divided by the summed confidence scores of all duos

identified by the smaller dataset.

The melanoma experiment found that weighted retention was

over 93% for all exclusion experiments (Appendix Table S5). The

weighted FPR was below 10% for all events except for CDKN2A-MD

and NRAS-M, both of which are high frequency, highly included

events. Overall, the results suggest that if a driver event is excluded

from the inputs, the duos/rules that do not contain the event will

generally be comprehensively captured in the incomplete dataset.

The rate of false associations caused by the event exclusion is gener-

ally small for most events, but can be large if the excluded event is

frequent and part of many duos/rules in the full dataset.

Criteria for common event comparison with SELECT
Sixteen cancer types were included in the comparison between

CRSO and SELECT (Mina et al, 2017). COAD and READ were

excluded from the side-by-side comparison because they were

analyzed as a single colorectal cancer type in Mina et al. Pancreatic

adenocarcinoma (PAAD) was excluded because it was not analyzed

in Mina et al. For each cancer type, a set of common mutations was

identified as the intersection of the SELECT pan-cancer mutations

with the cancer-specific mutation events identified by dNdScv that

were used in the CRSO analysis. CDKN2A mutations were excluded

from the common set of mutations in cancers for which CDKN2A

was identified as hybrid mutation/deletion in the CRSO analysis. In

these cancers, large coverage discrepancies were observed in duos

involving CDKN2A because SELECT encoded CDKN2A mutations as

separate events from CDKN2A copy number loss. Common event

duos for each cancer were defined to be the union of GCDs identi-

fied by CRSO and the co-occurrent pairs identified by SELECT for

which both events were in the common set of mutations.

Frequently used acronyms

• CRSO Cancer Rule Set Optimization.

• TCGA The Cancer Genome Atlas.

• SCNV Somatic copy number variation.

• SMG Significantly mutated gene.

• dNdScv Name of method for identifying significantly mutated

genes.

• GISTIC2 Name of method for identifying significant copy number

variations.

• GCR Generalized core rule.

• GCT Generalized core trio.

• GCD Generalized core duo.

• GCE Generalized core event.

• GC Generalized core (sometimes used in other contexts such as

GC iterations).

• con-GCR Consensus generalized core rule, i.e., GCRs with confi-

dence > 50%.

• RS Rule set.

• MSA Minimum samples assigned. All rules in a rule set must be

assigned to at least msa samples.

• NTR Number of true rules. Used to describe ground truth rule set

size of simulation.

• PFI Progression-free interval.

TCGA acronyms:

• SKCM Skin cutaneous melanoma.

• LIHC Liver hepatocellular carcinoma.

• COAD Colon adenocarcinoma.

• READ Rectum adenocarcinoma.

• LGG Low-grade glioma.

• HNSC Head and neck squamous cell carcinoma.

• BLCA Bladder urothelial carcinoma.

Data availability

• The CRSO R code is available at https://github.com/mikekle

insgit/CRSO/

• The preprocessed TCGA datasets that were used in this study are

available at https://github.com/mikekleinsgit/preprocessed-crso-

tcga-datasets/. The simplified tissue-specific and pan-cancer

penalties are available in the file “mean_tissue_penalties.RData”

Expanded View for this article is available online.
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