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Abstract

alternative modelling frameworks.

information on the variability of the system.

Background: Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology
models; however, little has been done in this context to compare the efficacy of these methods. The majority of
current systems biology modelling research, including that of auxin transport, uses numerical simulations to study
the behaviour of large systems of deterministic ordinary differential equations, with little consideration of

Results: In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical
simulations and stochastic numerical simulations. Although the three approaches in general predict the same
behaviour, the approaches provide different information that we use to gain distinct insights into the modelled
biological system. We show in particular that the analytical approach readily provides straightforward mathematical
expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide

Conclusions: Our study provides a constructive comparison which highlights the advantages and disadvantages of
each of the considered modelling approaches. This will prove helpful to researchers when weighing up which
modelling approach to select. In addition, the paper goes some way to bridging the gap between these
approaches, which in the future we hope will lead to integrative hybrid models.

Background

Biological systems are naturally multiscale and to under-
stand their behaviour fully we must understand the
interaction of a number of processes that may occur on
diverse temporal and spatial scales. To gain insight into
such multiprocess and multiscale systems, there is a
range of modelling frameworks that could potentially be
employed. Different modelling approaches serve to high-
light certain aspects of a biological system, and which
modelling approach is most appropriate depends on the
biological questions that are being addressed, as well as
on the available data that could be used to calibrate or
validate a given model. In this paper, we present several
modelling approaches and show how these can be used
to gain understanding of a realistic multiscale systems
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biology problem. We compare the different modelling
approaches to each other and discuss their applicability.
To compare the modelling approaches, we focus on a
particular case study: the transport of the hormone
auxin through a file of plant cells. Auxin plays a major
role in many aspects of plant growth and development
[1]. It moves through the plant in a polar manner due
to non-uniform spatial distributions of active influx and
efflux carriers on the cell membranes [2], and the result-
ing auxin distributions influence a wide range of pro-
cesses, including organ initiation [3-6], vein formation
[7-12] and gravitropism [13]. Modelling auxin transport
is thus an active research area in plant systems biology.
The models are inherently multiscale, as cell-scale pro-
cesses lead to tissue-scale phenomena. To date, the
majority of modelling in this area computes solutions by
simulating large systems of deterministic ordinary differ-
ential equations [2-9,11-17], and there are relatively few
examples of alternative modelling techniques [18-20].
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This paper complements such previous work by high- After summarising the biological abstraction which
lighting the benefits of using multiple modelling techni-  forms a common basis for the models presented in this
ques to gain a more comprehensive understanding of a  paper, we describe a stochastic computational model
biological system, in this case auxin transport in plant  based around a P system framework. Here the number
tissue. of auxin molecules in each compartment evolves
Mathematical modelling is routinely used to study bio-  according to rules that move molecules from one com-
logical phenomena quantitatively, often by describing  partment to the next. We then describe a deterministic
the dominant physical processes using systems of mathematical model in which the auxin concentrations
coupled differential equations and solving these govern-  are described by a system of coupled ordinary differen-
ing equations using analytical and numerical methods; tial equations. In the deterministic case, we produce two
such techniques have been used to study a diverse range  solutions: i) analytical solutions, derived using multiscale
of biological processes, including population dynamics, asymptotic approaches, and ii) numerical solutions, as is
pattern formation, neuron firing and physiological flows  typical in current auxin-transport modelling.
(see [21] and [22] and references therein). Mathematical
models have denotational semantics in that they repre- Methods
sent relationships between quantities as systems of Biological Abstraction
equations. In contrast, computational, or executable, To investigate the benefits of deterministic and stochas-
models have operational semantics, and define rules that  tic modelling approaches, we focus on a model of auxin
describe how the modelled system moves from one state  transport. Specifically, we model a standard experiment
to the next [23]. Computational models are executed in  that is used to determine auxin velocities: radio-labelled
the sense that, starting from an initial state, a procedure  auxin is added to a source agar block at one end of a
(in our case a stochastic simulation algorithm) deter- segment of stem tissue, auxin then travels through the
mines the next reaction to apply. This reaction is then  stem segment, and experimentalists measure the amount
applied, giving a new system state, which is then used of auxin collected in a final agar block at the other end
by the simulation algorithm to determine the next rule of the stem segment (see [25-27] and references
to apply, in an iterative procedure. Stochastic processes, therein).
unlike their deterministic counterparts, involve an inde- As shown in Figure 1, we model the stem segment as
terminancy in the evolution of the state of the system. a single two-dimensional line of N cells, where each cell
For large numbers of molecules, this stochasticity may contains a cytoplasm (with length / and width w), and
be averaged out, giving what appears to be a determinis- there is a layer of apoplast between neighbouring cyto-
tic process; however, when a small number of molecules  plasms (which has thickness A and width w). Hence the
is involved, stochastic effects become evident, and in  total length of the stem segment is L = NI + (N + 1)A.
such cases the system may behave in a markedly differ- The model assumes that the auxin concentration within
ent way. The inherent noise present in all biological sys- each compartment is uniform, which is a reasonable
tems is explicitly modelled in discrete stochastic models  assumption given the small size of the compartments
and can have profound effects on system dynamics, pro- and the rapidity of auxin diffusion.
ducing behaviour, even for large numbers of molecules, We suppose that the two agar blocks are rectangular,
which is markedly different from that predicted by con-  with length L; and width w. We denote the number of
tinuous deterministic models; see, for example, [24]. auxin molecules in the source agar block by §”(¢) and

Source agar block Stem segment Sink agar block
Lg L L,

S() a) Plal) Plav 7 7 7 F(t)

o~ 7N

ao(t) ar(t) Apoplasts  Cytoplasms

— = Efflux carriers

Figure 1 Model of a single file of cells. In the model, auxin molecules are initially in the source agar block, travel through the stem segment
and are collected in the final agar block. We model the stem segment as a single two-dimensional line of N cells for simplicity, and suppose
that efflux carriers are located on the downstream face of each cell membrane. We solve for the auxin concentrations in the two agar blocks,
the N cytoplasm compartments and the N + 1 apoplast compartments.
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the number in the collecting agar block by F’(¢), where
the superscript # emphasises that these quantities are
numbers of molecules; the concentrations (i.e. number
per unit area) in the two agar blocks are then given by
S(t) = S"(&)/(Lsw) and F(¢) = F'(t)/(Lsw), respectively. We
suppose that auxin diffuses within the agar blocks with
diffusion coefficient D. Auxin in the source agar block
diffuses into the adjacent root apoplast region; it then
travels through the line of N cells and diffuses from the
final apoplast region into the collecting agar block. We
denote the number of molecules in the cytoplasm by
c'(t) fori=1,2,., N, and the number in the adjacent
apoplast by aj(t) forj = 0, 1, 2, ... N, with the corre-
sponding auxin concentrations given by c¢;(t) =
c!'(t) /w) and a,(t) = aj(t)/(Aw) (see Figure 1).

Auxin exists in planta in either an anionic or a proto-
nated form. Following previous auxin-transport models,
we assume that auxin molecules rapidly associate or dis-
sociate, so that the proportion of these two forms are in
equilibrium and are determined by the pH of the region
in which it is located and by the auxin dissociation con-
stant, pK. Using the subscripts ¢ and a to refer to the
cytoplasm and apoplast respectively, the fractions of
protonated and anionic auxin are given by [14]

1
Protonated A =— (1)
" 1410PHPK
Anionic A} =1+ A;r forj=a,c. (2)

In the line of cells, auxin moves between the apoplast
and cytoplasms by crossing the cell membrane. The flux
of protonated auxin across the membrane, [z is pas-
sive, whereas the flux of anionic auxin is mediated by
PIN efflux carriers that are present on the downstream
face of each cell membrane (see Figure 1); following
[13], we model the anionic flux across the cell mem-
brane, /p;n, using Goldman-Hodgkin-Katz theory (see
[21] for details). Thus, the components of the flux from
the cytoplasm c; to the apoplast a; are given by

L aif :Pdiff(A;rCi —A;ai)r

3)
Jpin = Ppin (Bcci - B,a; ),
where
Bc = q(_(p)Ac_/ Ba = q(¢)A;’
_ ¢ (4)
q(9) b

and Py is the membrane permeability of protonated
auxin, Ppyy is the membrane permeability of anionic
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auxin, and the dimensionless constant ¢ = -FpV/RT
where Fp is the Faraday constant, V is the membrane
potential, R is the gas constant, and T is the
temperature.

At time ¢ = 0, all the auxin molecules are in the source
agar block; we prescribe §”(0) = C, and let ct(0) =
aj(0) =F'(0)=0fori=1,2,..Nandj=0,1,2,..N.
We model a closed system, that is, we assume that, dur-
ing the subsequent auxin movement, no auxin molecules
enter or leave the system. Table 1 summarises estimates
of the model parameters based on values reported in the
biological literature; these are discussed further in the
“Biological Parameter Estimates” section of Additional
file 1.

Stochastic Computational Model

To obtain stochastic solutions, we use a multi-com-
partment stochastic P system framework [28]. Indivi-
dual molecules of auxin are modelled as objects
which move between compartments according to a
set of rules associated with each compartment. Com-
partments of the same type have the same set of rules
associated with them, and each rule has an associated
stochastic reaction constant k which determines the
rate at which the rule transports molecules (see Table
2). We define rules for auxin diffusion between
source/collecting blocks and the apoplast, membrane
diffusion from apoplast to cytoplasm, and carrier-
mediated efflux from cytoplasm to apoplast. These
reaction constants are related to the parameters given
in Table 1 via

Table 1 Biological parameter estimates.

Parameter Description Value
/ cytoplasm length 100 um
w cytoplasm width 10 um
L tissue length 2x10°m
L agar-block length 2x10%m
A apoplast thickness 0.5 um
P membrane permeability 56%x 107 ms’!
Powy PIN permeability 33%x10°ms”
D diffusion coefficient 67 x 10" m? <!
pH. cytoplasm pH 7.2
pH, apoplast pH 53
pK dissociation constant 48
v cell membrane voltage -0.120 V
temperature 29515 K
Fo Faraday constant 96485.3399 Cmol”!
R gas constant 8314472 K' mol”

Parameters used for both the stochastic and deterministic models.
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Table 2 Stochastic model rules.

ID rule process

source agar block (S)

R A A diffusion

collecting agar block (F)

B

R, Ao A, diffusion

cytoplasms (c))

R3 A, E)Aﬂ( PIN transport
apoplasts (a)

R4 A, ’;‘ACM membrane diffusion

Rs A, f}AQ membrane diffusion

Re A, LA PIN transport

R, A, L‘AS diffusion

Re Aa, L“AF diffusion

Molecules A of auxin are transported from compartment i to a neighbouring
compartment at rates k which depend on the type of transport process. For
apoplasts, rules R, and Rs are assigned to apoplasts bordered on both sides
by cytoplasms. Rule R, replaces rule Rs for the first apoplast, and Rg replaces
R, for the final apoplast, which are bordered by the source and collecting
agar block respectively.

ky = L diffusion form agar blocks to apoplast,
Lg(Lg+A)
k, = BCPTPIN PIN transport,

A ;," Pyiff 5
ky = — membrane diffusion, ®)
k, = L, diffusion from apoplast to agar blocks,

AMLs+2)
ks = Bap%, PIN transport.

(further information and derivations can be found in the
“Model Derivation” section of Additional file 1). We note
that in this framework we set the small parameter A to
zero to enable efficient execution. The computational
model is executed using a novel multi-compartment
Monte Carlo stochastic algorithm using the mcss simula-
tor, which is part of the Infobiotics workbench, a freely
available software suite for designing, simulating and ana-
lysing multiscale executable systems and synthetic biology
models [29]. Stochastic algorithms and software support-
ing multiple compartments have been developed by sev-
eral research groups [30-33]. A key difference between
these algorithms and our software suite is that our tools
support the rapid prototyping of models by facilitating the
abstraction of commonly occurring motifs (e.g. regulatory
or signalling motifs [34]) with model templates and mod-
ules. This, coupled with the facility to explicitly specify a
tissue geometry, permits the seamless exploration of “what
if “ scenarios during model building. For example, to
reproduce the behaviour of a mutant which does not
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produce a particular protein, all that needs to be done is
to set the rate constant of the reaction producing the pro-
tein to zero. Or, for example, to remove a particular regu-
latory mechanism, we can simply remove the module
representing this regulatory mechanism from the list of
modules employed by a particular compartment. The
reader is referred to [28] for an in-depth description of the
stochastic simulation algorithm we employ, which we
briefly summarise here. Essentially, the simulation algo-
rithm determines, within each of the simulated compart-
ments, which rule to apply next and when to apply it. This
highlights the key difference between mathematical and
computational (or algorithmic) models - mathematical
equations describe the change in the values of variable as a
system moves from one state to the next, while computa-
tional models expose how and why this state change
occurs [23,35]. Each run of the simulation gives one possi-
ble trajectory of the model through state space. Hence, as
well as using individual runs to examine the reasons for
state changes, we can execute the model a number of
times to estimate the average system behaviour, analyse
the system’s variability, and identify potential extreme
behaviours.

Additionally, the computational model enables model
checking, the formal verification of model behaviour,
which allows the identification of general biological
principles which underlie the observed behaviour of the
model [36-39]. Using algorithms such as those presented
in [40], the computational model also facilitates model
parameter and structural optimisation, allowing incom-
plete biological information regarding, for example,
model parameter settings and structure, to be estab-
lished automatically.

Deterministic Mathematical Model

In the deterministic framework, the auxin concentration
in each region is governed by the following system of
equations

ds _ 2D(a, - S)

’ 6
dt  LJ(L;+2) (6)
— P,
%: 2DIS o) | T (pte, - Ajay) (7)
t AL, +A) A
S 2 2T (47 (s +a) - 2476)

P
+%N(Baai - Bcci)/
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da; Py
SIS (At + cj) - 2400)
b )
+ P}{N (Becj—Baaj),

dan _ 2D(F-aN)
dt ALg+2)

P .
+ diff (Aley —Agay)
(10)
+PP%(BCCN _BaaN)'

dp _ 2D(an-F)

At~ Ly(Ls—2) (1)

fori=1,2,..,Nandj=1,2,.., N - 1. The dynamics
described by (6-11) are analogous to the reactions in (5),
as shown in the “Model derivations” section of Additional
file 1. We assume that initially all the auxin molecules are
in the source agar block, therefore S = C/Lw, ¢; = a; =
F=0att=0fori=1,2,..Nandj=0,1,2,..N.

We now use asymptotic methods to derive an analyti-
cal solution for these governing equations, (6-11): these
explicitly contain at least two distinct length scales,
namely the cell length scale, /, and the (much larger) tis-
sue length scale, L = NI + (N + 1)A, - it is this multi-
scale aspect that we exploit in deriving a continuum
formulation. For comparison, we also solve the determi-
nistic governing equations numerically using Matlab’s
ordinary differential equation solver, ode45. To obtain
an analytical solution, we consider the dynamics on the
time scale of active transport the length of the tissue,
L/Ppin, and nondimensionalise using

1. (12)

C o~ . .
S,F,a;,c;)=— (S,F,a;,c;), L=
(S Fape) = GiFae) 1=p

The model then depends on the dimensionless para-
meters

= l;l 7 i = %/ ,I\Js = %/
(13)
By = La0 fy - DL
1, ’
PPIN PPINL.ZS

To make analytical progress, we construct an asympto-
tic solution in the biologically appropriate limit in which
€ is small, i.e. the length scale L of the tissue is much lar-
ger than that of a single cell, / + A, expanding the concen-
trations as standard perturbation series. Based on the
biologically relevant parameter estimates in Table 1, we
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assume that the relative length of the agar blocks, ﬁs =
O(1) as € — 0", and rescale the small parameters
ﬂ.=622._, Dzeﬁ, A;r =e;ﬁz,

. _ (14)
Ba =€B(l Pdlff =6Pdiff’

where 2,D,A},B, and ﬁdiff are O(1) as ¢ = 0*. In
the stem segment, the result is a continuum limit. Let-
ting x measure the length along the tissue, such that
x = €i, we consider ¢;(£) = c(x, t), a;,(t) = a(x, t), where
x = 0 corresponds to the upper face of cytoplasm i = 1.

Based on these assumptions, we can derive formulae
for the leading-order auxin concentration in each com-
partment (see the “Derivation of Asymptotic Solution”
section of Additional file 1 for details). We identify two
time scales. On the transport time scale, { = O(1), the
source-agar-block concentration does not deplete signif-
icantly, § =~ 1, and auxin travels through the stem seg-
ment with a defined front according to a wave equation,
with effective velocity

i
_ AgaBcPaiff

R E— (15)
(2A4 Pdiff +Ba)

Veﬁ

The sink-agar-block concentration is small, and given
by

PR 2¢DA}YDy;
B(i) = aldiff

- 1
t

- (16)
Veff

2i55+A21_1_)diff

On a longer time scale, {= ¢ = O(1), the cytoplasm
concentrations in the stem segment are uniform, and
the agar-block concentrations are given by

. 2DATP, 1l
S(t)= exp —# ,
2LD + A} Py )
. 2DATP, ot
FE) = 1-exp| —22ePayt
2LD + APy

therefore, diffusion within the agar blocks determines
the rates at which the source-agar-block concentration
depletes and the sink-agar-block concentration increases.

Results and Discussion

Auxin Concentrations

For both the deterministic and stochastic frameworks,
the relative auxin concentrations in the source agar
block, collecting agar block, cytoplasm and apoplast
regions are shown in Figure 2. For the stochastic model,
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Figure 2 Predicted auxin concentrations from the deterministic numerical, deterministic asymptotic and stochastic model solutions.
Concentrations are given relative to the initial source concentration C/(Lsw). For the stochastic solutions, the mean concentrations are calculated
over 10,000 runs, and 95% confidence intervals are given as grey ranges.
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we show both the mean concentrations and the 95%
confidence intervals (which are calculated using 10,000
runs). To compare quantitatively the solutions of the
deterministic and stochastic models, we compute the
time taken for the agar-block concentrations to reach
half their steady-state levels. These results, given in
Table 3 and Figure 2, demonstrate excellent agreement
between the three modelling approaches.

Table 3 Stochastic and deterministic model steady-state
concentration times.

model source (min) sink (min)
deterministic (numerical) 206.06 213.13
deterministic (analytical) 206.21 206.21
stochastic 206.28 + 2.88 21363 + 2.88

Time taken to reach half the steady-state concentrations for the deterministic
and stochastic models. 95% confidence intervals are also given for the
stochastic model.

Computational models, because of their algorithmic
specification, are amenable to model checking. Model
checking allows formal verification that a model satis-
fies a prescribed property. Properties are propositions
about the state of the model, for example, the amount
of species A that reaches a level x. For the computa-
tional model, we used the Infobiotics workbench to
perform probabilistic model checking and formally
determine the probability of the agar-block concentra-
tions reaching half their steady-state levels. Due to
computational constraints, we check a reduced version
of the computational model (see the “Model Checking”
section of Additional file 1 for details). Figure 3 shows
that, with 95% confidence, after 215 minutes both the
agar-block concentrations will have reached half their
steady state, and that the source-agar-block will reach
its steady-state concentration slightly before the
collecting agar block. To characterise when the deter-
ministic and stochastic models agree and differ, we
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Figure 3 Model checking results for the stochastic
computational model. The abscissae show simulation time and

the ordinates the probability that half the steady-state concentration
is reached.

subtract the concentration predicted by the analytical
deterministic model from the mean concentration pre-
dicted by the stochastic model and divide this value by
the standard error given by the stochastic model; the
predicted concentrations are then considered to differ
significantly if the absolute value of the result is
greater than two, that is, if the difference between the
two predicted concentrations is greater than two stan-
dard errors. Figure 4 shows that there is no significant
difference between the source concentrations predicted
by the deterministic and stochastic models. In contrast,
in the collecting agar block there is a significant
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Table 4 Stochastic model concentration variability.

initial concentration

0.1 nM 1 nM
source 0.00184 + 0.00137 0.00059 + 0.00043
sink 0.00187 + 0.00135 0.00059 + 0.00043
cytoplasm 0.00006 + 0.00006 0.00002 + 0.00001
apoplast 0.00003 + 0.00003 0.00001 + 0.00001

Variability of concentrations observed in the stochastic computational model
for different initial concentrations. Each column gives the mean and standard
deviation of the standard deviation of auxin concentrations observed.

difference for the initial 196 seconds, with a maximum
difference of six standard errors. The deterministic
approach takes the concentrations to be continuous
while the stochastic model considers individual mole-
cules. As a result, for the first 138 seconds, the sto-
chastic model typically predicts a zero concentration,
whereas the deterministic model predicts a small posi-
tive concentration. As shown in Figure 4, for the
remaining time, although not significantly different,
the stochastic model consistently predicts larger con-
centrations than the deterministic one.

To assess how the initial source concentration affects
the variability of the auxin concentrations, we performed
10,000 runs of the stochastic computational model with
initial concentrations of 0.1 nM and 1 nM (see Table 4).
The mean variability and its standard deviation in all
compartment types decreases by around 69% as the
initial concentration is increased from 0.1 nM to 1 nM.
Theoretically, the amount of noise in a stochastic simu-
lation is of the order of /5, where n is the number of
molecules [41]. Since /0.1 / J1 = 0.31, we would theo-
retically expect a 69% decrease in noise, in agreement
with the simulation results.
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Figure 4 Differences between stochastic solutions and analytical solutions of the deterministic model. Each plot shows the number of
standard errors by which the concentration predicted by the deterministic model differs from the mean concentrations predicted by the
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Model applicability

Selecting the appropriate modelling approach for a
given problem involves a number of factors including a
researcher’s judgement of the time available for model
development and the computational resources avail-
able. A key factor is the understanding they wish to
obtain, for example, arriving at the best possible model
for a given system (in which case model development
time might not be too important), or generating alter-
native plausible models representing competing experi-
mental hypothesis (in which case the availability of
rapid prototyping, averages and outlier behaviours are
needed). Although difficult to give all-encompassing
guidelines, in this section we briefly discuss general
practical considerations arising from our case study
that are involved in determining an appropriate model-
ling approach.

The stochastic computational model needs to be exe-
cuted many times to assess the average behaviour of
the system for a given set of parameter values, and
therefore the computational cost of solving the sto-
chastic model will generally be greater than that of the
deterministic model. The execution time of the com-
putational model depends on the values assigned to
the reaction constants and the initial numbers of mole-
cules present in the system (as with more molecules
there are more reactions per second). Table 5 sum-
marises the time taken to execute the computational
model for several initial concentrations, and compares
these execution times with the time taken to solve the
deterministic numerical model. Tests were performed
on a single processor (AMD Athlon 64 X2 Dual Core
5600+ 2.8 GHz with 1 GB of memory) - using multiple
processors would reduce these execution times. As
shown in Table 5, as expected, the execution time of
the stochastic model increases as the initial number of
molecules increases. For initial auxin concentration
above 1 nM, the stochastic model will take a consider-
able amount of time, and therefore in this case it
would be advisable to use a deterministic approach. In
contrast, the asymptotic solution of the mathematical
model does not involve any computational cost (other
than the negligible time required to evaluate the

Table 5 Stochastic and deterministic model execution
times.

model execution time

deterministic (numerical) 0.19 seconds

stochastic (C = 10 pM) 1.19 hours
stochastic (C = 0.1 nM) 6.63 hours
stochastic (C =1 nM) 62.30 hours

For the stochastic model, the execution time is the time required to perform
10,000 runs and depends on the total number of molecules present (which is
determined by the initial auxin concentration).
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derived expressions at a given timepoint). However,
the computational execution time does not reflect the
true time taken to obtain the solution, as deriving the
asymptotic formulae may take longer than producing
the numerical or stochastic models.

When considering the time costs of different model-
ling approaches, a key consideration is the number of
different parameter choices one wishes to investigate.
The formulae from the analytical approach clearly
show how the parameter estimates affect the predicted
concentrations and transport speeds provided the scal-
ing, (14), holds. However, we would need to derive a
new asymptotic solution if we wanted to consider dif-
ferent parameter regimes. In addition, the asymptotic
method presented here is can only be applied if we
can consider the tissue to be a continuum, which is
only appropriate if the rate of transport between the
cells is not too small [21]. Using the numerical deter-
ministic and stochastic approaches, one can use any
parameter values in the simulations by making simple
changes to the numerical code without changes to the
underlying model. However, using these methods, we
would need to execute many simulations to thoroughly
understand how the dynamics are affected by the para-
meter values, which needs to be balanced with the
increased execution time for the stochastic model for
certain parameter regimes.

In summary, the asymptotic model is applicable only
to the specific parameter regime for which it was
derived, but allows rapid evaluation of the behaviour of
the model within these bounds. However, to explore
model behaviour outside of the given parameter regime,
the asymptotic solution will need to be derived anew.
The stochastic computational model allows any para-
meter regime or spatial scaling to be explored without
further reformulation of the model and formally cap-
tures the mechanisms involved in producing a given
phenotype. For some regimes the execution time of the
model will be considerable, although this time can be
ameliorated through the application of more computa-
tional resources or parallel computation.

Auxin-Transport Speed

Auxin-transport experiments aim to investigate the
movement of auxin through plant tissue. We have mod-
elled an experimental protocol, as described in [25,27],
that has been used to consider both the distance moved
by auxin molecules per unit time (the velocity) and the
amount of auxin passing through the tissue per unit
time (the flux). In the deterministic model, auxin from
the source agar block moves through the tissue with a
defined front, and the asymptotic solutions provide a
simple formula for the speed of transport (15). However,
in practice there will be stochasticity in the auxin
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Table 6 Stochastic and deterministic model transport
speeds.

model time to collecting agar block (s) velocity (cm-h™")
deterministic 356.91 1.95
stochastic 21385+ 21.18 338 +£030

Auxin-transport speeds for the deterministic (asymptotic) and stochastic
models. 95% confidence intervals are also given for the stochastic model.

movement. The stochastic model predicts when the first
auxin molecule appears in the collecting agar block, and
the transport speed can be calculated by dividing the
total length of the stem segment, L, by the average time
taken for the first molecule of auxin to appear in the
collecting agar block (this time is calculated by aver-
aging over 10,000 runs).

The results, summarised in Table 6, show that the sto-
chastic approach predicts a greater auxin-transport
speed (3.38 + 0.3 cmh™") than the asymptotic determi-
nistic solution (1.95 cm-h™*). We note that this discre-
pancy is in agreement with the discussions in “Auxin
Concentrations” section above where we showed that
the different modelling frameworks predicted signifi-
cantly different concentrations in the collecting agar
block at early times.

Auxin velocities are generally thought to be around
1 cm:h™!, which is fairly close to our predictions, given
that the velocity depends on the parameter estimate for
Ppyy and this value is not well characterised. One reason
for the difference between the experimental auxin velo-
city and the model predictions may be differences in
auxin detection sensitivity between the wet experiments
and models. The stochastic model enables us to predict
the time at which the first molecule of auxin enters the
collecting agar block. However, in the wet experiments,
a certain amount of auxin must accrue in this agar
block before detection is possible. We can estimate the
amount of auxin present in the collecting block from
our models. If we consider an experiment with 12, 044
molecules of auxin and assume that, in line with experi-
mental results, the auxin-transport speed is 1 cm-h!,
then the time taken for auxin to travel the length of the
stem segment is 723.78 s (0.20105 hr). The deterministic
model gives the number of molecules in the collecting
agar block at this time to be 191 and 246 from the
numerical and asymptotic solutions respectively (we
note that this accuracy is within the expected range for
the asymptotic solution). The mean number of auxin
molecules at this time in the collecting agar block
calculated over 10,000 runs of the stochastic model is
299.40 + 15.84. Thus, to determine accurately the pre-
sence of auxin in the collecting agar block, the experi-
mental apparatus used must have a sensitivity of 1.6 pM
for an agar block of the same size as we simulated, and
a finer resolution for larger agar blocks.
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As discussed in [27], the majority of auxin-transport
measurements report the flux of auxin transport rather
than the auxin velocity and so consider the amount of
auxin that has moved through a specified distance of tis-
sue in a constant amount of time. However, the asymp-
totic solutions of the deterministic model demonstrate
that diffusion within the agar blocks may significantly
affect the auxin concentration within the collecting agar
block, and therefore the auxin fluxes measured. The
analysis presented in the “Derivation of Asymptotic
Solution” section of Additional file 1 shows that there
are two disparate time scales: on a short time scale,
auxin is transported through the stem segment, whereas
over longer ones, the auxin concentrations are almost
uniform throughout the stem segment, and the
dynamics are dominated by diffusion within the agar. It
is clearly important to be aware of these two processes
when interpreting experimental results. If an auxin-
transport experiment were carried out over several
hours, the auxin concentration in the collecting agar
block would be determined predominantly by the diffu-
sion rate. We emphasise that these conclusions are
based on the assumption that the agar-block length is
comparable to the stem-segment length - the effect of
diffusion within the agar blocks will be less significant
with smaller agar blocks.

Conclusions
In systems biology, models are typically deterministic
and a biological problem is translated into large systems
of ordinary differential equations that are solved
numerically. However, this is not the only option, and in
this paper we have demonstrated three different model-
ling approaches: (i) deterministic numerical; (ii) determi-
nistic asymptotic; and (iii) stochastic computational. As
expected, particularly given that the dynamics can be
described by a system of linear governing equations,
there is excellent agreement between the three methods.
We have focussed our case study on auxin transport,
as this is inherently multiscale with cell-scale dynamics
creating the tissue-scale phenomena of interest. The
numerical, deterministic method focusses on computing
the cell-scale dynamics, whereas the asymptotic method
makes use of the multiscale nature of the system: in the
asymptotic results, we consider the auxin concentrations
on the cell scale, and exploit the relatively small dimen-
sions of the cells to determine how the cell-scale
dynamics lead to effective tissue-scale behaviour. The
stochastic computational model simulates the interac-
tion of auxin at a molecular scale and, by analysing the
gross movement of auxin from one compartment to the
next, allows us to determine auxin dynamics at the tis-
sue scale based on the mechanistic interactions of auxin
at the molecular scale.
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The model results enable us to highlight the advan-
tages of each approach. We solved the stochastic ver-
sion of the model using a P system framework: the
model is written in terms of numbers of molecules and
we prescribe the probability of a molecule moving
between compartments. P systems are highly intuitive,
and an excellent way of engaging with a biological audi-
ence. The stochastic model generates in particular both
the mean and the standard deviation of the auxin con-
centrations, which enables us to characterise the
expected variability. We also solved the model by deriv-
ing deterministic ordinary differential equations and
using asymptotic methods to obtain formulae for the
auxin concentrations and transport speeds. This method
requires careful analysis to determine the dominant pro-
cesses on each time scale, and the resulting expressions
show clearly how the model parameters affect the pre-
dicted auxin concentrations and speeds. Although
numerically solving the deterministic version of the
model is often the quickest method of producing a
solution, stochastic P system models and asymptotic
analysis can provide additional insight and information
that can complement, or be an alternative, to a determi-
nistic numerical solution. The results also highlight how
the experimental set up may lead to potential discrepan-
cies between the measured auxin velocities, and, in par-
ticular, how the measured velocities will be affected by
diffusion within the agar block. Auxin speeds are gener-
ally assessed by measuring the number of auxin mole-
cules in the collecting agar block; however, we showed
that on long time scales the auxin concentration in the
agar block depends on the agar-block length, and the
formulae for the auxin velocity and collecting-block
concentration (obtained from the asymptotic analysis)
are clearly not related. We could gain further under-
standing of the biological implications of this result by
extending the model to incorporate a more accurate
representation of the stem segment, for example by
modelling multiple cell files with tissue-specific active
transport.

Additional file 1: Further model details. This document (PDF format)
provides supporting information for the main text, and gives further
details on the biological parameter estimates used in the model; the
derivation of the stochastic reaction constants and the related equations
that governing the deterministic model; the model checking of the
stochastic computational model; and the asymptotic solution.
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