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Abstract. We have expressed in neuroendocrine PC12 
cells the polymeric immunoglobulin receptor (pIgR), 
which is normally targeted from the basolateral to the 
apical surface of epithelial cells. In the presence of 
nerve growth factor, PC12 cells extend neurites which 
contain synaptic vesicle-like structures and regulated 
secretory granules. By immunofluorescence micros- 
copy, pIgR, like the synaptic vesicle protein synap- 
tophysin, accumulates in both the cell body and the 
neurites. On the other hand, the transferrin receptor, 
which normally recycles at the basolateral surface in 
epithelial cells, and the cation-independent mannose 
6-phosphate receptor, a marker of late endosomes, are 
largely restricted to the cell body. pIgR internalizes 
ligand into endosomes within the cell body and the 
neurites, while uptake of ligand by the low density li- 
poprotein receptor occurs primarily into endosomes 
within the cell body. We conclude that transport of 

membrane proteins to PC12 neurites as well as to 
specialized endosomes within these processes is selec- 
tive and appears to be governed by similar mecha- 
nisms that dictate sorting in epithelial cells. Addition- 
ally, two types of endosomes can be identified in 
polarized PC12 cells by the differential uptake of 
ligand, a housekeeping type in the cell bodies and a 
specialized endosome in the neurites. Recent findings 
suggest that specialized axonal endosomes in neurons 
are likely to give rise to synaptic vesicles (Mundigl, 
O., M. Matteoli, L. Daniell, A. Thomas-Reetz, A. 
Metcalf, R. Jahn, and P. De Camilli. 1993. J. Cell 
Biol. 122:1207-1221). Although plgR reaches the 
specialized endosomes in the neurites of PC12 cells, 
we find by subcellular fractionation that under a vari- 
ety of conditions it is efficiently excluded from synap- 
tic vesicle-like structures as well as from secretory 
granules. 

p LASMA membrane proteins that normally reside in 
axonal domains of neurons are selectively targeted 
to apical domains when expressed in epithelial cells, 

suggesting an overlap between epithelial and neuronal-tar- 
geting mechanisms (Dotti et al., 1991; Powell et al., 1991; 
Pietrini et al., 1994). The overlap may include endocytotic 
structures as well, since apical and axonal early endosomes 
do not accumulate internalized transferrin and so are differ- 
ent from the endosomes at the base of the epithelial cell and 
in the cell body of the neuron (Fuller and Simons, 1986; 
Hughson and Hopkins, 1990; Parton et al., 1992; Barroso 
and Sztul, 1994). Because the latter endosomes primarily 
recycle proteins involved in cell maintenance functions, we 
refer to them as housekeeping endosomes. Specialized endo- 
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somes, on the other hand, operate in specialized regions of 
cells, such as the sub-apical cytoplasm, and appear to give 
rise to small tubulovesicular structures that fuse with the cell 
surface. Examples of such apicaUy recycling vesicles include 
those that contain the vasopressin-sensitive water channels 
in kidney collecting ductules (for review see Verkman, 
1992), the gastrin-responsive H÷K+-ATPase in gastric pari- 
etal cells (for review see Forte et al., 1989), and the poly- 
meric immunoglobulin receptor (.pIgR) t in hepatocytes and 
MDCK cells (Sztul et al., 1993; Barroso and Sztul, 1994; 
Apodaca et al., 1994). A characteristic shared by these spe- 
cialized endosomal pathways is that the rate of recycling is 
responsive to hormones, such as vasopressin or gastrin, or 
to activators of protein kinase C (Cardone et al., 1994). 

1. Abbreviations used in this paper: dlgA, dimeric immunoglobulin A; 
ECL, enhanced chemiluminescence; LDL-R, low density lipoprotein 
receptor; MPR, cation-independent mannose 6-phosphate receptor; plgR, 
polymeric immunoglobulin receptor; TfR, transferrin receptor; TX-114, 
Triton X-114. 
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Axons also have a regulated endocytotic recycling pathway 
since synaptic vesicles are recycling endocytotic vesicles 
whose rate of fusion and perhaps rate of formation by endo- 
cytosis can be regulated (for reviews see De Camilli and 
Jahn, 1990; Jahn and Siidhof, I993; Kelly, 1993). 

If targeting to axonal endosomes is related to targeting to 
apical endosomes, then a marker of apical endosomes should 
be preferentially targeted to axons. One protein that is tar- 
geted to apical endosomes is the plgR, which mediates trans- 
port of polymeric IgA and IgM across epithelial surfaces (for 
reviews see Mostov et al., 1992; Mostov, 1994). Most of the 
newly synthesized plgR is not delivered directly to the apical 
cell surface but goes via the basolateral surface. In this in- 
direct pathway, the receptor is initially targeted from the 
TGN to the basolateral cell surface where it binds ligand and 
is internalized into basolateral endosomes. The recep- 
tor/ligand complex is then transported to a specialized apical 
endosome that gives rise to vesicles which eventually fuse 
with the apical plasma membrane (Sztul et al., 1993; Bar- 
roso and Sztul, 1994; Apodaca et al., 1994). Unlike the 
transferrin receptor (TfR), the pIgR should be a marker of 
both basolateral and apical endosomes. 

We found by immunofluorescence microscopy that plgR 
was much more effectively targeted to endosomes within the 
processes of neuroendocrine PC12 cells than were markers 
of housekeeping endosomes. We can conclude that proteins 
capable of being targeted to apical endosomes can be cor- 
rectly targeted to specialized endosomes within PC12 neu- 
rites, which resemble, in this regard, axonal rather than den- 
dritic processes. 

It has been well established that although synaptic vesicles 
arise by endocytosis (for review see Kelly and Grote, 1993), 
they exclude endosomal markers such as low density lipo- 
protein receptor (LDL-R) and TfR (Linstedt and Kelly, 
1991; Cameron et al., 1991). Therefore, it has been argued 
that synaptic vesicles are not simply transport vesicles in- 
volved in recycling between the cell surface and the early en- 
dosome. TfR and LDL-R, however, are marker proteins for 
housekeeping endosomes which we now know to be absent 
from the axon (Cameron et al., 1991; Parton et al., 1992) 
where assembly of mature synaptic vesicles is likely to occur 
(Mundigl et al., 1993). If synaptic vesicle proteins recycle 
through specialized axonal endosomes (Mundigl et al., 
1993), it is more appropriate to ask if markers of specialized 
endosomes are excluded from synaptic vesicles. We found 
that although plgR accumulates in specialized endosomes 
within the neurites, it was efficiently excluded from purified 
synaptic vesicle-like structures. 

Materials and Methods 

Materials 

Matrigel was obtained from Collaborative Research (Bedford, MA). NGF-/$ 
(nerve growth factor), n-butyric acid, and poly-D-lysine were obtained from 
Sigma Chem. Co. (St. Louis, MO). Enhanced chemiluminescence (ECL) 
reagents were purchased from Amersham Corp. (Arlington Heights, IL). 
Gene pulser electroporation cuvettes with a 0.4-cm electrode gap were pur- 
chased from BioRad Labs. (Richmond, CA). Lipofection reagents included 
Lipofectin (GIBCO BRL, Ga.ithersburg, MD) and DOTAP (Boehringer 
Mannheim Corp., Indianapolis, IN). Cell culture reagents were obtained 
through the University of California (San Francisco, CA) Cell Culture facil- 
ity. G418 was from GIBCO BRL. Permanox eight chamber slides were 
manufactured by Nunc, Inc. (Naperville, IL) and purchased from Applied 

Scientific (San Francisco, CA). Miscellaneous chemical reagents were ac- 
quired from Sigma Chem. Co. and Fisher Biochemicals (Santa Clara, CA). 

Antibodies 
Purified human dimeric IgA (rigA) was generously provided by J. P. Vaer- 
man. Goat anti-human dIgA, rabbit anti-guinea pig, goat anti-mouse, rab- 
bit anti-mouse, rabbit anti-sheep, and goat anti-rabbit IgG conjugated to 
HRP, Texas-red, or FITC were obtained from Cappel (West Chester, PA). 
SC166, a monoclonai antibody against the cytoplasmic domain of the pIgR 
has been described previously (Solari et al., 1985). Guinea pig polyclonal 
antiserum against the lumenal domain of the pIgR was generated as de- 
scribed (Breitfeld et al., 1989a). Affinity purified sheep polyclonal antibod- 
ies directed against the lumenal domain of the pIgR were used in the uptake 
experiments (see below). Monoclonal antibodies directed against the cyto- 
plasmic domain of synaptophysin were purchased from Sigma Chem. Co. 
(SVP-38). Ascites fluid for C7-IgG anti-human LDL-R (Beisiegel et al., 
1981) was produced as described (Green et ai., 1994). Mouse ascites fluid 
containing monoclonai antibodies against the cytoplasmic domain of the hu- 
man TfR (H68.4, White et ai., 1992) was the kind gift ofIan S. Trowbridge 
(Salk Institute, La Jolla, CA). Antiserum against rat synaptotagmin was 
kindly provided by Richard Scheller (Stanford University, Palo Alto, CA). 
IgG purified from polyclonai rabbit antiserum raised against rat cation- 
independent mannose 6-phosphate receptor (MPR) was the kind gift of Wil- 
liam Brown (Cornell University, Ithaca, NY). 

Cell Culture and Transfection 
PC12 cells were grown in DME-H21 medium supplemented with 10% 
horse serum, 5 % FBS, 100 U/ml Penicillin and 100 #g/ml streptomycin in 
humidified incubators with 10% CO2. cDNA encoding the wild-type 
(Mostov et al., 1984) or Asp ~4 mutant (Casanova et al., 1990) forms of 
the rabbit pIgR was subeloned into the cytomegalovirus-based expression 
vector, pCB6 (Brewer and Roth, 1991). eDNA encoding the human LDL-R 
(Davis et al., 1986) was subeloned into pCB6 as described (Green et al., 
1994). G418-resistant clones stably expressing wild-type pIgR were ob- 
tained after transfection by lipofection according to the method described 
by Muller et al. (1990). Clones were screened by immunoprecipitation of 
cell lysates after metabolic labeling. Six clones were characterized further 
by cell fractionation and Western blot analysis (described below). 

Human LDL-receptor and mutant Asp 664 pIgR were expressed tran- 
siently in wild-type PC12 cells or those stably expressing plgR by electropo- 
ration according to the method described by Muller et ai. (1993). Rapidly 
dividing cells were washed, pelleted, and resuspended in electroporation 
buffer (137 mM NaCI, 5 mM KCL, 0.7 mM Na2HPO4, 6 mM Dextrose, 
20 mM Hepes, pH 7.05) at °°4 × 107 cells/nil. 30-60 #g of cDNA was 
mixed with 0.8 ml of cell suspension and added to each electroporation 
cuvette (Biorad Labs.). Cells were incubated on ice for 10 rain, pulsed at 
230 V, 500 #E and then incubated for an additional 10-20 rain on ice before 
plating onto tissue culture dishes. After 12-18 h, the medium was changed 
and the cells were differentiated by plating onto matrigel-coated tissue cul- 
ture dishes or chamber slides and incubation in the presence of 5 ng/ml 
NGF-~ for 48 h as described (Elferink et al., 1993). To overexpress plgR, 
sodium butyrate was added to the medium at a final concentration of 6 mM 
for 12-18 h (Gorman et al., 1983). 

Metabolic Labeling and Immunoprecipitation 
PC12 cells were metabolically labeled overnight by incubating cells in 
DME-H21 medium depleted of cysteine and methionine but supplemented 
with 1% horse serum, 0.5% FBS and 100/zCi/ml of 35S-Translabel (ICN 
Biomedicais, Irvine, CA). For the cell surface delivery assay (described be- 
low), cells were labeled for 15 rain in serum-free medium containing 35S- 
Translabet before transfer to label-free medium for various periods of chase. 
Immunoprecipitation of pIgR from labeled cell lysates was performed as de- 
scribed previously (Breitfeld et al., 1989b). After immunoprecipitation, 
samples were analyzed by SDS-PAGE on 8% gels. Gels were processed as 
described (Green and Kelly, 1992) and analyzed on a phosphorimager (Mo- 
lecular Dynamics, Sunnyvale, CA) or by fluorograpby. 

Cell Surface Delivery Assay 
A protease sensitivity assay was performed essentially as described earlier 
(Breitfeld et al., 1990). PC12 cells stably expressing pIgR were pulse la- 
beled as described above and chased at 37°C, 10% CO2, in medium con- 
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taming 25 #g/ml trypsin for 15 mill to 2 h. Parallel time points were ob- 
tained by chasing in trypsin-free medium. At the end of each time point, 
cells were placed on ice, washed, and lysed immediately in the presence 
of excess FCS. Immunopreeipitation and analysis of full-length intracellular 
plgR was as described above. 

Immunofluorescence Microscopy 
PCI2 cells stably transfected with plgR were differentiated in the presence 
of NGF on matrigel-coated chamber slides as described above. For some 
experiments, cells stably expressing pIgR were transiently transfected with 
eDNA encoding the human LDL-R before differentiation. Control experi- 
ments were performed on differentiated wild-type PC12 cells. For uptake 
experiments, cells were placed onto metal plates in either a 370C water bath 
or on ice. Cells were washed with Eagle's MEM/0.6% BSA/20 mM 
Hepes/pH 7.4, before addition of ligand. The following ligands were used: 
Human dlgA; polyclonal sheep anti-plgR lumenal domain; and C'/-IgG 
(anti-LDL-R) in MEM/0.6% BSA/20 mM Hepes/pH 7.4. Cells were in- 
cubated for either 5 or 20 min at 37°C or on ice. At the end of the incubation 
period, ceils were placed on ice and washed extensively with ice-cold 
medium and PBS. Fixation was in 4% paraformaldehyde in PBS for 10 rain 
on ice and an additional 15 min at room temperature followed by quenching 
with PBS/25 mM glycine. Nonspecific-binding sites were then blocked 
with PBS/I% fish skin gelatin (Sigma Chem. Co.)/2% BSA. In some experi- 
ments, the blocking solution also contained 0.02 % saponin in order to per- 
meabilize the plasma membrane. Subsequent incubations with fluorescently 
labeled secondary antibodies were carried out in blocking solution either 
with or without saponin. For steady state labeling, cells were fixed and per- 
meabilized as above before incubation with primary antibodies. All washes 
were performed in PBS/0.02% saponin/l% fish skin gelatin/2% BSA (per- 
meabilized cells) or in PBS/1% fish skin gelatird2 % BSA without saponin 
(unpermeabilized cells). Cells were mounted in PBS containing 90% 
glycerol and 10 mg/mi p-diamino benzene. Conventional images were 
documented using a Zeiss axiophot or a Leitz photomicroscope. Confocal 
images were obtained using a BioRad MRC 600 confocal laser scanning 
microscope. 

Semiquantitative analysis of the images was performed by scoring each 
cell according to the pattern of immunofluorescence. The identity of each 
chamber slide was kept hidden from the observer until after the analysis was 
complete. The amount of immunoreactivity in the processes as compared 
to the cell bodies was assessed by a subjective impression of the density and 
brightness of puncta in each region. Labeling of large lysosome-like struc- 
tures in the cell bodies was not included in the comparison. 

Quantitative analysis of the staining intensity was accomplished using the 
confoeal microscope and Comos software: series of optical sections 1 #m 
apart along the Z-axis were acquired from cells probed for TfR or pIgR. 
Each Z-series was projected onto a single image such that every pixel of 
the resulting image represented the maximum intensity value found in any 
of the individual sections. We measured the average pixel intensity in the 
cell bodies, excluding the nuclei, and compared these values to the average 
pixel intensity in the tips of the neurites. 

Uptake of dlgA before SubceUular Fractionation 
Human dlgA was iodinated using a modification of the iodine monochloride 
method described by Goldstein et al. (1983) (Breitfeld et al., 1989a). 
Undifferentiated PC12 cells expressing plgR were incubated on tissue cul- 
ture dishes in Hepes-buffered MEM/3% BSA in the presence of ll~SI]dlgA 
for 2 h 40 min at 37°C. Cells were washed extensively with label-free 
medium on ice, and then chased in label-free medium for an additional 20 
rain at 37"C. In parallel experiments, cells were incubated in medium con- 
taining unlabeled dlgA (25 #g/ml). After exposure to ligand, ceils were 
fractiouated by velocity sedimentation as described below. Fractions were 
analyzed using a gamma counter and by Western blot. 

Subcellular Fractionation 
All steps were performed at 4"C. A postnuclear superuatant (SI-1,000 g 
for 5 min) and a high-speed supernatant, enriched in synaptic vesicles 
($2-27,000 g for 35 rain), were prepared from PC12 cells and analyzed 
by velocity sedimentation essentially as described earlier (Clift-O'Grady el 
al., 1990). Homogenization of the cells was improved using eight passes 
through a ball-bearing homogenizer with 12 t~m clearance (Cell Cracker, 
European Molecular Biology Laboratory, Heidelberg, Germany). The ve- 
locity sedimentation gradients (5-25% glycerol in 150 mM NaCI, 1 mM 

EGTA, 0.1 mM MgC12, 10 mM Hepos, pH 7.4 on top of a buffered 50% 
sucrose pad) were centrifuged for 1 h at 40,000 rpm in a SW 55 Ti rotor 
(Beckman Instrs., Inc., Palo Alto, CA). 

Analysis of a postuuclear supernatant from PC12 cells by equilibrium 
density gradient centrifugation on isosmotic metrizamidedsucrose gradients 
was performed as described (Green et al., 1994). Briefly, cells were har- 
vested in PBS and homogenized in sucrose buffer (0.32 M sucrose, 0.5 mM 
EDTA, 4 mM Hepes, pH 7.4) with 10-15 strokes in a Dounce homogenizer. 
A postnuclear supernatant (740 g for 8 min) was layered on top of linear 
isosmotic metrizamide/sucrose gradients (10% metrizamided0.23 M su- 
crose to 23 % metrizamided0.11 M sucrose on top of a buffered 35 % metriza- 
mide pad) and centrifuged for 2 h and 15 min at 55,000 rpm in a fixed angle 
70.1 Ti rotor (Beckman Instrs.). 

Immunobiotting 
Samples were subjected to SDS-PAGE, transferred to nitrocellulose using 
a semidry blotter (E & K, Saratoga, CA), blocked in PBS/0.05 % Tween/5 % 
non-fat dry milk, and probed with the following primary antibodies: pIgR 
(SC166 or guinea-pig anti-SC), synaptophysin (SVP-38), TfR (H68.4), and 
synaptotagmin (rabbit polyclonal antiserum). Secondary antibodies used 
were HRP-conjngated goat anti-mouse and goat anti-rabbit IgG. Bands 
were visualized using the ECL system and quantified by optical den- 
sitometry. 

Flotation Gradient Analysis and Triton X-114 
Phase Extractions 
Velocity gradient fractions and postnuclear supernatants were analyzed by 
flotation gradient centrifugation. Samples (a postnuclear supernatant and 
the top three fractions from a velocity gradient) were taken up in 1.5 M su- 
crose (final concentration) and ovedayed with a sucrose step gradient: 
1.0 M sucrose and 0.4 M sucrose, covered with 150 mM NaCI, 1 mM 
EGTA, 0.1 mM MgC12, and a layer of paraffin oil; all solutions contained 
10 mM Hepes, pH 7.4, and protease inhibitors. Gradients were centrifuged 
in an SW 55 Ti rotor for 12 h at 40,000 rpm. Samples were subsequently 
collected from each interface and analyzed by SDS-PAGE and Western blot. 

Triton X-I14 (TX-114) phase extractions were performed on gradient 
fractions and whole cell lysates according to the method of Bordier (1981). 
TX-114 was added to a final concentration of 1% to the bottom 4 and the 
top 3 fractions from a velocity gradient on ice. Ceils were lysed in ice-cold 
PBS/I% TX-114. Phase separation was achieved by warming samples to 
37°C followed by centrifugation at 1,000 g for 5 min. Analysis of aqueous 
and detergent phases was by SDS-PAGE and Western blot as described 
above. 

Results 

Stable Expression of Rabbit Polymeric 
Immunoglobulin Receptor in PC12 Cells 
PC12 cells were stably transfected with eDNA encoding the 
rabbit plgR (Mostov et al., 1984). G418-resistant clones ex- 
pressing the receptor were identified by immunoprecipita- 
tion of plgR from cell lysates of metabolically labeled cells. 
Fig. 1 shows an autoradiogram of some of the immunopreci- 
pitants after SDS-PAGE. All of the positive clones except for 
one displayed two characteristic bands of Mr 100-105 kD. 
These bands comigrated with plgR isolated from transfected 
MDCK cells (data not shown). Previous work demonstrates 
that this pattern corresponds to the Endo H resistant, fully 
glycosylated form of the receptor (Mostov and Deitcher, 
1986). The authors assume that the two species arise from 
variable processing of the oligosaccharides. A single clone 
(lane 3) appeared to be truncated and was not detected when 
probed with an antibody that recognizes the cytoplasmic do- 
main of the receptor. This clone was not characterized 
further. 

To ensure that plgR does not become arrested in a biosyn- 
thetic compartment, we determined the kinetics of delivery 
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Figure L Expression of poly- 
meric immunoglobulin recep- 
tor (plgR) in stably trans- 
letted PC12 cells, cDNA 
encoding plgR was introduced 
into PC12 cells by lipofection. 
G418-resistant clones were 
metabolically labeled over- 
night with ~sS-Translabel. 
plgR was immunoprecipitated 
from cell lysates with antibod- 
ies directed against the lu- 
menal domain of the receptor 
and analyzed by SDS-PAGE 
and fluorography. Positive 
clones with a pattern typical 
of fully glycosylated plgR mi- 
grate at Mr 100-105 kD 
(lanes 1, 2, and 6). A trun- 
cated form of plgR lacking cy- 
toplasmic portions of the 
receptor was observed in one 
clone (lane 3). Some G418- 
resistant clones did not ex- 
press detectable plgR (lanes 4 
and 5). 

of newly synthesized receptor to the cell surface using a pro- 
tease sensitivity assay (Breitfeld et al., 1990). Transfected 
cells were pulse labeled with 35S-Translabel and chased for 
various periods of time in medium containing trypsin, which 
cleaves the plgR as it appears on the cell surface. Under these 
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Figure 2. Delivery of newly synthesized plgR to the cell surface. 
PC12 cells stably expressing plgR were pulse labeled with 3sS- 
Translabel for 15 rain at 37°C, and then chased for the indicated 
periods of time in medium containing 25 #g/ml trypsin effectively 
cleaving any receptor which reached the cell surface. At each time 
point cells were lysed on ice in the presence of excess serum, plgR 
was immunoprecipitated and analyzed by SDS-PAGE. The full- 
length intracellular receptor was quantified using a phosphor- 
imager. The percentage of labeled plgR reaching the cell surface 
is plotted against time. Newly synthesized receptor is delivered to 
the cell surface with a t1/2 of less than 30 min. 

conditions, the receptor is delivered to the plasma mem- 
brane with a half time of less than 30 min (Fig. 2), which 
is comparable to the time course observed for delivery of the 
receptor to the basolateral surface in transfected MDCK 
cells (Breitfeld et al., 1990). These kinetics are consistent 
with constitutive delivery to the plasma membrane and sug- 
gest that little or no plgR is targeted to regulated secretory 
granules. In the absence of trypsin, more than 80% of the 
labeled receptor survives a 2-h chase, implying little intra- 
cellular or surface protease activity (data not shown). This 
situation differs from hepatocytes (Musil and Baenzinger, 
1987), and transfected fibroblasts (Deitcher et al., 1986) or 
MDCK ceils (Breitfeld et al., 1989a), which possess an en- 
dogenous protease that efficiently cleaves the receptor at the 
cell surface. 

Polymeric ImmunoglobuUn Receptor Is Targeted to the 
Neurites of  Polarized PC12 Cells 

To determine where pIgR is targeted, we analyzed its subcel- 
lular distribution in NGF-differentiated, stably transfected 
PC12 cells by immunofluorescence microscopy. We com- 
pared the localization ofpIgR at steady state to the following 
membrane proteins whose distribution has been established 
in neurons: the synaptic vesicle-specific protein synaptophy- 
sin, which is present in the cell body and is axonally trans- 
ported t~, the nerve terminal (B6o'j et al., 1989; Fletcher et 
al., 1991; Cameron et al., 1991); the TfR, a basolaterally re- 
cycling receptor which is poorly transcytosed in epithelial 
cells (Fuller and Simons, 1986; Hughson and Hopkins, 
1990) and is restricted to the cell body of neurons (Cameron 
et al., 1991; Parton et al., 1992); and the cation-independent 
MPR, a marker of late endosomes which is also confined to 
the cell body of neurons (Parton et al., 1992). 

Transfected cells were plated on matrigel-covered cham- 
ber slides and allowed to extend processes in the presence 

The Journal of Cell Biology, Volume 127, 1994 1606 



of NGE After 48 h, more than 95 % of the cells had visible 
neurites. Many of the cells had multiple processes, plgR 
staining was primarily intracellular and punctate throughout 
the cell. Many of the cells displayed an accumulation of the 
receptor in the perinuclear region, pIgR was detected along 
the entire length of the processes and often showed enrich- 
ment in the tips (Fig. 3 A). Synaptophysin had a similar over- 
all distribution (Fig. 3 B), which resembled that described 
in cultured hippocampal neurons (Cameron et al., 1991; 
Fletcher et al., 1991). Punctate staining was again visible 
throughout the cell body and the neurites but there was a less 
pronounced perinuclear accumulation of the protein. In con- 
trast, TfR and MPR appeared to be largely restricted to the 
cell body (Fig. 3, C and D). Both proteins demonstrated pri- 
marily a perinuclear-staining pattern. MPR puncta appeared 
larger than those of the other markers. In most cells, both 
endosomal marker proteins could be detected in the neurites, 
although the signal was minimal as compared to the amount 
of staining in the cell bodies. 

To confirm our interpretation of the staining patterns, semi- 
quantitative analysis was performed by counting and scoring 
cells in a double blind manner (Fig. 4). Each cell was scored 
according to the degree of staining in the tips of the neurites 
as compared to the cell bodies. Analysis of the steady state 
distribution of plgR and synaptophysin revealed that for both 
markers more than 90% of the cells showed equal or en- 
hanced staining of the tips of the processes as compared to 
the cell body and in no case were synaptophysin and plgR 
excluded from the processes. In striking contrast, analysis of 
TfR and MPR immunoreactivities showed that these proteins 
are largely enriched in the cell body and more effectively ex- 
cluded from the neurites. For TfR, only •25 % of the cells 
showed equal or enhanced staining in the neurites as com- 
pared to the cell body. Similarly, MPR scoring revealed that 
--15 % of the cells displayed equally intense staining in the 
neurites and the cell body and in no case was the receptor 
enriched in the processes. 

The validity of the scoring system described above was 
confirmed by quantitative immunofluorescence using confo- 
cal microscopy and image analysis. The images of 10 cells 

Figure 3. Steady-state distribution of pIgR, synaptophysin (p38), 
transferrin receptor (TfR), and the cation-independent mannose 
6-phosphate receptor (MPR) in NGF-differentiated PC12 cells by 
immunofluorescence microscopy. PC12 cells stably expressing 
pIgR were induced to extend processes in the presence of NGE The 
pattern of pIgR immunoreactivity (A) was determined by incubating 
fixed cells with antibodies against the cytoplasmic domain of the 
receptor (SC166, mouse monoclonal). P38 immunoreactivity (B) 
was obtained by incubation of cells with antibodies directed against 
the cytoplasmic domain of the protein (SVP-38, mouse monoclo- 
hal). TfR (C) was detected by a monoclonal antibody against the 
cytoplasmic domain of the receptor (H68.4, mouse monoclonal). 
MPR-containing structures (D) were visualized by incubating cells 
with an affinity purified IgG fraction from rabbit polyclonal antise- 
rum (anti-rat MPR). Primary antibodies were visualized by incu- 
bation with Texas-red or FITC-conjugated secondary antibodies. 
Both pIgR (,4) and p38 (B) show predominantly intracellular punc- 
tate staining in the cell body and the tips of the neurites. TfR and 
MPR immunoreactivity are mainly confined to the cell body. Bar, 
10 ~m. 
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probed for TfR and scored as tip staining less than cell body 
staining according to our semiquantitative assay, and 10 ceils 
probed for pIgR and scored as either tip staining equal to cell 
body staining or tip staining greater than cell body staining 
were processed and analyzed as described in Materials and 
Methods. The mean ratios of average pixel intensity in the 
cell bodies to average pixel intensity in the tips of the neurites 
were 2.1 (SEM - 0.15) for TfR and 0.9 (SEM = 0.06) for 
pIgR. The difference between these values is statistically 
significant (p < 0.001; unpaired Student's t test). Although 
such quantitative analysis was not possible for the many 
hundreds of cells that were screened in this study, it was a 
useful confrmafion that our visual assessments were correct. 

Thus, PC12 cells, in the presence of NGF, appear to be 
functionally polarized with regard to the targeting of mem- 
brane proteins to their neurites. Although TfR and MPR are 
largely restricted to the cell body, plgR, like the synaptic 
vesicle protein synaptophysin, is efficiently targeted to both 
the cell body and the neurites. 

Polymeric Immunoglobulin Receptor Is Present in 
Specialized Endosomes within the Neurites 

To determine whether the neurites of the differentiated PC12 
cells contained functional endosomes and whether pIgR was 
targeted to them, a series of uptake experiments was per- 
formed. Endosomes containing pIgR were labeled by mea- 
suring uptake of the physiologic ligand, dIgA (Fig. 5 A). 
Cells were incubated for 20 rain at 37°C in the presence of 
either 50 #g/ml or 150 #g/ml of human dIgA. Both concen- 
trations of ligand gave indistinguishable results and similar 
results were also obtained when the uptake experiments were 
performed for 5 min. Endosomes containing dIgA were eas- 
ily visible throughout the neurites and the cell body. Uptake 

of dIgA by untransfected ceils was not detected indicating 
that the ligand was not internalized by fluid-phase endocyto- 
sis at these concentrations (data not shown). 

To confirm that the staining pattern indeed reflected inter- 
nalized dIgA rather than ligand bound to pIgR on the plasma 
membrane, ceils were analyzed by confocal microscopy (see 

Figure 4. Semiquantitative analysis of the distribution ofpIgR, p38, 
TfR, and MPR in NGF-differentiated PC12 cells processed by im- 
munofluorescence microscopy. PC12 cells were processed as in 
Fig. 3. Cells were scored according to their pattern of immunoreac- 
tivity: predominant staining of the tips of the processes as com- 
pared to the cell body (t > cb); equivalent staining in both the tips 
of the neurites and the cell body (t = cb); diminished staining of 
the tips of the processes as compared to the cell body (t < cb); com- 
plete exclusion of immunoreactivity from the tips of the neurites (cb 
only). Approximately 200 cells were counted for each marker in 
each experiment. Shown are average values from two independent 
experiments; the error bars representing the range. 

Figure 5. Uptake of ligand into endosomes in the neurites and cell 
body of polarized PC12 cells as assayed by immunofluorescence 
microscopy. PC12 cells stably expressing pIgR were transiently 
transfected with cDNA encoding the human LDL-R and induced 
to extend processes in the presence of NGF. Unfixed cells were in- 
cubated with ligand for 20 rain at 37°C followed by extensive wash- 
ing before fixation and detection with fluorescently conjugated sec- 
ondary antibodies. Endosomes containing pIgR were labeled with 
either dimeric IgA (dlgA) (.4) or a sheep polyclonal antibody (anti- 
SC) (B) directed against the lumenal domain of the receptor. Endo- 
somes containing the human LDL-R were labeled with a monoclo- 
nal antibody directed against the lumenal domain of the receptor 
(C7-IgG) (C). Endosomes containing pIgR ligand are present 
throughout the cell in both the cell body and the neurites while en- 
dosomes containing LDL-R ligand appear to be largely confined 
to the cell body. Bar, 10 ~tm. 
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Fig. 7). A series of confoeal sections obtained from ce~s af- 
ter uptake of dIgA unambiguously demonstrates the intracel- 
lular localization of the ligand in both the cell body and the 
neurites (see Fig. 7, A-D). The dlgA pattern is clearly dis- 
tinct from the staining observed under conditions where only 
ligand on the cell surface was accessible to the labeled anti- 
dlgA antibodies (see Fig. 7, E-H). Furthermore, no dIgA 
could be detected intracellularly when the uptake experi- 
ment was carried out at 0°C (data not shown). 

To determine whether the pIgR-containing endosomes in 
the neurites were housekeeping or specialized endosomes, 
the human LDL-R, a marker of housekeeping endosomes, 
was transiently transfected into cells expressing plgR before 
differentiation in the presence of NGE Endosomes contain- 
ing the LDL-R were then labeled by internalization of a 
monoclonal antibody (C7-IgG) directed against the lumenal 
domain of the human receptor. This antibody does not recog- 
nize the endogenous rat LDL-receptor. Trafficking of this 
antibody has previously been shown to closely parallel that 
of the physiologic ligand, LDL (Beisiegel et al., 1981). Cells 
were incubated in the presence of C7-IgG for 20 min at 37°C 
before fixation and immunofluorescence. In contrast to the 
results observed for dlgA, uptake of this ligand was confined 
primarily to the cell body. In most instances, endosomes 
containing the LDL-R were only marginally detectable in 
the neurites or were completely excluded (Fig. 5 C). Parallel 
experiments conducted at 0°C did not reveal any specific 
staining. No uptake was observed by untransfected cells in- 
dicating the absence of fluid-phase uptake of the C'/-IgG. 

Because C7-IgG is targeted to lysosomes (Beisiegel et al., 
1981) while dlgA is not (Mostov and Deitcher, 1986), C7- 
IgG is found in large dense structures in addition to smaller 
punctate structures. To compare internalization of two anti- 
receptor antibodies, we also looked at uptake of a polyclonal 
anti-pIgR antibody. Staining of endosomes in both the neu- 
rites and the cell body was again visible (Fig. 5 B). In addi- 
tion to small punctate structures, larger puncta were ob- 
served in the cell body presumably because of delivery of 
cross-linked structures to the lysosomal pathway. When par- 
allel experiments were performed on ice or in untransfected 
cells, no specific intracellular staining was detected. 

Semiquantitative analysis confirmed the segregation of en- 
dosomal classes: while more than 84% of the cells demon- 
strated at least equal uptake of pIgR ligand into neurite endo- 
somes as compared to cell body endosomes, only •10% of 
the cells internalized LDL-R ligand equally well into neurite 
and cell body endosomes (Fig. 6). Thus, two forms of en- 
docytosis can be distinguished in PC12 cells because of their 
spatial resolution. Endosomes in the neurites (Fig. 7) differ 
from those in the cell body in that they appear to take up 
LDL-R ligand very poorly whereas pIgR seems to be inter- 
nalized into both populations of endosomes equally well. 

The Polymeric Iraraunoglobulin Receptor Is Excluded 
from Synaptic Vesicles 
The above experiments confirm that pIgR selectively ac- 
cumulates in specialized endosomes within the neurites of 
differentiated PC12 cells. Recent evidence suggests that syn- 
aptic vesicles may be derived from specialized endosomes 
within axons of hippocampal neurons (Mundigl et al., 
1993). PC12 cells produce vesicles that have the same size, 
density, and composition as authentic neurotransmitter- 

Figure 6. Semiquantitative analysis of the uptake of ligand into 
polarized PC12 cells. Cells were processed as in Fig. 5. Labeling 
of punctate structures in the cell body by dlgA, sheep anti-SC poly- 
clonal antibodies, and C7-IgG anti-LDL-R monoclonal antibodies 
was compared to the labeling of the neurites and scored as de- 
scribed in Fig. 4. Lysosome-like structures were not included in the 
comparison. Approximately 200 cells were counted for each 
marker for each experiment. Shown are average values from two 
independent experiments; the error bars representing the range. 

containing synaptic vesicles found in brain (Navone et ai., 
1986; Wiedenmann et ai., 1988; Johnston et ai., 1989; Cliff- 
O'Grady et al., 1990; Bauerfeind et al., 1993). To determine 
whether pIgR was targeted to synaptic vesicles, we fraction- 
ated NGF-differentiated transfected PCI2 cells by differen- 
tial centrifugation and velocity sedimentation as described 
previously (Clift-O'Grady et al., 1990). Postnuclear super- 
natants were subjected to centrifugation on glycerol gra- 
dients. Under these conditions synaptic vesicles, as iden- 
tiffed by synaptophysin immunoreactivity, sedimented as a 
homogeneous population of 80-S particles in the upper third 
of the gradient (Fig. 8 a). Synaptophysin-containing mem- 
branes also accumulated on a dense pad at the bottom of the 
gradient as noted earlier (Clift-O'Grady et al., 1990; Lin- 
stedt and Kelly, 1991), as did TfR-enriched membranes, con- 
sistent with previous findings (Cameron et ai., 1991). These 
fractions are known to contain endosomal and plasma mem- 
branes (Clift-O'Grady et al., 1990; Clift-O'Grady, E. Grote 
and R. B. Kelly, unpublished observations). For further 
purification of synaptic vesicles, large membranes were re- 
moved from the postnuclear supernatant by an additional 
centfifugation step before velocity sedimentation analysis 
(Fig. 8 b). In both instances plgR-immunoreactivity was 
completely excluded from the synaptic vesicle peak (Fig. 8, 
a and b). Instead, the receptor was recovered with the TfR 
and the rapidly sedimenting synaptophysin-containing mem- 
branes on the dense pad at the bottom of the gradient. 

If transfected PC12 cells were not treated with NGF, there 
was no appreciable change in the quantity of synaptic vesi- 
cles, nor was there a change in the distribution of pIgR. An 
identical distribution was observed in each of six stable 
clones analyzed under the same conditions (data not shown). 

To label preferentially the endocytotically derived pool of 
plgR, we incubated transfected PC12 cells with dlgA. Al- 
though the ligand is not required for transcytosis of the 
receptor in transfected MDCK cells, the rate of transcytosis 
is enhanced by dlgA binding (Hirt et al., 1993; Song et ai., 
1994). In hippocampai neurons, plgR is detected more read- 
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Figure 7. Series of confocal sections from 
polarized PC12 cells after internalization of 
dIgA. PC12 cells stably expressing pIgR 
were allowed to differentiate in the presence 
of NGF before dIgA-uptake experiments 
were performed as described in Fig. 5. The 
cells were either permeabilized with 0.02 % 
saponin before incubation with the labeled 
anti-rigA antibody (A-D) or left unperme- 
abilized and incubated with the labeled anti- 
body in the absence of detergent (E-H). 
The distance between the planes of focus of 
successive sections is 2.4 #m (A-D) or 1.2 
t~m (E-H). In permeabilized cells strong in- 
tracellular staining is visible in the neurites 
as well as in the cell bodies. On the other 
hand, unpermeabilized cells display a dis- 
tinct surface staining pattern and no intra- 
cellular label can be observed. Bars, 10/,m. 

ily in axons after the addition of dIgA (Ikonen et al., 1993). 
[125I]dIgA was bound to the surface of transfected PC12 
cells, which were then wanned to allow internalization of 
ligand. Before fractionating as above, surface-associated 
[t~SI]dIgA was removed by extensive washing. Greater than 
85 % of the internalized [~2SI]dIgA was found at the bottom 
of the gradient in the fractions containing endosomes, but no 
label was recovered in synaptic vesicles (Fig. 9). (In con- 
trast, when PC12 cells are incubated with labeled antibodies 
against a synaptic vesicle protein, with an epitope-tag as a 

lumenal domain, label appears in the synaptic vesicle peak 
as well as in the large membrane fraction [Grote, E.,  and 
R. B. Kelly, manuscript submitted for publication].) Incuba- 
tion of cells with superphysiologic concentrations of  unla- 
beled dIgA before fractionation, which might be expected to 
enhance delivery to a transcytotic pathway, also did not 
redirect pIgR to synaptic vesicles as judged by Western blot 
analysis (data not shown). 

In the absence of ligand, transcytosis of pIgR in epithelial 
cells seems to depend upon phosphorylation of a serine resi- 
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Figure 9. Internalized dlgA is excluded from synaptic vesicles. 
Undifferentiated transfected PC12 cells expressing plgR were in- 
cubated in the presence of [~25I]dlgA for 2 h 40 rain at 37°C, and 
then chased in label-free medium for 20 rain at 37°C. After exten- 
sive washing, cells were homogenized and fractionated by velocity 
sedimentation analysis as described in Fig. 8. Fractions were then 
analyzed on a gamma counter. Shown is the percentage of the total 
cpm for each fraction. Fractions are numbered from the bottom of 
the gradient to the top. The synaptic vesicle peak (SV), as deter- 
mined by synaptophysin immunoreactivity on an immtmoassay, is 
indicated by brackets. Note the accumulation of labeled dlgA on 
the dense pad at the bottom of the gradient while it is nearly unde- 
tectable in the region of the gradient where synaptic vesicles 
sediment. 

Figure 8. Subcellular fractionation of NGF-treated PCI2 ceils ex- 
pressing plgR by velocity sedimentation analysis. A postnuclear su- 
pernatant (a) and a high-speed supernatant (b) from NGF-differen- 
tiated PC12 cells stably transfected with pIgR were loaded onto 
5-25 % glycerol gradients over a 50% sucrose pad and centrifuged 
for 1 h at 152,000 g. Gradient fractions were subjected to SDS- 
PAGE and Western blot analysis. Immunoreactivities were deter- 
mined with the following primary antibodies: plgR, SC166, mouse 
monoclonal; p38, SVP-38, mouse monoclonal; transferrin receptor 
(/JR), H68.4, mouse monoclonal. Primary antibodies were de- 
tected by incubation with HRP-conjugated secondary antibodies 
and visualized using the ECL system. Fractions are numbered 1-12 
from the bottom of the gradient where the largest membranes sedi- 
ment to the top where soluble proteins are located. Note the ab- 
sence of plgR from the peak of synaptic vesicles (SV) as indicated 
by brackets in a and b. 

due at position 664 on the cytoplasmic tail of the receptor 
(Hirt et al., 1993; Song et al., 1994). A Ser to Asp mutation 
at position 664 is transcytosed even more efficiently than 
wild-type receptor without requiring specific phosphoryla- 
tion (Casanova et al., 1990). Since PC12 cells may lack the 
kinase which phosphorylates the receptor, we also per- 
formed a series of subcellular fractionation experiments on 
cells transiently expressing the Asp~ mutant. Velocity gra- 
dients were assayed for the cosedimentation of the receptor 
with synaptophysin. The mutant receptor was excluded from 
synaptic vesicles and its distribution was the same as for the 
wild-type pIgR (data not shown). 

To determine whether overexpression of plgR would affect 
its targeting, PC12 cells stably expressing the wild-type 
receptor were fractionated after pretreatment with sodium 
butyrate which enhanced expression significantly over un- 
treated cells. The receptor was again efficiently excluded 
from synaptic vesicles and primarily localized to rapidly 
sedimenting membranes at the bottom of the gradient (data 
not shown). Thus, the fidelity of sorting into PC12 synaptic 
vesicles appears to be quite high. 

Slowly Sedimenting Polymeric 
Immunoglobulin Receptor 

Under all of the above conditions, the antibody to the cyto- 
plasmic domain of pIgR also bound to material that sedi- 
mented more slowly than synaptic vesicles (Fig. 8, a and 
b). The identity of this peak as pIgR was confirmed by 
reprobing the blot with a polyclonal antibody recognizing the 
lumenal domain of the receptor (data not shown). On equi- 
librium density flotation gradient centrifugation, the slowly 
sedimenting pIgR behaved as a soluble protein, and sepa- 
rated from membrane-associated proteins. To examine the 
solubility properties of pIgR, phase separation analysis in 
TX-114 was performed on slowly sedimenting material from 
the top of the velocity gradient, rapidly sedimenting material 
from the bottom, and whole cell lysates (Fig. 10). Each of 
these forms of pIgR segregated into the aqueous phase while 
synaptophysin, a well-characterized integral membrane pro- 
tein, was extracted into the detergent phase as previously de- 
scribed (Jahn et al., 1985), verifying that the extraction pro- 
cedure was working correctly. This is not the first example 
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of an integral membrane protein partitioning into the aque- 
ous phase; the nicotinic acetylcholine receptor has been 
shown to behave similarly in the TX-114 phase separation as- 
say (Maher and Singer, 1985). The most plausible explana- 
tion for the occurrence of slowly sedimenting pIgR is that the 
receptor is a very hydrophilic integral membrane protein that 
is much more readily solubilized into the aqueous phase than 
other integral membrane proteins. Presumably some deter- 
gent-like molecules liberated during homogenization solu- 
bilize a fraction of the pIgR. Consistent with this possibility, 
recovery of soluble pIgR depended on the homogenization 
conditions used. 

The Polymeric lmmunoglobulin Receptor Is Not 
Targeted to Dense Core Granules 
The presence of pIgR in the tips of processes (Fig. 3) raised 
the question about the organelle in which it was located. Up- 
take experiments confirmed that pIgR was present in a popu- 

Figure 10. Triton X-114 (TX-114) phase extraction analysis of veloc- 
ity gradient fractions and whole cell lysates of PC12 cells express- 
ing plgR. Phase separation of gradient fractions (a): to the bottom 
4 fractions, 1-4 (rapidly sedimenting plgR) and to the top 3 frac- 
tions, 11-13 (slowly sedimenting plgR) from a velocity gradient as 
in Fig. 8, TX-114 was added to a final concentration of 1.0% at 4°C. 
Aqueous and detergent phases were collected after warming to 
37°C and centrifugation at 1,000 g for 5 rain. Samples were ana- 
lyzed by SDS-PAGE and immunoblotting as described in Fig. 8. 
Phase separation of whole cell lysates (b): PC12 cells stably ex- 
pressing pIgR were lysed in PBS/I% TX-114 and processed for 
phase separation as in a. plgR was detected with SC166; p38 was 
detected with SVP-38. D, detergent phase; A, aqueous phase. 

lation of specialized endosomes within the neurites (Figs. 5 
and 7). Furthermore, we have clearly shown that plgR is not 
in synaptic vesicles (Fig. 8). Secretory granules have also 
been identified in the tips of neurites of differentiated PC12 
cells (Van Hooff et al., 1989; Elferink et al., 1993). It is un- 
likely that plgR is targeted to secretory granules given the 
rapidity with which it is delivered to the cell surface (Fig. 
2). However, the glucose transporter GLUT4 which, like 
plgR, is a membrane protein of small, endocytotically de- 
rived vesicles that undergo regulated exocytosis (Slot et al., 
1991), has been reported to be targeted to secretory granules 
when expressed in PC12 ceils (Hudson et al., 1993). 

To confirm the absence of plgR from secretory granules 
of differentiated PC12 cells, a postnuclear supernatant was 
analyzed on isosmotic equilibrium density gradients. Using 
metrizamide/sucrose gradients, dense core granules, as iden- 
tiffed by the soluble content marker secretogranin II, have 
a characteristic density of 1.10-1.13 g/cm 3 and are clearly 
separated from lighter organelles (Green et al., 1994). Un- 
der these conditions pIgR was enriched in a peak at 1.09-1.10 
g/cm 3 (Fig. 11). The receptor was almost undetectable in 
the density range of granules, as identified by a peak of syn- 
aptotagmin, a membrane protein of both dense core granules 
and synaptic vesicles, plgR also appeared to be excluded 
from lysosomes which have approximately the same buoyant 
density as secretory granules (Green et al., 1994). Similar 
results were obtained when undifferentiated PC12 cells were 
analyzed under identical conditions (data not shown), plgR 
was not reproducibly separated from TfR- or synaptophysin- 
containing membranes on the basis of equilibrium buoyant 
density. 

We conclude that, aithough pIgR accumulates within the 
neurites of differentiated PC12 cells, it resides in organelles 
other than secretory granules and synaptic vesicles. Its abun- 
dance there appears to reflect its presence in the plasma 
membrane of the processes and their specialized endosomes. 

Discussion 

Polarized Targeting of Membrane Proteins 

Polarized cells such as neurons and epithelial cells have dis- 
tinct domains of plasma membrane whose composition and 
function differ from one another. The axonal and nerve ter- 
minal plasma membranes of neurons are specialized for con- 
duction of action potentials and neurotransmitter release. 
The somatodendritic surfaces carry out ion and metabolite 
transport activities required for cellular maintenance. Simi- 
larly, in epithelial cells, the basolateral surface is primarily 
involved in housekeeping functions while the apical surface 
has specializations that are appropriate for a membrane that 
communicates with the lumen of body cavities. 

Transfection studies in epithelial cells and neurons have 
clearly shown a relationship between sorting mechanisms to 
the apical surface of epithelial cells and to the axon of neu- 
rons (for review see Rodriguez-Boulan and Powell, 1992). 
The viral glycoprotein influenza hemagglutinin, which is 
sorted to the apical surface in epithelial cells is primarily 
localized to the axon surface when expressed in neurons 
(Dotti and Simons, 1990). On the other hand, the vesicular 
stomatitis virus glycoprotein, which is targeted to the 
basolateral surface in epithelial cells, is found exclusively on 
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Figure 11. Subcellular fractionation of NGF-ditferentiated PC12 
cells expressing plgR by isosmotic equilibrium density gradient 
centrifugation. A postnuclear supernatant from PC12 cells stably 
transfected with plgR was loaded onto linear isosmotic 10-23% 
metrizamide gradients over a 35% metrizamide pad and cen- 
trifuged to equilibrium density for 2 h 15 min at 207,000 g. Gra- 
dient fractions were analyzed by SDS-PAGE and Western blot as 
described in Fig. 8. Synaptotagmin (p65) was detected with rabbit 
polyclonal antiserum directed against the cytoplasmic tail of the 
protein. (a) Western blot analysis of gradient fractions. Fractions 
are numbered 1-19 from the bottom of the gradient where mem- 
branes of the highest density sediment to the top where soluble pro- 
teins are located, plgR-containing membranes sediment in a single 
peak in fractions 8-12 (1.09-1.10 g/cmS). (b) Densitometry of 
plgR, p38, TIR, and p65 immunoreactivities from a. Note the sepa- 
ration of plgR-containing membranes from p65-containing secre- 
tory granules. The position where the secretory granule content 
marker secretogranin lI (SgII) sediments on parallel gradients is in- 
dicated by brackets. 

is involved in the targeting of proteins to the somatodendritic 
region (Huber et al., 1993a,b). 

Our results suggest that neuroendocrine PC12 cells, when 
induced to extend processes in the presence of NGF, are also 
functionally polarized. We have shown that the plgR, tar- 
geted to the basolateral and apical surface of epithelial cells, 
is found in both the neurites and the cell body when ex- 
pressed in PC12 cells. Conversely, the TfR, normally local- 
ized to the basolateral surface in epithelial cells, primarily 
accumulates in the cell body. Thus, sorting of membrane 
proteins to the neurites seems to occur by a similar mecha- 
nism that governs sorting of membrane proteins to the apical 
surface. 

PC12 cells have been widely used as a model system to 
study neurite outgrowth. The neurites appear to be more like 
axons than dendrites. Like axons, they contain proteins 
specific for dense core secretory granules and synaptic vesi- 
cles (Elferink et al., 1993; Hudson et ai., 1993). The neu- 
rites and especially their growth cones are also enriched in 
GAP-43 (for review see Costello et al., 1991), a marker 
protein of axonal growth cones (Goslin et al., 1988). Fur- 
thermore, the cytoskeletal protein, MAP2, which is pre- 
dominantly associated with somatodendritic microtubules in 
neurons (Ginzburg, 1991), is also more concentrated in the 
cell body as compared to the neurites of differentiated PC12 
cells (for review see Sano et al., 1990). 

The selective enrichment of membrane proteins observed 
in neuronal axons and the neurites of PC12 cells could be due 
to selective targeting, or domain-specific retention or both. 
It is possible that plgR and synaptophysin contain specific 
signals that permit their selective targeting to the neurites 
or are responsible for their selective retention within the 
processes. Similarly, TfR and MPR may either lack a neu- 
rite-targeting signal or contain a specific signal that con- 
fers selective retention in the cell body. In epithelial cells, 
when the basolateral localization signal of the LDL-R is 
weakened by mutagenesis, enhanced targeting of the recep- 
tor from basolateral endosomes to the apical cell surface is 
observed (Matter et al., 1993), suggesting that retention 
mechanisms normally play a role in its localization. To date, 
no axonal or neurite targeting or retention signals have been 
described in integral membrane proteins. Zuber et al. (1989) 
have identified an amino acid sequence in the NH2 terminus 
of the cytoplasmic protein GAP-43 that confers targeting to 
the neurites of PC12 cells. Because of the ease with which 
PC12 cells can be grown and transfected, it should now be 
possible to look for domains conferring retention or target- 
ing in other proteins. 

the somatodendritic plasma membrane of infected neurons 
(Dotti and Simons, 1990). Endogenous membrane proteins 
appear to behave in a similar manner. When expressed in ep- 
ithelial cells, the GPI-linked protein, Thy-1, which is re- 
stricted to the axonal plasma membrane in neurons (Dotti et 
al., 1991), is targeted to the apical surface (Powell et al., 
1991). Similarly, the GABA transporter, GAT-1, normally 
localized in axons, is primarily targeted to the apical surface 
in transfected MDCK cells (Pietrini et al., 1994). Further- 
more, targeting of proteins to the basolateral surface in epi- 
thelial ceils seems to involve the same rab protein (rab 8) that 

Pathways  o f  Targeting to Neur i t e s  

In epithelial cells, membrane proteins may reach the apical 
surface by two major routes: directly from the TGN and in- 
directly by transcytosis via the basolateral surface (Mostov 
et al., 1992). Of the two pathways, the indirect route is the 
only one common to all epithelial tissues (for review see 
Mostov, 1994). In neurons, where the membrane trafficking 
pathways have been less well characterized, axon-specific 
proteins are targeted to their final destination by axonal 
transport (for reviews see Sheetz et al., 1989; Vallee and 
Bloom, 1991; Craig et al., 1992). It is not clear whether ax- 
onally directed membrane proteins travel directly or in- 
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directly via the somatodendritic cell surface. There is some 
evidence for an indirect neuronal pathway. Lectins such as 
wheat germ agglutinin bind to the sornatodendritic cell sur- 
face, are internalized into the cell body, and are eventually 
targeted to the nerve terminal by anterograde axonal trans- 
port where they can be released and taken up postsynapti- 
cally (Steindler and Deniau, 1980; Margolis et al., 1981; 
Ruda and Coulter, 1982). The targeting of plgR (which 
reaches the apical surface indirectly via the basolateral sur- 
face) to the PC12 neurites suggests that the indirect pathway 
may also be present in PC12 cells. 

A recently published study in which plgR was expressed 
in primary hippocampal neurons suggested that plgR reached 
the axon by transcytosis via the somatodendritlc region (Iko- 
hen et al., 1993). Under normal growth conditions the ma- 
jority of the plgR was recovered in the cell bodies, not the 
axonal processes, but selective accumulation in the axons 
could be induced by adding physiological ligand, dIgA, to 
the culture system. Although addition of ligand stimulates 
the rate of basolateral to apical transport of pIgR in MDCK 
cells, it is not normally required for transcytosis (Song et al., 
1994). Alternatively, since dlgA binding stabilizes the re- 
ceptor and protects against cleavage by the apical protease 
in epithelial cells (Mostov, K. E., unpublished observa- 
tions), it is possible that the axonal domain of hippocampal 
neurons, unlike PC12 cells, contains a protease that effec- 
tively cleaves pIgR and prevents its detection in the absence 
of added ligand at steady state. 

Polarity Extends to Endosomes 
It has recently been shown that there are at least two distinct 
classes of early endosomes in neurons (Parton et al., 1992; 
Mundigl et al., 1993) which bear some resemblance to the 
two classes of endosomes found in polarized epithelial cells 
(Bomsel et al., 1989; Patton et al., 1989; Hughson and Hop- 
kins, 1990). Like basolateral endosomes in epithelial cells, 
somatodendritic endosomes recycle TfR. Endosomes in the 
axon, like epithelial apical endosomes, do not accumulate 
the TfR (Cameron et al., 1991; Parton et al., 1992; Mundigl 
et al., 1993). They contain synaptic vesicle membrane pro- 
teins and may give rise to synaptic vesicles (Mundigl et al., 
1993) which undergo regulated exocytosis in the nerve ter- 
minal. Our results suggest that targeting to specialized endo- 
somes occurs by similar sorting mechanisms in both epithe- 
lial and neuroendocrine cells. 

An unexpected implication of recent work is that two 
populations of endosomes with a different composition and 
function may be present even in unpolarized cells. In particu- 
lar, PC12 cells may possess both housekeeping and special- 
ized endosomes even when they are in an undifferentiated 
state before neurites are extended. Both NGF-differentiated 
and undifferentiated PC12 cells are capable of producing 
small vesicles that are indistinguishable from synaptic vesi- 
cles produced by neurons. If synaptic vesicles indeed form 
from specialized endosomes, then either undifferentiated 
PC12 cells are different from neurons and capable of making 
synaptic vesicles from housekeeping endosomes or they 
would have to have an "axonal" endosome capable of giving 
rise to synaptic vesicles, regardless of the apparent lack of 
cell polarity. 

Sorting of Membrane Proteins during Synaptic 
Vesicle Biogenesis 
Synaptic vesicles arise by endocytosis (for review see Grote 
and Kelly, 1993). When the synaptic vesicle membrane pro- 
tein synaptophysin is expressed in nonneuronal cells it is 
found in housekeeping endosomes as identified by the pres- 
ence of TfR and LDL-R (Johnston et al., 1989; Linstedt and 
Kelly, 1991; Cameron et al., 1991). Synaptophysin in neu- 
ronal cell bodies is also found in housekeeping endosomes 
(Mundigl et al., 1993). When synaptic vesicles are purified, 
they lack LDL-R or TfR (Linstedt and Kelly, 1991; Cameron 
et al., 1991) suggesting that synaptic vesicle proteins are 
sorted from other endosomal proteins during synaptic vesi- 
cle biogenesis. However, recent data show that only a subset 
of synaptic vesicle proteins are found in cell body endo- 
somes, as opposed to specialized axonal endosomes which 
appear to contain all of the synaptic vesicle proteins (Mun- 
digl et al., 1993). Assembly of synaptic vesicles, therefore, 
is likely to occur in the axon. In light of these findings, the 
exclusion of housekeeping endosomal markers from synaptic 
vesicles no longer seems surprising since proteins like TfR 
are retained in the cell body (Cameron et al., 1991; this 
study). The pIgR, on the other hand, is present in both 
housekeeping endosomes in the cell body and specialized en- 
dosomes in the neurites of PC12 cells. Its absence from syn- 
aptic vesicles, therefore, demonstrates that these vesicles are 
distinct from specialized endosomes and not just endosomal 
transport intermediates. Either synaptic vesicles arise di- 
rectly by endocytosis from the plasma membrane, or, if they 
form from specialized endosomes, they exclude specialized 
endosome markers. 

Although selective transport of proteins to axons is a well- 
established phenomenon, very little is known about the sig- 
nals that dictate sorting from somatodendritic proteins. The 
advantage of studying a protein such as plgR in neuroendo- 
crine cells is the wealth of information that is already avail- 
able on how its sorting behavior can be modified. Analysis 
of the many available sorting mutants (Aroeti et al., 1993; 
Mostov, 1994; Aroeti and Mostov, 1994) should yield valu- 
able information regarding the molecular mechanisms that 
underly sorting to the neurite and the formation of special- 
ized vesicles such as synaptic vesicles. 

We thank Drs. W. Brown, R. Scheller, and I. Trowbridge for their gifts 
of antibodies. Special thanks to members of the Kelly lab for critical read- 
ing of the manuscript and to L. Spector for assistance in preparation of the 
manuscript. We would also like to thank M. Ramaswami for help with the 
confocal microscopy. 

This work was supported by National Institutes of Health grants to R. B. 
Kelly (NS09878), G. A. Herman (HD07397 and DK02163), K. E. Mostov 
(AI 25144), and M. H. Cardone and fellowships to F. Bonzeiius by the 
North Atlantic Treaty Organization/Dcutscber Akademischer Austausch- 
dicnst, Deutsche Forschungsgemeinschaft, and the Herbert W. Boyer 
Foundation. G. A. Herman was also a recipient of a Senior Fellowship Re- 
search Award from the American Gastroenterological Association. K. E. 
Mostov was supported by the Cancer Research Institute, a Charles Culpep- 
per Foundation medical scholarship, an Edward Mallicroft medical 
scholarship, and an American Heart Association Established Investigator 
Award. 

Received for publication 21 March 1994 and in revised form 22 September 
1994. 

The Journal of Cell Biology, Volume 127, 1994 1614 



References 

A[xxiaca, G., L. A. Katz, and K. E. Mostov. 1994. Receptor-mediated transcy- 
tosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol. 
125:67-86. 

Aroeti, B., and K. E. Mostov. 1994. Polarized sorting of the polymeric immu- 
noglobulin receptor in the exocytotic and endocytotic pathways is controlled 
by the same amino acids. EMBO (Eur. Mol. Biol. Organ.) jr. 13:2297-2304. 

Aroeti, B., P. A. Kosen, I. D. Kentz, and F. E. Cohen, and K. E. Mostov. 
1993. Mutational and secondary structural analysis of the bnsolateral sorting 
signal of the polymeric immunoglobulin receptor. J. Ce//Biol. 123:1149- 
1160. 

Barroso, M., and E. Sztol. 1994. Basolateral to apical transcytosis in polarized 
cells is indirect and involves BFA and trimeric G protein sensitive passage 
through the epical endosome. J. Cell Biol. 124:83-100. 

Bauerfeind, R., A. Regnier-Vigouroux, T. Flatmark, and W. B. Huttoer. 1993. 
Selective sorting of acetyicholine, but not catecholamines, in neuroendocrine 
synaptic-like microvesicles of early endosomal origin. Neuron. 11:105-12 I. 

Beisiegel, U., W. J. Schneider, J. L. Goldstein, R. G. W. Anderson, and M. S. 
Brown. 1981. Monoclonal antibodies to the low density lipoprotein receptor 
as probes for study of receptor-mediated endocytosis and the genetics of 
familial hypercholesmrolemia. J. Biol. Chem. 256:11923-11931. 

Bomsel, M., K. Prydz, R. G. purten, J. Gruenberg, and K. Simons. 1989. En- 
docytosis in filter-grown Madin-Darby canine kidney cells. J. Cell Biol. 
109:3243-3258. 

B66j, S., M. Goldstein, R. Fischer-Colbrie, and A. Dahlstr6m. 1989. Calcito- 
nin gene-related peptide and chromogranin A: presence and intra-axonal 
transport in lumbar motor neurons in the rat, a comparison with synaptic 
vesicle antigens in immunohistocbemical studies. Nearoscience. 30:479- 
501. 

Bordier, C. 1981. Phase separation of integral membrane proteins in Triton 
X-114 solution. J. Biol. Chem. 256:1604-1607. 

Breiffeld, P. P., J. H. Harris, and K. E. Mostov. 1989a. Postendocytotic sort- 
ing of the ligand for the polymeric immunoglohnlin receptor in Medin-Darby 
canine kidney ceils. J. Cell Biol. 10:475-486. 

Breitfeld, P., J. E. Casanova, J. M. Harris, N. E. Sinister, and K. E. Mostov. 
1989b. Expression and analysis of the polymeric immunoglobulin receptor 
in Madin-Darby canine kidney cells using retroviral vectors. Methods Cell 
Biol. 32:329-337. 

Breiffeld, P. P., J. E. Casanova, W. C. McKinnon, and K. E. Mostov. 1990. 
Deletions in the cytoplasmic domain of the polymeric immunoglobulln 
receptor differentially affect endocytotic rate and postendocytotic traffic. J. 
Biol. Chem. 265:13750-13757. 

Brewer, C. B., and M. G. Roth. 1991. A single amino acid change in the cyto- 
plasmic domain alters the polarized delivery of influenza virus hemaggluti- 
nin. J. Cell Biol. 114:413-421. 

Cameron, P. L., T. C. Sfidhof, R. Jahn, and P. De Camilli. 1991. Colocaliza- 
tion of synaptophysin with transferrin receptors: implications for synaptic 
vesicle biogenesis. J. Cell Biol. 115:151-164. 

Cardone, M. H., B. L. Smith, W. Song, D. Mochiy-Rosen, and K. E. Mostov. 
1994. Phorbol myristete acetate-mediated stimulation of transcytosis and ap- 
ical recycling in MDCK cells. J. Cell Biol. 124:717-727. 

Casanova, J. E., P. P. Breiffeld, S. A. Ross, and K. E. Mostov. 1990. Phos- 
phorylation of the polymeric immunoglobulin receptor required for its 
efficient transcytosis. Science (Wash. DC). 248:742-745. 

Clift-O'Gredy, L., A. D. Linstedt, A. W. Lowe, E. Grote, and R. B. Kelly. 
1990. Biogenesis of synaptic vesicle-like structures in a pheochromocytoma 
cell line PC-12. J. Cell Biol. 110:1693-1703. 

Costello, B., L.-H. Lin, A. Meymandi, S. Bock, J. J. Norden, and J. A. Free- 
man. 1991. Expression of the growth- and plasticity-associated neuronal pro- 
tein, GAP-43, in PCI2 pheochromocytoma cells. Progress in Brain Re- 
search. 89. W. H. Gispen, and A. Routtenberg, editors. Elsevier Science 
Publishers B.V., New York, NY 47-67. 

Craig, A. M., M. Jamb, and G. Banker. 1992. Neuronal polarity. Curr. Opin. 
NearobioL 1:602-606. 

Davis, G., M. A. Lehrman, D. W. Russell, R. G. W. Anderson, M. S. Brown, 
and J. L. Goldstein. 1986. The J.D. mutation in familial hypercholesterole- 
mia: amino acid substitution in cytoplasmic domain impedes internalization 
of LDL receptors. Cell. 45:15-24. 

De Camilli, P., and R. Jahn. 1990. Pathways to regulated exocytosis in neu- 
rons. Annu. Rev. Physiol. 52:625-645. 

Deitcber, D. L., M. R. Neutra, and K. E. Mostov. 1986. Functional expression 
of the polymeric immunoglobulin receptor from cloned eDNA in fibroblasts. 
J. Cell Biol. 102:911-919. 

Dotti, C. G., and K. Simons. 1990. Polarized sorting of viral glycoproteins to 
the axon and dendrites of hippocampal neurons in culture. Cell. 62:63-72. 

Dotti, C. G., R. G. Patton, and K. Simons. 1991. Polarized sorting of glypiated 
proteins in hippocampal neurons. Nature (Lond.). 349:158-161. 

Elferink, L. A., M. R. Peterson, and R. H. Scheller. 1993. A role for synap- 
totagmin (p65) in regulated exocytosis. Cell. 72:153-159. 

Fletcher, T. L., P. Cameron, P. De Camilli, and G. Banker. 1991. The distribu- 
tion of synapsin I and synaptophysin in hippocampal neurons developing in 
culture. J. Neurosci. 11:1617-1626. 

Forte, J. G., D. K. Hanzel, T. Urushidani, andJ. M. Wolosin. 1989. Pumps 
and pathways for gastric HC I secretion. Ann. IVY. Acad. Sci. 574:145-158. 

Fuller, S. D., and K. Simons. 1986. Transferrin receptor polarity and recycling 
accuracy in "tight" and ~leaky" strains of Madin-Darby Canine Kidney cells. 
J. Cell Biol. 103:1767-1779. 

Ginzburg, I. 1991. Neuronal polarity: targeting of microtubule components into 
axons and dendrites. TIBS (Trends Biochem, 5oc.). 16:257-262. 

Goldstein, J. L,, S. K. Basu, and M. S. Brown. 1983. Receptor-mediated en- 
docytosis of low density lipoprotein in cultured cells. Methods Enzymol. 
96:241-259. 

Gorrnan, C. M., B. H. Howard, and R. Reeves. 1983. Expression of recom- 
binant plnsmids in mammalian cells is enhanced by sodium butyrate. Nucleic 
Acids Res. 11:7631-7648. 

Goslin, K., D. J. Schreyer, J. H. P. Skene, and G. Banker. 1988. Development 
of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth 
cones. Nature (Lond.). 336:672-674. 

Green, S. A., and R. B. Kelly. 1992. Low density llpoprotein receptor and 
cation-independent mannose 6-phosphate receptor are transported from the 
cell surface to the Goigi apparatus at equal rates in PCI2 cells. J. Cell Biol. 
117:47-55. 

Green, S. A., H. Setiadi, R. P. McEver, and R. B. Kelly. 1994. The cytoplas- 
mic domain of P-selectin contains a sorting determinant that mediates rapid 
degradation in lysosomes. J. Cell Biol. 124:435-448. 

Hirt, R. P., G. J. Hughes, S. Frutiger, P. Michetti, C. Perreganx, O. Pouinin- 
Godefroy, C. Jeanguenat, M. R. Neutra, and J.-P. Kraebenbuhl. 1993. 
Transcytosis of the polymeric Ig receptor requires phnsphnrylation of serine 
664 in the absence but not the presence of dimeric IgA. Cell. 74:245-255. 

Huber, L. A., S. Pimpllkar, R. G. Patton, H. Virta, M. Zerial, and K. Simons. 
1993a. Rabg, a small GTPase involved in vesicular traffic between the TGN 
and the basolateral plasma membrane. J. Cell Biol. 123:35-45. 

Huber, L. A., M. J. de Hoop, P. Dupree, M. Zerial, K. Simons, and C. Dotti. 
1993b. Protein transport to the dendritic plasma membrane of cultured neu- 
rons is regulated by rabgp. $. Cell Biol. 123:47-55. 

Hudson, A. W., D. C. Fingar, G. A. Seidner, G. Griffiths, B. Burke, andM. J. 
Birnbaum. 1993. Targeting of the "insulin-responsive" glucose transporter 
(GLUT4) to the regulated secretory pathway in PCI2 cells. J. Cell Biol. 
122:579-588. 

Hughson, E. J., and C. R. Hopkins. 1990. Endocytic pathways in polarized 
Caco-2 cells: identification of an endosomal compartment accessible from 
both apical and basolateral surfaces. J. Cell Biol. 110:337-348. 

Ikonen, E., R. G. Patton, W. Hunziker, K. Simons, and C. G. Detti. 1993. 
Transcytosis of the polymeric immnnoglobnlin receptor in cultured hip- 
pocampal neurons. Curr. Biol. 3:635-644. 

Jahn, R., and T. C. Stidhof. 1993. Synaptic vesicle traffic: rush hour in the 
nerve terufinal. J. Neurochem. 61:12-21. 

Jahn, R., W. Schiebler, C. Ouimet, and P. Greangurd. 1985. A 38,000-dalton 
membrane protein (p38) present in synaptic vesicles. Proc. Natl. Acad. Sci. 
USA. 82:4137-4141. 

Johnston, P. A., P. L. Cameron, H. Stukenbrok, R. Jahn, P. De Camilli, and 
T. C. Siidhof. 1989. Synaptophysin is targeted to similar microvesicles in 
CHO and PCI2 ceils. EMBO (Eur. Mol. Biol. Organ.) J. 8:2863-2872. 

Kelly, R. B. 1993. Storage and release of neurotransmitters. Supplement to Cell 
72. 10:43-55. 

Kelly, R. B. and E. Grote. 1993. Protein targeting in the neuron. Annu. Rev. 
Nearosci. 16:95-127. 

Linstedt, A. D., and R. B. Kelly. 1991. Synaptophysin is sorted from en- 
docytotic markers in neuroendocrine PC12 cells but not transfected fibro- 
blasts. Neuron. 7:309-317. 

Maher, P. A., and S. J. Singer. 1985. Anomalous interaction of the acetylcho- 
line receptor protein with the nonionic detergent Triton X-114. Proc. Natl. 
Acad. Sci. USA. 82:958-962. 

Margolis, T. P., C. M. F. Marchand, H. B. Kistier, Jr., and J. H. LaVail. 1981. 
Uptake and anterograde axonal transport of wheat germ agglutinin from ret- 
ina to optic rectum in the chick. J. Cell Biol. 89:152-156. 

Matmr, K., J. A. Whitney, E. M. Yamamoto, and I. Mellman. 1993. Common 
signals control low density lipoprotein receptor sorting in endosomes and the 
Golgi complex of MDCK cells. Cell. 74:1053-1064. 

Mostov, K. E. 1994. Transepitheiial transport of immunoglobulins. Annu. Rev. 
lmmunol. 12:63-84. 

Mostov, K. E., and D. L. Deitcher. 1986. Polymeric immunoglobulin receptor 
expressed in MDCK cells tranacytoses IgA. Cell. 46:613-621. 

Mostov, K., G. Apodaca, B. Arceti, and C. Okamoto. 1992. Plasma membrane 
protein sorting in polarized epithelial cells. J. Cell Biol. 116:577-583. 

Mostov, K. E., M. Friedlander, and G. Blobel. 1984. The receptor for transepi- 
thellal transport of IgA and IgM contains multiple immunoglobulin-like do- 
mares. Nature (Lond.). 308:37-43. 

Muller, S. R., P. D. Sullivan, D. O. Clegg, andS. C. Feinstein. 1990. Efficient 
transfection and expression of beterologous genes in PCI2 cells. DNA Cell 
Biol. 9:221-229. 

Muller, S. R., S. Y. Huff, B. L. Goode, L. Marschall, J. Chang, and S. C. 
Feinstein. 1993. Molecular analysis of the nerve growth factor inducible or- 
nithine decarboxylase gene in PC12 cells. J. Neurosci. Res. 34:304-314. 

Mundigl, O., M. Matteoli, L. Daniell, A. Thomas-Reetz, A. Metcalf, R. Jahn, 
and P. De Camilli. 1993. Synaptic vesicle proteins and early endosomes in 
cultured hippcr,.mnpal neurons: differential effects of brefeldin A in axon and 
dendrites. J. Cell Biol. 122:1207-1221. 

Mnsil, L. S., and J. U. Baenziger. 1987. Cleavage of membrane secretory com- 

Bonzelius et al. Protein Targeting in Polarized PCI2 Cells 1615 



ponent to ~oluble secretory component occurs on the cell surface of rat hepa- 
tocyte monolayers. J. Cell Biol. 104:1725-1733. 

Navone, F., R. Jahn, G. Di Gioia, H. Stukenbrok, P. Greengard, and P. De 
CamiUi. 1986. Protein p38: an integral membrane protein specific for small 
vesicles of neurons and neurocndocrin¢ cells. J. Cell Biol. 103:2511-2527. 

Parton, R. G., K. Prydz, M. Bomsel, K. Simons, and G. Griffiths. 1989. Meet- 
ing of the apical and basolateral endocytic pathways of the Madin-Darby ca- 
nine kidney cell in late endosomes. J. Cell Biol. t09:3259-3272. 

Patton, R. G., K. Simons, and C. G. Dotti. 1992. Axonal and dendritic endo- 
cytic pathways in cultured neurons. J. Cell Biol. 119:123-137. 

Pietrini, G., Y. J. Suh, L. Edelman, G. Rudnick, and M. J. Caplan. 1994. The 
axonal 7-aminobutyric acid transporter GAT-1 is sorted to the apical mem- 
branas of polarized epithelial cells. J. Biol. Chem. 269:4668-4674. 

Powell, S. K., M. P. Lisanti, and E. J. Rodrignez-Boulan. 1991. Thy-1 ex- 
presses two signals for apical localization in epithelial cells. Am. J. Physiol. 
260:C715-C720. 

Rodriguez-Boulan, E., and S. K. Powell. 1992. Polarity of epithelial and neu- 
ronal cells. Annu. Rev. Cell Biol. 8:395-427. 

Ruda, M., and J. D. Coulter. 1982. Axonal and transneuronal transport of 
wheat germ agglutinin demonstrated by immunocytocbemistry. Brain Res. 
249:237-246. 

Sano, M., R. Katoh-Semba, S. Kitajima, and C. Sato. 1990. Changes in levels 
of microtubule-associated proteins in relation to the outgrowth of neurites 
from PC12D cells, a forskolin- and nerve growth factor-responsive subline 
of PC12 pheochromocytoma cells. Brain Res. 510:269-276. 

Sheetz, M. P., E. R. Steuer, and T. A. Schroer. 1989. The mechanism and 
regulation of fast axonal transport. Trends Neurosci. 12:474-478. 

Slot, J. W., H. J. Geuze, S. Gigengack, G. E. Lienhard, and D. E. James. 1991. 
Immuno-localization of the insulin regulatable glucose transporter in brown 
adipose tissue of the rat. J. Cell Biol. 113:123-135. 

Solari, R., L. Kuhn, and J.-P. Kraehenbuhl. 1985. Antibodies recognizing 

different domains of the polymeric immunoglobulin receptor. J. Biol. Chem. 
260:1141-1145. 

Song, W., M. Bomsel, J. Casanova, J.-P. Vaerman, and K. Mostov. 1994. 
Stimulation of the transcytosis of the polymeric immunoglobulin receptor by 
dimeric IgA. Proc. Natl. Acad. Sci. USA. 91:163-166. 

Steindler, D. A., and J. M. Deniau. 1980. Anatomical evidence for collateral 
branching of substantia nigra neurons: a combined horseradish peroxidase 
and [3H]wheat germ agglutinin axonal transport study in the rat. Brain Res. 
196:228-236. 

Sztul, E., M. Colombo, P. Staid, and R. Samanta. 1993. Control of protein 
traffic between distinct plasma membrane domains-requirement for a novel 
108,000 protein in the fusion of transcytotic vesicles with the apical plasma 
membrane. J. Biol. Chem. 268:1876-1885. 

Vallee, R. B., and G. S. Bloom. 1991. Mechanisms of fast and slow axonal 
transport. Annu. Rev. Neurosci. 14:59-92. 

Van Hooff, C. O. M., J. C. M. Holthuis, A. B. Oestreicher, J. Boonstra, 
P. N. E. De Graan, and W. H. Gispen. 1989. Nerve growth factor-induced 
changes in the intracellular localization of the protein kinase C substrate B-50 
in pheochromocytoma PC12 cells. J. Cell Biol. 108:1115-1125. 

Verkman, A. S., 1992. Water channels in cell membranes. Annu. Rev. Physiol. 
54:97-108. 

White, S., K. Miller, C. Hopkins, and I. C. Trowbridge. 1992. Monoclonal 
antibodies against defined epitopes of the human transferrin receptor cyto- 
plasmic tail. Biochim. Biophys. Aeta. 1136:28-34. 

Wiedenmann, B., H. Rehm, M. Knierim, and C. Becket. 1988. Fractionation 
of synaptophysin-containing vesicles from rat brain and cultured PC12 
pheochromocytoma cells. FEBS (Fed. Eur. Biochem. Soc. ) Left. 240:71-77. 

Zuber, M., S. M. Strittmatter, and M. C. Fishman. 1989. A membrane- 
targeting signal in the amino terminus of the neuronal protein GAP-43. Na- 
ture (Lond.). 341:345-348. 

The Journal of Cell Biology, Volume 127, 1994 1616 


