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Purpose: A new functional regression model is presented to explain the intersubject
variability of the circumpapillary retinal nerve fiber layer (RNFL) thickness in healthy
subjects.

Methods: To evaluate the functional regression approach we used data from 202
healthy volunteers, divided equally into training samples (TS) and validation samples
(VS). Covariates included RNFL, fovea distance, fovea angle, optic disk ratio,
orientation and area provided by Fourier-domain–optical coherence tomography,
age, and refractive error. Root mean square errors (RMSE) were calculated for each of
the 256 sectors and for the 12 clock-hour sectors in the TS and VS and were compared
to the RMSE of the previous model and the standard deviation of the raw data.

Results: With the functional regression approach, we were able to explain on average
27.4% of the variation in the TS and 25.1% of the variation in the VS. The new model
performed better compared to a multivariate linear regression model. It performed
best in the superior-temporal and inferior-temporal clock-hour sectors where the
percentage of RMSE reduction ranged between 26.3% and 44.1% for the TS and
between 20.6% and 35.4% for the VS.

Conclusions: The new functional regression approach improves on the multivariate
linear regression model and allows an even larger reduction of the amount of
intersubject variability, while at the same time using a substantially smaller number of
parameters to be estimated.

Translational Relevance: The demonstrated reduction of interindividual variation is
expected to translate into an improved diagnostic separation between healthy and
glaucomatous subjects, but this remains to be demonstrated in further studies.

Introduction

Glaucoma is a progressive degenerative optic
neuropathy caused by damage of ganglion cell axons
leading to irreversible loss of ganglion cells and their
axons. This results in thinning of the circumpapillary
retinal nerve fiber layer (RNFL), loss of visual field
(VF), and without proper treatment, to permanent
blindness. Current diagnosis methods consider imag-
ing techniques such as optical coherence tomography
(OCT), which, succinctly, measures RNFL thickness
and compares it with a normative database.1 Howev-

er, these measurements currently present a high
intersubject variance,2 mainly due to individual
anatomical factors. Because it is the most frequent
cause of irreversible blindness in industrialized
nations, with an estimate of about 112 million people
affected by the disease,3 it is crucial to find more
accurate methods that can improve diagnosis.

Our recent efforts have been focused on developing
and implementing a compensation method that takes
into account individual anatomical parameters that
may contribute and compensate for the intersubject
variability.4–6 Specifically, a multivariate linear re-
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gression approach including retinal vessel density
(RVD)—a parameter reflecting the locations and
thicknesses of all measurable circumpapillary retinal
vessels—as well as optic disc shape descriptors and
fovea parameters allowed a significant decrease in
intersubject variability of RNFL.6 We reported a
reduction of 18% on average, and up to 29%
measured in 12 clock-hour sectors, of the coefficient
of variation of RNFL thickness. This previous
approach considered 256 independent models around
the optic disc (OD) with values of RNFL thickness at
a given sector as the dependent variable and all
putative parameters, including the values of RVD at
the respective sector, as independent factors. Al-
though achieving an actual reduction of intersubject
variability, this approach had, from a statistical
perspective, some serious shortcomings. Model selec-
tion was performed for each of the 256 sectors
individually, resulting in potential overfitting due to
the large number of parameters to be estimated.
Furthermore, the apparent correlation of RNFL
between neighboring sectors was not taken into
account at all. We propose here a functional
regression approach that is meant to overcome these
weaknesses.

Functional regression analysis is becoming more
and more important in many research fields. The
basic ideas are presented by Ramsay and Silverman,7

whereas more recent developments in terms of
application have been described by Morris.8 Here
we modeled for each subject the entire RNFL curve,
composed of 256 thickness values, using only 16 basis
functions. The coefficients corresponding to these
basis functions were then used as dependent variables
in regression models with eight regressors: vessel
thickness plus seven other explanatory variables that
were used in the previous multivariate approach.
Model selection was performed for each of the 16
linear models. The resulting number of coefficients to
be estimated was much smaller than in the multivar-
iate approach, while achieving a better fit of the data,
as will be demonstrated by analyzing both the training
data set as well as an independent validation sample.

Methods

Subjects and Parameter Extraction

Available data from 202 healthy subjects were
randomly split in a training data set (TS) and a
validation data set (VS). The research followed the
tenets of the Declaration of Helsinki. Informed

consent was obtained from the subjects after expla-
nation of the nature and possible consequences of the
study. The demographics of the overall sample and
description of the ophthalmic examinations per-
formed for all subjects included are described
elsewhere.6 Shortly, OCT examinations of the OD
(cube, 200 3 200) and the macula (cube, 512 3 128)
were acquired with Fourier-domain OCT (FD-OCT)
(Cirrus; Carl Zeiss Meditec, Inc., Dublin, CA, USA).
Scans with a quality index lower than 6 (ranging from
0 to 10) or movement artifacts within the measure-
ment circle were excluded. The image data were
exported and analyzed with the Cirrus Research
Browser (software version 6.0.2.81), which included
segmentation of the RNFL of the 3.4-mm peripapil-
lary circle.

The automated parameter extraction was per-
formed as previously published when concerning
OD and fovea descriptors. Retinal vessel segmenta-
tion was performed using the same methods previ-
ously described.6 Using the vessel trees generated in
the OD-centered images, we considered all vessels
within a band of diameter around the OD center
extending from 3.28 to 3.64 mm to integrate a 256-
sector vessel profile. This discrete profile was based
on vessel thickness and position relative to the OD
(angle). The thickness of each vessel was attributed to
a specific sector (out of 256 sectors, each 1.48 wide)
according to its angle. As opposed to the linear
regression model previously presented, we considered
only a discrete profile representative of retinal vessel
location in a circumpapillary profile, that is, without
considering a Gaussian convolution.6

Statistical Analysis

The functional regression approach that was
implemented in R version 3.3.2, making use of the
fda.usc package,9 will be only briefly outlined here. A
more detailed description is given in the Supplemen-
tary Material. The first step consisted of landmark
registration with respect to three characteristic points
of the RNFL curves: the minimum near the fovea and
two flanking maximum peaks. After aligning individ-
ual curves according to these landmark points, 16
functional principal components were computed and
used as base functions to approximately model the
aligned RNFL curves. The corresponding principal
component analysis (PCA) loadings were then con-
sidered as dependent variables in a regression model
including vessel thickness and seven additional
subject-specific characteristics as explicatory vari-
ables. To be able to compare our results with those
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from Pereira et al.,6 the subject-specific variables
included age, spherical refractive error (RE), OD area
(ODA), OD orientation (ODO), OD ratio (ODR), as
well as fovea angle (FA), which is the angle between
the fovea and the OD centers and a horizontal line,
and fovea distance (FD) from the OD center. The
final step consisted of model selection based on the
Akaike Information Criterion (AIC) resulting in a
model with 49 parameters.

The functional regression approach and the
multivariate model of Pereira et al.6 were applied to
the 101 subjects of TS. RNFL thickness profile,
estimated with the functional regression approach for
the aligned curves, was transformed back to the
original coordinate system by linear interpolation,
and residuals were calculated at the 256 original
sectors. The different models were assessed according
to the root mean square error (RMSE) at each sector.
Moreover, for each individual the overall RMSE and
the RMSE over 12 clock-hour sectors were calculated
for both approaches, and differences were tested using
pairwise t-tests. The validation data set underwent the
same kind of analysis to compare multivariate linear
regression and functional data analysis. The valida-
tion step, performed in a sample different from the
one used to train the model, ensures that differences
in performance were not due to overfitting the
training data set.

Results

After backward selection using AIC, 49 coeffi-
cients were estimated in our functional regression
model. By multiplication of the covariate specific
coefficients with the basis functions, we obtained
temporal-superior-nasal-inferior-temporal (TSNIT)
profiles for each subject characteristic (Fig. 1). These
curves show the amount of expected change in RNFL
thickness according to one unit change in the subject
characteristic.

Age did not show a strong effect throughout the
complete RNFL profile, with�0.036 lm per year on
average. An increase in ODR was associated with a
thicker RNFL in the area around the peaks, leaving
the peaks relatively unchanged. In addition, RNFL
was reduced in the nasal and temporal parts of the
measurement circle. Subjects with a larger ODO,
meaning a superior pole rotated toward the macula,
tended to have thicker RNFL nasal inferior and
thinner RNFL nasal superior. RNFL thickness
generally increased with bigger ODA, and did so
especially in the areas around the two peaks.

Regarding fovea parameters, larger FD was clearly
associated with increased RNFL thickness in the
temporal parts of the measurement circle and with
reduced RNFL thickness in nasal inferior. A bigger
FA (i.e., the fovea position being higher up in the
macula) resulted in larger RNFL thickness around
the superior peak and even much more so on the nasal
side of the superior peak. On the nasal side of the
inferior peak, subjects with larger FA showed a
steeper decline of RNFL thickness.

Regarding refractive error, a positive value (hy-
peropia) was associated with slightly higher RNFL
thickness in the nasal area but lower RNFL thickness
in the peaks and on the temporal side of the peaks.

Compensated RNFL Model Reveals a
Clinically Significant Reduction of RNFL
Variation

Figure 2 provides for each sector the RMSE over
all subjects in the TS (blue curve). We compared the
RMSE of the multivariate model from Pereira et al.6

(red curve) with the RMSE of the simplest possible
approach of considering the overall mean curve
without any subject-specific information (null model,
black curve). Note that in this last case the RMSE is
identical to the standard deviation of the sample.

RMSE averaged over the 12 clock-hour sectors is
presented in Table 1 for all three approaches.
Corresponding results for the coefficient of variation
of RMSE are presented in Part B of the Supplemen-
tary Material. Numbering of the clock-hour sectors
starts with sector 1, corresponding to the 9 o’clock
sector in the temporal side of the eye. With the
functional regression model, the average RMSE was
reduced from 18.97 to 13.78 lm, meaning that we
were able to explain, on average, 27.4% of the
variation in the TS, significantly more than the
multivariate linear regression model approach (P-
value t-test , 0.0001), which reduced the RMSE
from 18.97 to 15.42 lm, which translates to a
reduction of 18.7%. The new model performed best
in the superior-temporal and inferior-temporal areas
(clock-hour sectors 2–4 and 10–11), where the
percentage of reduction ranged between 26.3% and
44.1%, respectively. In these sectors, the reduction
was also significantly higher than the reduction
obtained the multivariate model (15.4% to 22.0%).
Only in sector 8 did the new functional approach
performed significantly worse than the multivariate
linear model, with a reduction of 11.7% compared to
21.2%.
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Figure 1. Modified TSNIT profiles on the aligned coordinate system for the seven parameters: age, ODR, ODO, ODA, FD, FA, and
refractive error.
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Furthermore, we compared the width of the 5th-
and 95th-percentile band of errors in the TS between
the three models (Fig. 3). This comparison is
especially relevant when identifying pathologic sub-
jects. It is evident that the 5th- to 95th-percentile band
of the functional regression model was smaller over

all 256 sectors than the raw data percentile band. It
was also smaller than the percentile band of the
multivariate approach in the temporal-superior and
temporal-inferior area of the circumpapillary retinal
band while having comparable width in the nasal and
temporal areas.

Figure 2. RMSE over null model (black), multivariate model (red), and functional regression approach (blue) for the training data set.

Table 1. RMSE of the 12 Clock-Hour Sectors Over the 101 Subjects of the Training Data Set for the Three
Different Modelsa

Sectors
Null Model,

Mean lm (SD)
Multivariate Model,

Mean lm (SD)

Functional
Regression Model,

Mean lm (SD)

P-Value t-Test
Multivariate
vs Function

1 6.00 (3.90) 4.73 (2.95) 4.68 (2.91) 0.8143
2 10.81 (6.72) 9.14 (6.27) 7.97 (5.05) 0.0051*
3 22.85 (13.15) 17.83 (10.95) 12.78 (8.45) ,0.0001*
4 22.97 (13.45) 18.11 (10.94) 15.66 (10.59) 0.0011*
5 20.72 (11.68) 16.51 (9.27) 16.25 (8.98) 0.5750
6 17.85 (10.31) 14.06 (8.28) 14.28 (8.51) 0.6430
7 9.52 (5.59) 8.24 (4.92) 8.66 (4.58) 0.0801
8 11.32 (6.28) 8.92 (4.75) 10.00 (5.78) 0.0056*
9 18.29 (10.45) 16.01 (8.69) 14.76 (8.62) 0.0650
10 20.52 (14.04) 16.87 (11.46) 13.94 (9.37) 0.0009*
11 20.02 (11.26) 16.29 (9.85) 13.56 (8.01) 0.0013*
12 11.10 (7.44) 8.90 (5.90) 7.89 (5.63) 0.0837
Overall 18.97 (5.45) 15.42 (4.44) 13.78 (4.13) ,0.0001*

a Numbering of the clock-hour sectors starts with sector 1, corresponding to the 9 o’clock sector in the temporal side of
the eye.

* Significant at level a ¼ 0.05.
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Comparing the Effect of RNFL Alignment,
RVD, and Other Parameters

To investigate the amount of variance reduction
due to each of the three components (the alignment,
the vessel correction, and the influence of the subject’s
characteristics) we compared the results of several
reduced models to the full model. Table 2 shows the
RMSE and which percentage of the raw data variance
could be explained (in percentages) for each model for
each of the 12 clock-hour sectors separately and for
the average over all 256 sectors. A reduction of
RMSE by 14.8% occurs already because of the

alignment, which especially leads to reduced variation

in the clock-hour sectors 1 to 4 and 9 to 12, but

increases variation in the clock-hour sectors 5 to 8.

Quite a large proportion of the variance can be

explained by adding retinal vessels to the model, with

additional 9.4% reduction in the mean RMSE over all

256 sectors. The model combining alignment and

vessels results in variance reduction in all of the clock-

hour sectors (between �5.6% and �40.7%). By

correcting for the other seven characteristics of

subjects, we gain 4.2% compared to the alignment-

only model and 3.2% when comparing the full model

Figure 3. Five to ninety-five percent percentile bands of residuals: black, null model; red, multivariate model; blue, functional regression
model.

Table 2. RMSE of the Null Model and Reduction in Percentage for the Other Models in Each Clock-Hour Sector
and Averaged Over All 256 Sectors for the Training Data Set

Sectors Null Model
Alignment

Only
Alignment and

Vessels
Alignment and
Characteristicsa Full Model

1 6.00 �12.6% �11.4% �22.9% �22.0%
2 10.81 �23.3% �24.0% �24.8% �26.3%
3 22.85 �39.5% �40.7% �44.4% �44.1%
4 22.97 �21.8% �30.1% �24.8% �31.8%
5 20.72 þ3.2% �17.1% �4.9% �21.6%
6 17.85 þ3.0% �16.9% �0.6% �20.0%
7 9.52 þ10.3% �5.6% þ5.4% �9.0%
8 11.32 þ12.9% �8.6% þ8.4% �11.7%
9 18.29 �7.1% �17.7% �9.3% �19.3%
10 20.52 �24.4% �30.6% �26.9% �32.1%
11 20.02 �24.9% �28.7% �29.9% �32.3%
12 11.1 �19.2% �19.6% �26.6% �28.9%
Overall 18.97 �14.8% �24.2% �19.0% �27.4%

a The column Alignment and Characteristics refers to the model including the seven subjects’ characteristics but not the
vessel thickness.
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to the model including only alignment and vessel

correction.

Successful Validation of the Functional
Regression Model in a Separate Sample

In the validation step, the functional regression

and multivariate linear regression models obtained in

the TS were applied to an independent data set of 101
healthy volunteers, the VS. All physiological param-
eters were calculated in a way similar to those in the
TS. The resulting RMSEs from the three models are
presented in Figure 4 for all 256 sectors and in Table 3
for the 12 clock-hour sectors. Results for the
coefficient of variation are presented again in Part B
of the Supplementary Material.

Figure 4. RMSE over null model (black), multivariate model (red), and functional regression approach (blue) for the validation data set.

Table 3. RMSE in for the 12 Clock-Hour Sectors and Averaged Over All 256 Sectors for the Three Different
Models in the Validation Data Set

Sectors
Null Model,

Mean lm (SD)
Multivariate Model,

Mean lm (SD)6

Functional
Regression Model,

Mean lm (SD)

P-Value t-Test
Multivariate
vs Function

1 5.92 (4.18) 5.12 (3.59) 5.20 (3.54) 0.7475
2 11.07 (8.02) 10.32 (6.38) 8.79 (4.79) 0.002*
3 19.86 (10.18) 16.19 (8.59) 14.25 (8.00) 0.0162*
4 24.46 (13.35) 17.82 (9.02) 16.25 (8.55) 0.056
5 20.65 (11.15) 16.59 (9.96) 17.44 (9.47) 0.0645
6 18.92 (10.05) 15.26 (8.48) 16.07 (9.43) 0.1559
7 10.32 (5.56) 9.17 (5.08) 9.68 (5.57) 0.0964
8 12.85 (6.26) 10.72 (5.74) 10.58 (5.14) 0.7606
9 21.95 (11.23) 17.29 (9.42) 15.95 (9.66) 0.1015
10 23.97 (12.68) 18.73 (9.78) 15.48 (8.78) 0.0002*
11 20.67 (9.98) 17.37 (8.49) 13.65 (7.56) ,0.0001*
12 11.07 (6.61) 9.27 (5.40) 8.12 (5.25) 0.0436*
Overall 19.55 (5.29) 15.87 (3.75) 14.65 (3.85) ,0.0001*

* Significant at level a ¼ 0.05.
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In the VS the functional regression model reduced
the average RMSE from 19.55 to 14.65 lm, a
reduction of 25.1%. Similar to the TS, the model
performed best in the superior and inferior areas
(clock-hour sectors 2–3 and 10–11) where the
percentage of reduction in the VS ranged between
20.6% and 35.4%. The multivariate model reduced the
RMSE from 19.55 to 15.87 lm, a reduction by 18.8%,
which is significantly less than the functional regres-
sion model (P-value t-test , 0.0001)

In addition, the amount of variance reduction due
to each of the three components (the alignment, the
vessel correction, and the influence of the subject’s
characteristics) was quite comparable between the VS
and the TS. Table 4 shows the RMSE for each of the
clock-hour sectors and averaged over all 256 sectors
(mean in micrometers), as well as the resulting
reduction compared with the null model (in percent-
ages) for each model. The reduction of RMSE due to
alignment only was 13.5% (compared to 14.8% in the
TS), again with reduced variation in sectors 1 to 4 and
9 to 12, but with increased variation in sectors 5 to 8.
Taken together with vessel correction, 23.6% of the
RMSE could be explained on average over all 256
sectors (which is similar to the reduction in TS with
24.2%). Only the reduction of the RMSE due to the
subject’s characteristics was smaller in the VS than in
the TS: further 1.0% if applied to the aligned data but
without correcting for the vessels and 1.5% if included
in a model with alignment and vessel correction.

Discussion

In this study we present an improvement of the
multivariate linear regression model previously pub-
lished by our team.6 This new model is based on
functional regression, a relatively new development in
statistical methodology, which allows for functional
modeling of the circumpapillary RNFL thickness
profile. In this way, the RNFL thickness is treated as
a continuous function and correlation between
different sectors is properly accounted for, in contrast
to the previous approach in which independent linear
models for each sector were considered. A further
advantage of the new method is that the number of
parameters to be estimated is much smaller than in
the previous method, which reduces the danger of
overfitting the training data set. Each RNFL curve is
no longer represented by 256 points but rather by 19
parameters corresponding to three landmark param-
eters and 16 basis functions. In terms of estimation,
we are dealing with a total of 128 parameters, out of
which 49 were selected with AIC to obtain one model
representing the RNFL of the complete circum-
papillary measurement circle, as compared to 2048
parameters in 256 separate models in the multivariate
linear regression approach. The new method also
overcomes the issue of having a different best-fitting
model in each sector, and as seen in Figure 1, the
influence of subject-specific covariates is modeled as a
smooth function over all sectors in stark contrast to
the previous model.

Table 4. RMSE of the Null Model and Reduction in Percentage for the Other Models in Each Clock-Hour Sector
and Averaged Over all 256 Sectors for the Validation Data Set

Sector Null Model
Alignment

Only
Alignment and

Vessels
Alignment and
Characteristics Full Model

1 5.92 �7.5% �5.1% �14.1% �12.2%
2 11.07 �14.2% �18.9% �14.6% �20.6%
3 19.86 �27.6% �29.4% �27.7% �28.3%
4 24.46 �23.1% �31.7% �25.4% �33.6%
5 20.65 þ1.9% �13.9% þ0.8% �15.6%
6 18.92 þ2.1% �13.5% þ0.3% �15.1%
7 10.32 þ6.3% �8.1% þ10.2% �6.2%
8 12.85 þ5.5% �11.0% þ3.0% �17.6%
9 21.95 �10.3% �23.0% �11.5% �27.3%
10 23.97 �23.2% �32.8% �26.2% �35.4%
11 20.67 �28.0% �35.1% �29.4% �33.9%
12 11.07 �24.1% �29.0% �21.8% �26.6%
Overall 19.55 �13.5% �23.6% �14.5% �25.1%
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Our particular functional regression approach
includes an initial landmark registration. In the past,
it has been proposed to align the RNFL measurement
circle according to the disc-fovea line, aiming to
partly reduce the interindividual variability. However,
this approach equals a simple rotation of the RNFL
measurement circle, which has been demonstrated to
fail in reducing interindividual variability.10–12 The
difference in our present approach is that both RNFL
peaks and the temporal RNFL minimum are used to
align the RNFL measurement circle in a way that
results in different amounts and directions of rotation
around the circle for a given subject. This landmark
registration procedure reduces, on average, the
intersubject variability by about the same amount as
the joint influence of vessels and other subject-specific
covariates. There are some clock-hour sectors where
our landmark registration slightly increases the
RMSE, but only in those sectors where even the null
model gives already relatively small errors, which was
nasally between 1 and 5 o’clock. In those sectors
where the null model is doing particularly badly (close
to the peaks P1 and P2, see Supplementary Figure
S1), landmark registration gives the largest reduction
in RMSE.

When comparing the TSNIT profiles of the
individual parameters, it is of interest to note that
the TSNIT profiles of the functional regression model
(Fig. 1) are presented in the aligned coordinate
system, whereas Pereira et al.6 gave results from the
multivariate linear regression model in the original
coordinate system. In general, all factors had fairly
similar behavior along the TSNIT profile for both
approaches. In accordance with our previously
reported results, age did not show a strong effect
throughout the complete RNFL profile, with a loss of
0.036 lm per year on average. In the literature, this
loss has mostly been found to be between 0.2 and 0.5
lm per year.13–21 The reason for the weaker
correlation in our study might be that our samples
are composed by mainly young subjects with a mean
age around 31 years. Some authors have published
evidence that age-dependent decline in RNFL may be
steeper after an age of 40 to 50 years,19,20 although
this has not been confirmed in a recent longitudinal
study.18

An increased ODR (more elongated OD) resulted
in a broader RNFL peak and a reduced RNFL
thickness nasally and temporally in the functional
regression model. The former has not yet been
described, to the best of our knowledge, while the
latter has also been a finding in our multivariate linear

model.6 The difference between the models might be
explained by the fact that the peak location is
variable, which is now reflected in the model by the
alignment but was not so in the multivariate linear
model. Our results confirm previous findings of our
own group and others that bigger ODA is associated
with thicker RNFL over all sectors but is especially
strong in the areas around the two peaks.6,22

As in our previously published multivariate model,
increasing FD still is associated with increasing
RNFL in temporal areas.6 This might reflect the
temporal shift in the RNFL profile in subjects in
which the distance between fovea and OD center was
increased, as previously reported.23 FA presents a
highly positive association with RNFL in superior
through superior-nasal areas and a negative influence
in nasal and inferior sectors, which may represent the
rotation of the superior RNFL peak toward temporal
sectors in cases in which the fovea is located more
inferiorly to the OD. These findings essentially
confirm those obtained with our old approach.6

Regarding refractive error, we found a negative
association with RNFL in temporal areas, which
confirms our previous findings.6 However, with the
functional regression model the maximum of this
negative association is around the peak areas of
RNFL, while in the multivariate linear model there
was a positive association at the superior peak. The
difference between the two models likely is related to
the landmark registration, which now corrects for
different peak locations. In the old model, these
differences had to be accounted for by other factors
such as the vessels and also by the refractive error. It
has been previously reported6,24 that in myopic eyes
both the retinal vessel arcades and the arcuate bundles
of the RNFL tend to be displaced to the temporal
side.

The functional data analysis increases the reduc-
tion of intersubject variability compared to the
multivariate model approach. We observed a reduc-
tion of 27.4% of RMSE (as opposed to 18.7% in the
multivariate approach) in the training sample and a
reduction of 25.1% (compared to the previous
reduction of 18.8%) in the validation sample. In both
samples, the difference between the multivariate linear
approach and the new functional data analysis was
statistically significant. The validation of the func-
tional data model in an independent data set indicates
that there was no serious problem of overfitting.
However, despite theoretical concerns about possible
overfitting, as discussed above, the previous multi-

9 TVST j 2018 j Vol. 7 j No. 1 j Article 9

Pereira et al.

http://tvst.arvojournals.org/data/Journals/TVST/936672/tvst-07-01-07_s01.pdf
http://tvst.arvojournals.org/data/Journals/TVST/936672/tvst-07-01-07_s01.pdf


variate model was performing quite well in the
validation step.

The improvement by the functional regression
model as compared to our old model was mainly
concentrated on the superior-temporal and the
inferior-temporal sectors, which are of major clinical
relevance. These sectors represent the locations with
the best discrimination between glaucoma suspects
and glaucoma patients.25 Furthermore, the majority
of glaucoma patients show RNFL defects at these
locations.26 Reducing the interindividual variation
may thus be especially valuable in those sectors.

What would be the relevance of reducing the
intersubject variability of RNFL measurement? It has
been stated by others that if interindividual variability
can be reduced, it should be possible to improve the
sensitivity and specificity of tests based upon OCT
RNFL thickness.27 This is to be expected since usually
a factor with known association with RNFL thickness
(for example, age) can be used to either correct for its
impact on RNFL thickness or to construct an age-
corrected normative database—two sides of the same
coin. The effect of age on RNFL thickness as
measured by OCT has been first described by Bowd
et al. in 2002,13 where it explained less than 17% of the
total interindividual variance. Since then, the effect of
age on RNFL has been confirmed by numerous
authors,14–17,20–21,28 but to the best of our knowledge
nobody as yet has evaluated whether compensation
for age reduces interindividual variation of RNFL
thickness or improves diagnostic separation. Never-
theless, the normative databases of OCT devices take
into account the effect of age. In our opinion, this
discrepancy between clinical use and lack of scientific
proof reflects the natural acceptance by human
reasoning that correcting for age will improve the
diagnostic performance of OCTs. It is obvious for us
that an aged person with thus reduced but healthy
RNFL must not be compared with normal limits of
young people or even a mixed population without
taking into account the effect of age on RNFL.
Consequently, as yet nobody has tested this hypoth-
esis. If we take into account several physiologic
factors, as we do here, that are all associated with
RNFL thickness, the same argument should hold: If
these factors explain a considerable part of the
interindividual variation (and they do), then this is
of clinical relevance and should result in a better
diagnostic separation.

There are, of course, caveats and therefore limiting
factors for the above-outlined reasoning: The factors
we are using should not themselves be involved in the

disease process: We think this is not the case, but we
cannot completely exclude this possibility. An effect
of overfitting might lead to an overestimation of the
effect of the associations, but this is unlikely since we
have confirmed our findings in a separate validation
sample. In addition, we might not have considered all
factors that have an influence on RNFL in the current
model. Previous reports demonstrate that correcting
for additional factors may further reduce intersubject
variability of RNFL29 and, in the case of our
multivariate model, may also influence some of the
described correlations.24,30 In terms of age distribu-
tion, both data sets (training and validation) are
composed of relatively young subjects (under 40 years
old), which may mask or minimize some meaningful
impacts that are currently not explicit in the analysis.
This fact, however, does not invalidate any of the
results presented, and it does not contradict any of the
previous reports correlating age and RNFL thick-
ness.20,21,28,31 Moreover, it would be desirable to
redefine OD descriptors. The fact that three descrip-
tors (orientation, ratio, and area) are considered may
bring some competitiveness between parameters,
specifically between ratio and orientation, both
dependent on the major axis defined by the OD
contour.

One limitation when applying the model to
glaucoma patients with moderate to advanced dam-
age might be that at least one of the major RNFL
peaks could be missing. This may impact the
landmark registration, and as yet it remains unclear
how this would impact the performance of the model.
However, the main purpose of applying a model such
as ours will be to enhance early diagnosis of glaucoma
by reducing the interindividual variance and thus be
able to detect a smaller amount of RNFL reduction
with an increased specificity. Although this remains to
be demonstrated in future studies, the limitation
discussed above will likely not be very relevant in
those patients because degeneration has not yet been
severe enough to eliminate RNFL peaks.

This new update of our previously developed
model confirms and further emphasizes the crucial
importance of considering anatomical parameters,
specific to each subject, as a strong influence on
RNFL thickness distribution. The idea presented
previously is now confirmed and improved and likely
would be suitable for clinical routine. As with age in
present normative databases, a more complex model
such as ours can be used to calculate expected values
of the RNFL. Based on this expected value and the
variance of the model, a lower limit of normality may
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then be calculated. We would call such normal limits
individual normal limits, since no two subjects would
be equal in all parameters included in the model.

To summarize, this manuscript presents a statisti-
cally more sophisticated method to explain, correct
for, and thereby reduce interindividual variation in
RNFL thickness. The new method uses functional
regression analysis and significantly improves on the
previously published multivariate linear model in
terms of reducing interindividual variation of the
RNFL by 25% (compared to 19%). The largest
improvements are observed in the inferior-temporal
and the superior-temporal sectors, with up to 35%
reduction of variation. These sectors also represent
the most important regions to detect early glaucoma-
tous RNFL damage. The relevant reduction of
interindividual variation is expected to translate into
an improved diagnostic separation between healthy
and glaucomatous subjects, but this will have to be
demonstrated in future work.

Acknowledgments

Supported by Grant LS11-046 from Vienna
Science and Technology Fund.

Disclosure: I. Pereira, None; E. Pablik, None; F.
Schwarzhans, None; H. Resch, None; G. Fischer,
None; C. Vass, None; F. Frommlet, None

References

1. Townsend KA, Wollstein G, Schuman JS.
Imaging of the retinal nerve fibre layer for
glaucoma. Br J Ophthal. 2009;93:139–143.

2. Ghadiali Q, Hood DC, Lee C, et al. An analysis
of normal variations in retinal nerve fiber layer
thickness profiles measured with optical coher-
ence tomography. J Glaucoma. 2008;17:333–340.

3. Tham YC, Li X, Wong TY, Quigley HA, Aung T,
Cheng CY. Global prevalence of glaucoma and
projections of glaucoma burden through 2040. A
systematic review and meta-analysis. Ophthalmol-
ogy. 2014;121:2081–2090.

4. Pereira I, Weber S, Holzer S, et al. Correlation
between retinal vessel density profile and circum-
papillary RNFL thickness measured with Four-
ier-domain optical coherence tomography. Br J
Ophthalmol. 2014;98:538–543.

5. Pereira I, Weber S, Holzer S, Fischer G, Vass C,
Resch H. Compensation for retinal vessel density
reduces the variation of circumpapillary RNFL in
healthy subjects. PloS One. 2015;10:e0120378.

6. Pereira I, Resch H, Schwarzhans F, et al.
Multivariate model of the intersubject variability
of the retinal nerve fiber layer thickness in healthy
subjects. Invest Ophthalmol Vis Sci. 2015;56:
5290–5298.

7. Ramsay J, Silverman BW. Functional Data
Analysis. 2 ed. New York, NY: Springer-Verlag;
2005.

8. Morris JS. Functional regression. Annu Rev Stat
Appl. 2015;2:321–359.

9. Febrero-Bande M, de la Fuente MO. Statistical
computing in functional data analysis: the R
package fda.usc. J Stat Softw. 2012;51:1–28.

10. Choi JA, Kim JS, Park HY, Park H, Park CK.
The foveal position relative to the optic disc and
the retinal nerve fiber layer thickness profile in
myopia. Invest Ophthalmol Vis Sci. 2014;55:1419–
1426.

11. Amini N, Nowroozizadeh S, Cirineo N, et al.
Influence of the disc-fovea angle on limits of
RNFL variability and glaucoma discrimination.
Invest Ophthalmol Vis Sci. 2014;55:7332–7342.

12. Resch H, Pereira I, Hienert J, et al. Influence of
disc-fovea angle and retinal blood vessels on
interindividual variability of circumpapillary ret-
inal nerve fibre layer. Br J Ophthalmol. 2016;100:
531–536.

13. Bowd C, Zangwill LM, Blumenthal EZ, et al.
Imaging of the optic disc and retinal nerve fiber
layer: the effects of age, optic disc area, refractive
error, and gender. J Opt Soc Am A Opt Image Sci
Vis. 2002;19:197–207.

14. Kim JS, Ishikawa H, Sung KR, et al. Retinal
nerve fibre layer thickness measurement repro-
ducibility improved with spectral domain optical
coherence tomography. Br J Ophthalmol. 2009;
93:1057–1063.

15. Knight OJ, Girkin CA, Budenz DL, Durbin MK,
Feuer WJ; Cirrus OCT Normative Database
Study Group. Effect of race, age, and axial length
on optic nerve head parameters and retinal nerve
fiber layer thickness measured by Cirrus HD-
OCT. Arch Ophthalmol. 2012;130:312–318.

16. Lee JY, Hwang YH, Lee SM, Kim YY. Age and
retinal nerve fiber layer thickness measured by
spectral domain optical coherence tomography.
Korean J Ophthalmol. 2012;26:163–168.

17. Patel NB, Lim M, Gaijar A, Evans KB, Harwerth
RS. Age-associated changes in the retinal nerve

11 TVST j 2018 j Vol. 7 j No. 1 j Article 9

Pereira et al.



fiber layer and optic nerve head. Invest Ophthal-
mol Vis Sci. 2014;55:5134–5143.

18. Zhang X, Francis BA, Dastiridou A, et al.
Longitudinal and cross-sectional analyses of age
effects on retinal nerve fiber layer and ganglion
cell complex thickness by Fourier-domain OCT.
Transl Vis Sci Technol. 2016;5:1.

19. Peng PH, Hsu SY, Wang WS, Ko ML. Age and
axial length on peripapillary retinal nerve fiber
layer thickness measured by optical coherence
tomography in nonglaucomatous Taiwanese par-
ticipants. PLoS One. 2017;12:e0179320.

20. Parikh RS, Parikh SR, Sekhar GC, et al. Normal
age-related decay of retinal nerve fiber layer
thickness. Ophthalmology. 2007;114:921–926.

21. Alasil T, Wang KD, Keane PA, et al. Analysis of
normal retinal nerve fiber layer thickness by age,
sex, and race using spectral domain optical
coherence tomography. J Glaucoma. 2013;22:
532–541.

22. Savini G, Zanini M, Carelli V, Sadun AA, Ross-
Cisneros FN, Barboni P. Correlation between
retinal nerve fibre layer thickness and optic nerve
head size: an optical coherence tomography
study. Brit J Ophthalmol. 2005;89:489–492.

23. Hong SW, Ahn MD, Kang SH, Im SK. Analysis
of peripapillary retinal nerve fiber distribution in
normal young adults. Invest Ophthalmol Vis Sci.
2010;51:3515–3523.

24. Yamashita T, Asaoka R, Tanaka M, et al.
Relationship between position of peak retinal
nerve fiber layer thickness and retinal arteries on
sectoral retinal nerve fiber layer thickness. Invest
Ophthalmol Vis Sci. 2013;54:5481–5488.

25. Lisboa R, Leite MT, Zangwill LM, et al.
Diagnosing preperimetric glaucoma with spectral
domain optical coherence tomography. Ophthal-
mology. 2012;119:2261–2269.

26. Hood DC, Wang DL, Raza AS, et al. The
locations of circumpapillary glaucomatous de-
fects seen on frequency-domain OCT scans.
Invest Ophthalmol Vis Sci. 2013;54:7338–7343.

27. Hood DC, Salant JA, Arthur SN, Ritch R,
Liebmann JM. The location of the inferior and
superior temporal blood vessels and interindivid-
ual variability of the retinal nerve fiber layer
thickness. J Glaucoma. 2010;19:158–166.

28. Celebi AR, Mirza GE. Age-related change in
retinal nerve fiber layer thickness measured with
spectral domain optical coherence tomography.
Invest Ophthalmol Vis Sci. 2013;54:8095–8103.

29. Huang D, Chopra V, Lu ATH, et al. Does optic
nerve head size variation affect circumpapillary
retinal nerve fiber layer thickness measurement by
optical coherence tomography? Invest Ophthalmol
Vis Sci. 2012;53:4990–4997.

30. Kang SH, Hong SW, Im SK, et al. Effect of
myopia on the thickness of the retinal nerve fiber
layer measured by Cirrus HD optical coherence
tomography. Invest Ophthalmol Vis Sci. 2010;51:
4075–4083

31. Kerrigan-Baumrind LA, Quigley HA, Pease ME,
et al. Number of ganglion cells in glaucoma eyes
compared with threshold visual field tests in the
same persons. Invest Ophthalmol Vis Sci. 2000;41:
741–748.

12 TVST j 2018 j Vol. 7 j No. 1 j Article 9

Pereira et al.


	Introduction
	Methods
	Results
	f01
	f02
	t01
	f03
	t02
	f04
	t03
	Discussion
	t04
	b01
	b02
	b03
	b04
	b05
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24
	b25
	b26
	b27
	b28
	b29
	b30
	b31

