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Abstract

Skeletal muscle weakness is a prominent feature in patients with rheumatoid arthritis (RA).

In this study, we investigated whether neuromuscular electrical stimulation (NMES) training

protects against skeletal muscle dysfunction in rats with adjuvant-induced arthritis (AIA).

AIA was produced by intraarticular injection of complete Freund’s adjuvant into the knees of

Wistar rats. For NMES training, dorsiflexor muscles were stimulated via a surface electrode

(0.5 ms pulse, 50 Hz, 2 s on/4 s off). NMES training was performed every other day for three

weeks and consisted of three sets produced at three min intervals. In each set, the electrical

current was set to achieve 60% of the initial maximum isometric torque and the current was

progressively increased to maintain this torque; stimulation was stopped when the 60% tor-

que could no longer be maintained. After the intervention period, extensor digitorum longus

(EDL) muscles were excised and used for physiological and biochemical analyses. There

was a reduction in specific force production (i.e. force per cross-sectional area) in AIA EDL

muscles, which was accompanied by aggregation of the myofibrillar proteins actin and des-

min. Moreover, the protein expressions of the pro-oxidative enzymes NADPH oxidase, neu-

ronal nitric oxide synthase, p62, and the ratio of the autophagosome marker LC3bII/LC3bI

were increased in AIA EDL muscles. NMES training prevented all these AIA-induced alter-

ations. The present data suggest that NMES training prevents AIA-induced skeletal muscle

weakness presumably by counteracting the formation of actin and desmin aggregates.

Thus, NMES training can be an effective treatment for muscle dysfunction in patients with

RA.

Introduction

Rheumatoid cachexia occurs in approximately 10–50% of patients with rheumatoid arthritis

(RA) and is characterized by the loss of muscle strength [1, 2]. Importantly, Helliwell et al. [3]

reported a 60% reduction in grip strength despite only a 10% reduction in cross-sectional area
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of forearm muscles in RA patients. This suggests that reductions in specific force (i.e. force per

cross-sectional area) as well as muscle atrophy contribute to muscle weakness in patients with

RA. Indeed, reduction in maximal specific force was observed in both fast-twitch extensor

digitorum longus (EDL) and flexor digitorum brevis (FDB) and slow-twitch soleus muscles

from collagen-induced arthritis (CIA) mice [4, 5] and adjuvant-induced arthritis (AIA) rats

[6], both widely used models for RA.

Previously we demonstrated that the impaired ability of cross-bridges to generate force was

accompanied by the redox modification of myofibrillar proteins in skeletal muscles from CIA

mice [4, 5]. Moreover, treatment with antioxidant prevented the intrinsic contractile dysfunc-

tion and the aggregation of actin molecules in EDL muscles from AIA rats [6], suggesting that

arthritis-induced muscle weakness is at least partly caused by redox modification of actin. In

support, it has been reported that actin is more susceptible to redox stress than other proteins

in the contractile machinery [7], and actin oxidation can lead to formation of aggregates and

impaired myofibrillar function [8, 9]. In addition to the actin, aggregation of the intermediate

filament protein desmin has been associated with impaired muscle contractility in inflamma-

tory condition [10]. It is unknown, however, whether desmin aggregates are involved in AIA-

induced muscle weakness.

The level of 3-nitrotyrosine, a footprint of peroxynitrite production, and protein expression

of NADPH oxidase (NOX) 2/gp91phox and neuronal nitric oxide synthetase (nNOS) were

increased in AIA muscles [6]. Since peroxynitrite is formed when superoxide reacts with NO,

these data suggest that increased production of nNOS-derived NO and NOX2/gp91phox-

derived superoxide favors peroxynitrite production in AIA EDL muscles. Importantly, the

exposure to peroxynitrite donor has been shown to induce protein aggregates by forming

intermolecular disulfides in skeletal muscle [11].

The ubiquitin-proteasome system (UPS) plays a central role in removing misfolded pro-

teins from the cell. Deficits in UPS proteolytic function can lead to increased steady-state levels

of misfolded proteins that can aggregate [12]. Previous study has demonstrated that ubiquiti-

nated proteins are accumulated in the cell when the proteolytic function of the proteasomes is

inhibited [12]. Autophagy has been identified as a major contributor in the clearance of aggre-

gated proteins in mammalian cells [13]. Recently, it has been shown that an impaired autop-

hagy could be responsible for the aggregation of misfolded proteins and muscle dysfunction in

aging [14] and several diseases including desmin-related cardiomyopathy [15, 16]. Impor-

tantly, induction of autophagy using pharmacological intervention [17], autophagic gene over-

expression [16], and voluntary exercise [15–17] protected muscles against the toxic insults of

aggregated proteins by promoting their clearance.

Physical exercise has consistently been shown to improve muscle strength in patients with

RA [18]. However, in patients with severe joint damage, high-intensity muscle strength exer-

cise accelerates joint damage [19]. Recently, neuromuscular electrical stimulation (NMES) has

received attention as a rehabilitation method because even at relatively low levels of evoked

force, NMES activates both fast and slow motor units and thus effectively improves muscle

function [20]. However, little is known about whether NMES counteracts the muscle weakness

in generalized inflammatory diseases, such as in RA patients, although some encouraging

results have been presented [21].

In this study, we tested the following two principal hypotheses: the force produced by EDL

muscles from AIA rats was decreased and this muscle weakness was prevented by NMES;

the AIA-induced muscle weakness involved formation of actin and desmin aggregates, in-

creased peroxynitrite production by NOX2 and nNOS, and impaired autophagy flux, and

these changes were also prevented by NMES.

Electrical stimulation prevents arthritis-induced muscle dysfunction
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Materials and methods

Ethical approval

All animal experiments were conducted with approval of Committee on Animal Experiments

of Sapporo Medical University (No. 13–092). Animal care was in accordance with institutional

guidelines.

Experimental design

To examine whether NMES training prevents AIA-induced skeletal muscle dysfunction, we

performed two separate experiments.

Experiment 1. We first assessed the effects of NMES training on the contractility of EDL

muscles in normal rats. Male Wistar rats (9 weeks old, n = 6) were supplied by Sankyo Labo

Service (Sapporo, Japan). Rats were given food and water ad libitum and housed in an environ-

mentally controlled room (24 ± 2˚C) with a 12-h light-dark cycle. The right leg served as a con-

trol (CNT), and NMES training was performed on the left leg (CNT + NMES) using electrical

stimulator (Nihon Kohden). Throughout the NMES training sessions, rats were anesthetized

by isoflurane inhalation. Rats were placed supine on a platform and their left foot was secured

in a foot plate connected to a force transducer at an angle of 60 degree plantarflexion (see S1

Fig). Dorsiflexor muscles, including the tibialis anterior and the EDL muscles, were stimulated

via the surface electrode that was placed on the skin surface of the peroneal nerve. Placement

of the electrode was confirmed when stimulation elicited full ankle dorsiflexion and toe exten-

sion. Stimulation parameters were set as follows: 50 Hz, 0.5 ms pulse duration, 2 s contraction

every 4 s. Torque traces were displayed on a monitor, and the stimulation intensity was pro-

gressively increased throughout the stimulation period in order to maintain a peak torque cor-

responding to 60% of the initial maximum isometric torque, which was measured in every

NMES training sessions. We used this kind of adjustment, because it is routinely used for

strength training protocols [22]. Moreover, although supramaximal stimulation has been

shown to induce strength gains in rat skeletal muscles [23], it is difficult to apply supramaximal

electrical stimulation in a clinical setting due to discomfort, pain or burning sensations [24].

NMES training was terminated when the torque fell below target value despite stimulation

intensity reached supramaximum voltage (30 V). Each session consisted of 3 sets at 3 minutes

intervals and was carried out every other day for 3 weeks. At the completion of the NMES

training, rats were killed by cervical dislocation under isoflurane anesthesia and the EDL mus-

cles were dissected from each animal.

Experiment 2. To investigate whether NMES training prevents AIA-induced muscle

weakness, rats (9 weeks old, n = 24) were randomly assigned into CNT (n = 8), AIA (n = 9),

and AIA plus NMES training (AIA + NMES, n = 7) groups. AIA was induced in the knees by

intraarticular injection of 0.2 ml of cocktail containing Freund’s incomplete adjuvant (Difco)

and 2 mg Mycobacterium butyricum (Difco) under isoflurane anesthesia [6]. The above de-

scribed ES training was started 24 h after intraarticular injection and carried out every other

day for 3 weeks.

In vitro force measurement

Intact EDL muscles were mounted between a force transducer (Nihon Kohden) and an adjust-

able holder, and superfused with Tyrode solution (mM): NaCl, 121; KCL, 5; CaCl2, 1.8; MgCl2,

0.5; NaH2PO4, 0.4, NaHCO3, 24; EDTA, 0.1; glucose, 5.5. The solution was bubbled with 5%

CO2-95% O2, which gives an extracellular pH of 7.4, and kept at 30˚C. Supramaximal, 0.5 ms

monophasic rectangular pulses were applied via two platinum plate electrodes placed on each

Electrical stimulation prevents arthritis-induced muscle dysfunction
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side of the muscle. Muscle length was adjusted to the length (L0) giving maximum tetanic

force and measured with a digital caliper. The force-frequency relationship was determined by

evoking tetani at different frequencies (10–120 Hz, 600 ms duration) at 1 min intervals. Con-

trol experiments confirmed that 1 min intervals are sufficient to avoid fatigue-induced changes

in tetanic force production (data not shown). Absolute force was normalized to cross-sectional

area, calculated as muscle weight divided by L0 and density (1056 kg m-3).

Immunoblots

Immunoblots were performed using: anti-actin (A4700, Sigma), anti-desmin (ab32362,

Abcam), NOX2/gp91phox (ab31092, Abcam), anti-nNOS (610308, BD Biosciences), anti-man-

ganese superoxide dismutase (SOD2) (06–984, Upstate), anti-catalase (C0979, Sigma), anti-

p62 (ab56416, Abcam), anti-microtubule-associated protein light chain 3b (LC3b) (ab63817,

Abcam), and anti-GAPDH (010–25521, Wako).

Muscle pieces were homogenized in ice-cold homogenizing buffer (40 μl/mg wet wt) con-

sisting of (mM): Tris maleate, 10; NaF, 35; NaVO4, 1; 1% Triton X 100 (vol/vol), and 1 tablet

of protease inhibitor cocktail (Roche) per 50 ml. To extract myofibrillar proteins, an aliquot

of homogenized muscle was centrifuged at 4˚C for 15 min at 14,000 g. The supernatant was

discarded and the resulting myofibrillar enriched pellet was resuspended in ice-cold high-

salt buffer (40 μl/mg wet wt) consisting of (mM): NaCl, 300; NaH2PO4, 100; Na2HPO4, 50;

Na4P2O7, 10; MgCl2, 1; EDTA, 10; pH 6.5, and 1 tablet of protease inhibitor cocktail (Roche)

per 50 ml. The protein content was determined using Bradford assay [25].

Aliquots of the whole muscle homogenates (20 μg) were diluted with SDS-sample buffer

(mM): Tris/HCl, 62.5; 2% SDS (wt/vol); 10% glycerol (vol/vol); 5% 2-mercaptoethanol (vol/

vol); 0.02% bromophenol blue (wt/vol). For the detection of actin, desmin, and ubiquitin, pro-

teins (20 μg) were diluted with non-reducing Laemmli buffer (mM): urea, 4000; Tris, 250; 4%

SDS (vol/vol); 20% glycerol (vol/vol); 0.02% bromophenol blue (wt/vol). Proteins were applied

to a 4–15% Criterion Stain Free gel (BioRad, Hercules, CA). Gels were imaged (BioRad Stain

Free imager), and then proteins were transferred onto polyvinylidine fluoride membranes.

Membranes were blocked in 3% (wt/vol) non-fat milk, Tris-buffered saline containing 0.05%

(vol/vol) Tween 20, followed by incubation with primary antibody, made up in 5% (wt/vol)

non-fat milk overnight at 4˚C. Membranes were then washed and incubated for 1 h at room

temperature (~23˚C) with secondary antibody (1:5000, donkey-anti-rabbit or donkey-anti-

mouse, BioRad). Images of membrane were collected following exposure to chemilumines-

cence substrate (Millipore) using a charge-coupled device camera attached to ChemiDOC MP

(BioRad), and Image Lab Software (BioRad) was used for detection as well as densitometry.

Exposure of peroxynitrite donor to myofibrillar proteins

Male Wistar rats (9 weeks old, n = 4) were used for this experiment. Myofibrillar proteins were

extracted from EDL muscles and incubated for 2 h at room temperature with the peroxynitrite

donor 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) and the disulfide reductant

dithiothreitol (DTT). The samples were then applied to immunoblots for actin and desmin as

described above.

20S proteosome activity

Muscle pieces of approximately 80 mg were diluted in ice-cold homogenizing buffer (9 ul/mg

wet wt) consisting of (mM): sucrose, 250; Tris/HCl, 50; MgCl2, 5; EGTA, 5; EDTA, 5; DTT,

1; ATP, 2; and 0.025% digitonin (pH 7.4). After centrifugation at 16,000 g for 15 min at 4˚C,

the resultant supernatant was collected and then protein concentration was determined as

Electrical stimulation prevents arthritis-induced muscle dysfunction
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described above. Chymotrypsin-like activity of the 20S proteasome was measured using the assay

of Kisselev and Goldberg [26]. N-succinyl-Leu–Leu-Val-Tyr-aminomethycoumarin (Suc-LLVY-

AMC) served as a substrate. The homogenate was incubated for 10 min at 37˚C in a buffer solu-

tion containing (mM): Tris/HCl, 50; KCl, 40; MgCl2, 5, DTT, 1; ATP, 0.5; and 0.5 mg/ml BSA

(pH 7.4). The reaction was started by adding Suc-LLVY-AMC to give a final concentration of

25 μM and fluorescence of the liberated AMC was monitored in a fluorometer for 10 min (excita-

tion 380 nm, emission 460 nm). Control assay was performed in the presence of 20 μM MG-132

(an inhibitor of proteasome and calpain) or 20 μM leupeptin (an inhibitor of calpain).

Statistics

Data are presented as mean ± SEM. One-way ANOVA, or two-way repeated measures ANOVA

(Fig 1 and S2 Fig), were used to test for differences vs. CNT. The Bonferroni post hoc test was

used when ANOVA showed a difference vs. CNT. A P value less than 0.05 was regarded as sta-

tistically significant. Statistical testing was performed with SigmaPlot (version 13, Systat Software

Inc, CA).

Fig 1. NMES training prevents contractile dysfunction in AIA EDL muscles. Representative original

records of 120 Hz tetanic force in EDL muscles from control (CNT) and adjuvant-induced arthritis (AIA) rats

with or without neuromuscular electrical stimulation (NMES) training (A). Specific force-frequency relationship

(B). Bars show the mean and SEM results from 7–9 muscles per group. *P < 0.05, **P < 0.01 vs. CNT.

https://doi.org/10.1371/journal.pone.0179925.g001
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Results

NMES training does not change specific force of EDL muscles from

normal rats

The average number of contractions was 37.3 ± 2.3 per session in Experiment 1. There was no

difference in EDL muscle weights between CNT and CNT + NMES group (117 ± 3 versus

118 ± 4 mg (n = 6); P> 0.05). The specific force (i.e. force per cross-sectional area) did not dif-

fer between the CNT group and CNT + NMES group at any stimulation frequency (1–120 Hz;

see S2 Fig). No further experiments were performed on these groups.

NMES training prevents AIA-induced muscle weakness

In Experiment 2, AIA + NMES group received 37.0 ± 2.6 contractions per session. The body

weight in AIA and AIA + NMES rats were significantly lower than those of the control group

(Table 1). There was no difference in the EDL muscle weights between the groups. The maxi-

mum diameter of the knee joint was significantly higher (~20%) in AIA and AIA + NMES

than in CNT rats, indicating that the extent of arthritis was not exacerbated by NMES training.

Consistent with a previous study of our group [6], AIA induced contractile dysfunction in

the EDL muscles (Fig 1A and 1B). Specific force was significantly lower in EDL muscles from

AIA rats than that in CNT rats at stimulation frequencies from 70 to 120 Hz, and NMES train-

ing prevented this AIA-induced force reduction. Unexpectedly, specific force was higher in

AIA and AIA+NMES muscles than in CNT muscles at 30 Hz, and it was also higher in AIA+

NMES than in CNT muscles at 50 Hz.

NMES training reduces the aggregation of myofibrillar proteins in AIA

EDL muscles

Actin aggregates were increased by 2.5 folds in AIA EDL muscles compared to the CNT mus-

cles (Fig 2A and 2C). In addition to the actin aggregation, a desmin positive band was detected

at a molecular weight corresponding to actin aggregates (Fig 2B) and the expression of this

band was ~200% higher in AIA rats than in CNT rats (Fig 2D). These data suggest that AIA

induces heterogeneous aggregation of myofibrillar proteins. Intriguingly, NMES prevented

actin and desmin aggregation in AIA muscles (Fig 2C and 2D).

Peroxynitrite donor induces actin and desmin aggregates in myofibrillar

proteins from EDL muscles

To investigate whether peroxynitrite is involved in the formation of protein aggregates, control

experiments were performed where myofibrillar proteins from control EDL muscles were

incubated for 2 h at room temperature with a peroxynitrite donor SIN-1. Immunoblots for

actin and desmin showed the increased intensities for protein band at ~130 kDa in the

Table 1. Body weight, EDL muscle weight, and knee diameter of control and adjuvant-induced arthri-

tis (AIA) rats.

CNT (n = 8) AIA (n = 9) AIA+NMES (n = 7)

BWt (g) 303 ± 4 246 ± 4* 252 ± 5*

EWt (mg) 119 ± 2 111 ± 3 113 ± 2

knee (mm) 9.7 ± 0.1 11.6 ± 0.3* 11.5 ± 0.3*

Values are means ± SEM. CNT, control; AIA, adjuvant-induced arthritis; NMES, neuromuscular electrical

stimulation; n, number of samples; BWt, body weight; EWt, EDL weight.

*P<0.05, compared with CNT.

https://doi.org/10.1371/journal.pone.0179925.t001

Electrical stimulation prevents arthritis-induced muscle dysfunction

PLOS ONE | https://doi.org/10.1371/journal.pone.0179925 June 21, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0179925.t001
https://doi.org/10.1371/journal.pone.0179925


Fig 2. NMES training reduces the aggregation of myofibrillar proteins in AIA EDL muscles. Actin (A) and desmin (B) expression of

EDL muscles in control (CNT) and AIA rats with or without neuromuscular electrical stimulation (NMES) training. The membranes were

overdeveloped for the native proteins to visualize the ~130 kDa aggregates. The intensities for the protein band at ~130 kDa (indicated by

an arrow) were normalized to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) content (C&D). Results are expressed as a

percentage of CNT value. Bars show the mean and SEM results from 5–9 muscles per group. **P < 0.01 vs. CNT.

https://doi.org/10.1371/journal.pone.0179925.g002
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presence of SIN-1, while immunoblot for actin also showed the increased intensities for pro-

tein band at ~80 kDa (Fig 3A–3E). Moreover, SIN-1-induced protein aggregates were pre-

vented by DTT. Thus, these data show that peroxynitrite can induce disulfide bond-dependent

actin and desmin aggregates.

Expression levels of pro-oxidative enzymes, but not anti-oxidative

enzymes, are increased in AIA EDL muscle

In agreement with our previous study [6], both NOX2 and nNOS expressions were higher in

AIA than in control EDL muscles; NMES prevented these AIA-induced increases (Fig 4A–4C).

The expression levels of SOD2 and catalase did not differ between the groups (Fig 4D and 4E).

Fig 3. Peroxynitrite donor induces actin and desmin aggregates in myofibrillar proteins from EDL muscles. Actin (A) and desmin (B)

expression of myofibrillar proteins in EDL muscles in the presence or absence of 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) and

dithiothreitol (DTT). The membranes were overdeveloped for the native proteins to visualize aggregates. The intensities for the protein band

at ~130 kDa (C) and ~80 kDa (D) for actin and ~130 kDa (E) for desmin (indicated by arrows) were normalized to the troponin I (TnI) content.

Results are expressed as a percentage of CNT value. Bars show the mean and SEM results from 4 muscles per group. *P < 0.05, **P < 0.01

vs. CNT.

https://doi.org/10.1371/journal.pone.0179925.g003
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NMES training reduces the ubiquitination and restores the levels of

autophagic marker in AIA EDL muscles

We investigated whether impaired UPS is involved in the formation of myofibrillar aggregates

in AIA EDL muscles. Intriguingly, increased ubiqutination was observed in the protein band

at ~130 kDa where actin and desmin aggregates were detected in AIA muscles and NMES pre-

vented the ubiquitination (Fig 5A and 5B).

Using synthetic fluogenic substrate, we next examined proteasomal peptidase activity. The

chymotrypsin-like activity of the 20S proteasome was not altered in AIA EDL muscles (Fig

5C). These findings suggest that the primary defect is not the proteolytic core of 20S protea-

somes but in the entry of ubiquitinated proteins into the 20S proteasomes.

An accumulation of the polyubiquitin-binding protein p62 has been regarded as the delay

of autophagosome clearance. In contrast, the activation of autophagy drives the processing

of LC3bI into its lipidated, autophagosome-bound form LC3bII, with a high LC3bII/LC3bI

ratio being considered to indicate an increased autophagosome production. We observed an

increase in the levels of the p62 and LC3bII/LC3bI ratio in AIA EDL muscles compared with

CNT muscles (Fig 5D–5F), indicating the decreased clearance and the increased production of

autophagosome. Interestingly, NMES restored these changes in AIA muscles.

Fig 4. Expression levels of pro-oxidative enzymes are increased in AIA EDL muscle. Representative western blots illustrating the levels

of NADPH oxidase (NOX2/gp91phox) (A), neuronal nitric oxide synthase (nNOS) (B), superoxide dismutase (SOD) 2, and catalase (D) of EDL

muscles in control (CNT) and AIA rats with or without neuromuscular electrical stimulation (NMES) training. The levels of NOX2/gp91phox,

nNOS (C), SOD2, and catalase (E) expression were normalized to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) content.

Results are expressed as a percentage of CNT value. Bars show the mean and SEM results from 6–9 muscles per group. *P < 0.05 vs. CNT.

https://doi.org/10.1371/journal.pone.0179925.g004
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Discussion

Patients with chronic inflammatory diseases frequently suffer from muscle weakness that is, in

part, independent of muscle atrophy [27]. Consistent with our previous study [6], we observed a

reduction in specific force in EDL muscles from AIA rat. The force depression was present even

after forces were normalized to the cross-sectional area, which indicates intrinsic contractile

Fig 5. NMES training reduces the ubiquitination and restores the levels of autophagic marker in AIA EDL muscles. Representative

western blots illustrating the levels of ubiquitinated proteins (A), p62, and LC3bI/LC3bII (D) of EDL muscles in control (CNT) and AIA rats with

or without neuromuscular electrical stimulation (NMES) training. Intensities for the protein band at ~130 kDa (indicated by an arrow) in

ubiquitinated proteins (B) and p62 (E) were normalized to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) content. The ratio of

LC3bII/LC3bI (F). Results are expressed as a percentage of CNT value. Proteasome activity was similar in the three groups (C). Bars show

the mean and SEM results from 6–9 muscles per group. *P < 0.05, **P < 0.01 vs. CNT.

https://doi.org/10.1371/journal.pone.0179925.g005
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dysfunction in AIA EDL muscles. Decreased specific force production in skeletal muscle can, in

principle, be attributed to reduced Ca2+ release from the SR, decreased myofibrillar Ca2+ sensitiv-

ity, and/or reduced ability of cross-bridge to generate force [28]. The force-frequency curve

showed a force depression at high frequencies (i.e. 70–120 Hz), suggesting a problem with force

generation capacity of cross-bridges in AIA EDL muscles, since both reduced SR Ca2+ release and

decreased myofibrillar Ca2+ sensitivity have more impact on force at low frequencies because of

the non-linear relationship between force and myoplasmic free [Ca2+][29].

Recently, we demonstrated that treatment with the antioxidant EUK-134 prevents the con-

tractile dysfunction and oxidant-induced actin aggregation in EDL muscles from AIA rats [6].

These findings suggest that the formation of actin aggregates disrupts the myofibrillar function

of muscle fibers in AIA EDL muscles. In the present study, we further investigated the under-

ling mechanisms of arthritis-induced muscle dysfunction and found that desmin as well as

actin are aggregated in AIA EDL muscles. Moreover, in vitro experiments showed that aggre-

gation of these proteins can be induced by exposing myofibrillar proteins to the peroxynitrite

donor SIN-1 (see Fig 3). The intermediate filament desmin has an important role in transmit-

ting force and stabilization of sarcomere, and has been identified as a major target of redox

modifications [30]. Mutations in desmin genes result in intracellular accumulation of desmin

aggregates and impaired contractile function [30]. Notably, treatment with antioxidant was

shown to prevent redox stress-induced desmin aggregation in muscle-like C2C12 cells with

desmin mutations [31]. Thus, oxidation-induced actin and desmin aggregation can be the

mechanisms behind the reduced specific force in AIA EDL muscles.

The present results demonstrate that NMES training prevents the reduction in specific force,

the accumulation of actin and desmin aggregates, and the increase in NOX2 and nNOS in EDL

muscles from AIA rats. Our findings of upregulation in NOX2 and nNOS suggest an increased

production of peroxynitrite in AIA EDL muscles. In support, we previously showed increased

levels of 3-nitrotyrosine, a protein modification produced by the reaction of peroxynitrite with

tyrosine residues, in actin aggregates in AIA EDL muscles [6]. Thus, although the underlying

mechanism is not clear, these data suggest that NMES prevents the AIA-induced increase in both

NOX2 and nNOS, which counteract the overproduction of peroxynitrite. This then leads to inhi-

bition of actin and desmin aggregates and prevents specific force depression in AIA EDL muscles.

Interestingly, a previous study has shown that NOX2 inhibitor apocynin prevents contractile dys-

function and augmentation of 3-nitrotyrosine in diaphragm muscle from septic rats [32].

Endurance training has been shown to increase the expression level of SOD2 in rat soleus

muscle [33]. Moreover, a single session of NMES training upregulated the mRNA of anti-oxi-

dative enzymes, including SOD2 and catalase in rat soleus muscle [34]. In contrast to these

studies, we could not see any changes in the amount of these anti-oxidative enzymes in AIA

+NMES EDL muscles. The reason for this discrepancy is not clear. At any rate, it is unlikely

that NMES training reduces the protein aggregates by augmentation of the anti-oxidative

capacity in AIA EDL muscles.

Protein aggregation can be the result of impaired cellular proteolytic mechanism. The UPS

plays a critical role in removing the denatured proteins from the cell. For degradation of UPS,

the target protein molecule is first attached by a series of ubiquitin molecules. The ubiquiti-

nated protein is then degraded by the 26S proteasome which consists of a 20S core and the 19S

cap. Because ubiquitinated proteins were significantly increased and the peptidase activities of

20S proteasomes were not altered in AIA EDL muscles, the primary defect is a deficiency in

the entry of ubiquitinated proteins into the 20S proteasome. Importantly, oligomeric or aggre-

gated proteins are too large to enter the proteolytic core of the 20S proteasome, which may

explain the increased ubiqutination at the molecular levels corresponding to actin and desmin

aggregates in AIA muscles.
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Autophagy is required for the removal of misfolded proteins and damaged organelles, and

to prevent the accumulation of protein aggregates. In physiological conditions, a balance

between autophagosome production and clearance maintains an adequate autophagic flux. In

contrast, our results showed the activation of the autophagosome production, demonstrated

by increased LC3bII/LC3bI ratio, and a delay in autophagosome clearance, demonstrated by

the accumulation of p62, in AIA EDL muscles, suggesting an unbalanced autophagosome pro-

duction/clearance ratio. These results correlates with increased levels of ubiquitinated proteins

in AIA muscles. The importance of our findings stems from the fact that NMES promotes, not

inhibits, the autophagic flux by a decrease in both LC3bII and p62 accumulation in AIA EDL

muscles. In line with this, a recent study has reported that aerobic exercise normalizes autop-

hagosome production/clearance ratio, which is associated with improved muscle function in

tumor-bearing mice [17].

It has been reported that NMES-induced strength gains are positively correlated with the

training intensity [35], and Adams et al. [23] showed hypertrophy of rat gastrocnemius muscle

with supramaximal NMES training. In contrast, we used submaximal stimulation to maintain

a peak torque corresponding to 60% of the maximal torque and observed no strength gain in

normal rats. Although submaximal activation is routinely used for strength training protocols

in human subject [36], we are not aware of any studies examining the effect of this training

protocol on rat skeletal muscles. Thus, the stimulation intensity used in the present study may

not be high enough to induce a strength gain in EDL muscles from normal rats. In contrast, it

has been suggested that weakened muscle would respond more effectively to NMES [24],

which fits with our results showing NMES-induced force gains in AIA muscles, but not in con-

trol muscles.

Unexpectedly, specific force was higher in AIA+NMES than in CNT muscles at 30 and 50

Hz, and it was also higher than CNT in AIA muscles at 30 Hz. The mechanism behind this

unexpected increase of submaximal force is unclear. One tentative mechanism is increased SR

Ca2+ release, which has previously been observed in muscle fibers of CIA mice [4, 5]. At 30–50

Hz stimulation, the force-frequency and force-Ca2+ relationships are steep and an increase in

SR Ca2+ release can have a large force potentiating effect outweighing the depressed cross

bridge force production. An alternative explanation for the higher forces at 30–50 Hz in AIA

+NMES muscles might be training specificity, since NMES was performed at 50 Hz.

Study limitations

Although the present results, together with our previous study showing positive effects with

antioxidant treatment [6], provide clear-cut support for a causative link between redox-

induced myofibrillar modifications and decreased force production in skeletal muscle of AIA

rats, several conclusions regarding mechanisms are based on correlations. In relation to pres-

ent study, pharmacological or genetic inhibition of NOX2 and/or nNOS at the time of AIA

induction would more directly clarify the role of these enzymes in the development of muscle

weakness and the beneficial effects of NMES. Moreover, the present experiments do not allow

us to distinguish between the extra mechanical load or some other aspect of NMES as the trig-

ger of beneficial effects in AIA muscles.

Conclusions

The present study shows that AIA induces the contractile dysfunction in EDL muscles. This is

likely caused by myofibrillar dysfunction due to the aggregation of actin and desmin. Notably,

these deleterious alterations were prevented by NMES, presumably through preventing the

increase of the pro-oxidative enzymes NOX2 and nNOS combined with restoring autophagy
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flux. Thus, our data implies that NMES training can be used to counteract muscle weakness in

patients with RA.

Supporting information

S1 Fig. Procedure for neuromuscular electrical stimulation (NMES) training. Under anes-

thesia, the animal was placed in a supine position and the left limb was attached to a footplate

connected to a force transducer. The foot was placed at 60˚angle of plantar flexion. The pero-

neal nerve was stimulated using a pair of electrodes on the skin surface (A). Torque traces

were displayed on a monitor (B), and the stimulation intensity was progressively increased

throughout the stimulation period in order to maintain a peak torque corresponding to 60%

of the maximum isometric torque (C).

(TIF)

S2 Fig. NMES training does not alter specific force of EDL muscles from normal rats. Spe-

cific forces of EDL muscles in control (CNT) with or without NMES. Bars show the mean and

SEM results from 6 muscles per group.

(TIF)
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