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Objectives: To compare the efficacy of parameters from multiple diffusion magnetic
resonance imaging (dMRI) for prediction of isocitrate dehydrogenase 1 (IDH1) genotype
and assessment of cell proliferation in gliomas.

Methods: Ninety-one patients with glioma underwent diffusion weighted imaging
(DWI), multi-b-value DWI, and diffusion kurtosis imaging (DKI)/neurite orientation
dispersion and density imaging (NODDI) on 3.0T MRI. Each parameter was compared
between IDH1-mutant and IDH1 wild-type groups by Mann–Whitney U test in lower-
grade gliomas (LrGGs) and glioblastomas (GBMs), respectively. Further, performance
of each parameter was compared for glioma grading under the same IDH1
genotype. Spearman correlation coefficient between Ki-67 labeling index (LI) and each
parameter was calculated.

Results: The diagnostic performance was better achieved with apparent diffusion
coefficient (ADC), slow ADC (D), fast ADC (D∗), perfusion fraction (f), distributed diffusion
coefficient (DDC), heterogeneity index (α), mean diffusivity (MD), mean kurtosis (MK),
and intracellular volume fraction (ICVF) for distinguishing IDH1 genotypes in LrGGs,
with statistically insignificant AUC values from 0.750 to 0.817. In GBMs, no difference
between the two groups was found. For IDH1-mutant group, all parameters, except
for fractional anisotropy (FA) and D∗, significantly discriminated LrGGs from GBMs
(P < 0.05). However, for IDH1 wild-type group, only ADC statistically discriminated
the two (P = 0.048). In addition, MK has maximal correlation coefficient (r = 0.567,
P < 0.001) with Ki-67 LI.

Conclusion: dMRI-derived parameters are promising biomarkers for predicting
IDH1 genotype in LrGGs, and MK has shown great potential in assessing glioma
cell proliferation.

Keywords: diffusion magnetic resonance imaging, glioma, isocitrate dehydrogenase, cell proliferation, multi-
parameter magnetic resonance image
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INTRODUCTION

In 2016, the World Health Organization classified levels of
Central Nervous System tumors based on molecular features,
specifically the isocitrate dehydrogenase 1 (IDH1) genotype
(Karsy et al., 2017). IDH1 is a key enzyme involved in cellular
metabolism, epigenetic regulation, redox, and DNA repair,
existing in the cytoplasm and peroxisomes (Fu et al., 2010).
Many studies have indicated a better prognosis of IDH1-mutant
gliomas than IDH1 wild-type gliomas (Turkalp et al., 2014;
Shen et al., 2020). Ye et al. (2013) found that IDH1 mutation
causes a decrease in hypoxia-inducible factor−1α, which in turn
leads to the inhibition of HIF-1α-mediated biological functions
such as pro-angiogenesis, angiogenesis, migration, and motility
of endothelial cells. Therefore, accurate identification of glioma
IDH1 genotype facilitates the formulation of treatment plans and
assessment of patient prognosis.

A nuclear protein, Ki-67, represents the proliferative activity
of tumors and is closely associated with tumor differentiation
and infiltration (Habberstad et al., 2011). The higher Ki-67
labeling index (LI) indicates faster tumor growth and poorer
tissue differentiation. However, the cost of gene screening is
high and not easy to broadly implement (Jiang et al., 2018). To
obtain tumor pathology information and Ki-67 LI via surgery or
pathological biopsy is not applicable for all gliomas, such as those
in the brainstem and basal ganglia regions. Thus, an imaging
approach to obtain anatomical details and tissue characteristics
is essential for clinic diagnosis.

Diffusion magnetic resonance imaging (dMRI) is a non-
invasive method to reflect microstructure information
of diffusion of water molecules. The conventional mono-
exponential diffusion-weighted imaging (DWI) reflects water
motion paths in vivo. Diffusion tensor imaging (DTI) indicates
the integrity of the white matter fiber tracts in the brain under
the assumption of water random movements in Gaussian
distribution (Maier et al., 2010). Since the complex cellular
microenvironment in real organisms is limited by organelles,
cell membranes, and extracellular gaps (Van Cauter et al., 2012;
Jiang et al., 2015), water moves in non-Gaussian distribution
and can be revealed by diffusion kurtosis imaging (DKI) (Wu
and Cheung, 2010). DKI cannot reflect the intrinsic biophysical
mechanisms such as the altered membrane permeability of
axons, while neurite orientation dispersion and density imaging
(NODDI) reflects a closer approximation to the real diffusion
pattern of water molecules in the tissue microenvironment
via characterizing the three main tissue cavities in the
microstructural environment, namely, restricted diffusion
of water within the neurite, hindered diffusion of water outside
the neurite, and free diffusion of water in the cerebrospinal fluid
(Zhang et al., 2012). In addition, the bi-exponential intravoxel
incoherent motion (IVIM) imaging is able to separate the slow
diffusive motion in response to intra- and extracellular water
molecules as intra-tissue diffusion from the fast diffusive motion
in response to intravascular water molecules as vascular perfusion
(Shen et al., 2016), while the stretch-exponential DWI is able to
describe the tissue heterogeneity and the continuous distribution
of water molecules in the microstructure (Bennett et al., 2003).

Diffusion magnetic resonance imaging analyzed with different
diffusion models reflects the complexity of tumor microstructure.
Till now, few studies have been performed to compare the
efficacy of these diffusion models in terms of IDH1 genotype.
The purpose of this study was to assess IDH1 genotype and cell
proliferation using mono-exponential, bi-exponential, stretch-
exponential DWI, DTI, DKI, and NODDI models.

MATERIALS AND METHODS

Patient Population
This study was approved by local ethics committee and written
informed consent was obtained from all subjects. Patients were
included in the study if they met the following inclusion criteria:
(a) pathologically confirmed primary gliomas; (b) preoperative
DWI, multi-b-value DWI, and DKI/NODDI acquisition were
performed; (c) IDH1 genotype measured by genetic screening
or immunohistochemistry was available. The following were
exclusion criteria: (a) purely cystic gliomas; (b) lack of routine
MRI images. From July 2017 to December 2020, a total of 94
patients meeting the above inclusion criteria were enrolled in
the study. Two cases with purely cystic glioma and one lack of
routine images were excluded. In total, 91 patients were recruited
into this study.

Image Data Acquisition
All MR images were performed on the a 3T MR system
(Discovery MR750, GE Medical Systems, Milwaukee, WI,
United States) with a 32-channel head coil. Routine axial
sequences include T1 fluid-attenuated inversion recovery
(FLAIR), T2 fast spin echo (FSE), T2 FLAIR, contrast-enhanced
T1 weighted spin-echo.

Three diffusion imaging data were obtained using spin-
echo echo-planar imaging sequences before the injection of
contrast agents. The parameters of DWI were as follows:
TR/TE = 3,000/70 ms, NEX = 1, matrix = 160 × 160,
slice thickness = 5 mm, slice spacing = 1.5 mm,
FOV = 240 mm × 240 mm, b = 0 and 1,000 s/mm2, and
acquisition time was 42 s. Multi-b-value DWI was performed
with 20 b-values (b = 0, 20, 50, 80, 100, 150, 200, 400, 600,
800, 1,000, 1,200, 1,500, 2,000, 2,400, 2,800, 3,200, 3,600,
4,000, and 4,500 s/mm2), for 0–1,000 s/mm2, NEX = 1, for
1,200–2,800 s/mm2, NEX = 2, and for 3,200–4,500 s/mm2,
NEX = 4, TR/TE = 3,200/90.6 ms, matrix = 160 × 160, slice
thickness = 5 mm, spacing = 1.5 mm, FOV = 240 mm× 240 mm,
acquisition time was 5 min 52 s. DKI/NODDI was performed
with 3 b-values (b = 0, 1,250, and 2,500 s/mm2) and 25
uniformly distributed directions for each nonzero b-value,
TR/TE = 6,500/85, NEX = 1, matrix = 128 × 128, slice
thickness = 3 mm, spacing = 0 mm, FOV = 240 mm × 240 mm,
acquisition time was 5 min 45 s.

Image Processing and Regions of
Interest Analysis
Mono-, bi-, and stretch-exponential DWI, IVIM, DTI, DKI
parametric maps were processed using GE Advantage

Frontiers in Neuroscience | www.frontiersin.org 2 November 2021 | Volume 15 | Article 783361

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-783361 November 16, 2021 Time: 15:51 # 3

Xie et al. Diffusion MRI in Gliomas

workstation (version 4.5). After brain extraction of images
by MRIcron (Version 12-12-2012), the NODDI parametric maps
was processed using a MATLAB toolbox1.

The apparent diffusion coefficient (ADC) map was obtained
by the following mono-exponential model:

S
(
b
)
/S (0) = exp

(
−b · ADC

)
Where S(b) and S(0) represent the signal intensity for b = 0

and a non-zero b-value.
In bi-exponential intravoxel incoherent motion (IVIM)

model, three maps of slow ADC (D), fast ADC (D∗), perfusion
fraction (f ) were processed:

S
(
b
)
/S (0) =

[
f · exp

(
−b · D∗

)]
+

[(
1− f

)
· exp

(
−b · D

)]
The maps of distributed diffusion coefficient (DDC) and

heterogeneity index (α) were derived using a stretched-
exponential model:

S
(
b
)
/S (0) = exp

[
−

(
b · DDCα

)]
The DDC, which represents mean diffusion rate within

voxels, can be considered as a composite of individual ADC
values. The α varying between 0 and 1 reflects the degree of
tissue heterogeneity.

The DTI quantitative maps including fractional anisotropy
(FA) and mean diffusivity (MD) were calculated in a Gaussian-
distributed model:

S
(
b
)
/S (0) = exp

(
−b · Dapp

)
The value of b is 1,250 mm2/s in this study, and

Dapp is the ADC.
In addition, mean kurtosis (MK) map, a DKI parameter, was

obtained in non-Gaussian-distributed model:

S
(
b
)
/S (0) = exp

(
−b · Dapp + 1/6b2

· D2
app · kapp

)
Kapp is the diffusion kurtosis.
The NODDI model was processed using a MATLAB toolbox

(see text footnote 1). NODDI with two shells (b = 1,250
and 2,500 mm2/s) could obtain orientation dispersion index
(ODI) and intracellular volume fraction (ICVF) maps. The full
normalized signal S in NODDI can be written as:

S = (1− Viso)(VicSic + (1− Vic)Sec) + VisoSiso)

Where Vic and Sic is the non-Gaussian volume fraction and
intracellular diffusion signal, Viso and Siso is the normalized
volume fraction and signal for the isotropic Gaussian diffusion
compartment. And Sec is the extracellular normalized signal.

All parametric maps and routine MR images were analyzed
using ImageJ software (version 1.52a, NIH, United States).
Before drawing the regions of interest (ROIs), the size
(256 × 256), number of slices (Raab et al., 2010), as well
as canvas size (240 mm × 240 mm) of routine sequences
images and all parameter maps were adjusted to ensure they

1https://www.nitrc.org/projects/noddi_toolbox

had the same image resolution, number of slices, and FOV.
Two neuroradiologists (both with 5 years of experience in
neuroradiology) who were blinded to clinical data manually
placed three to six ROIs (range, 29–98 pixels) in consensus in
the solid parts of tumor parenchyma and avoided hemorrhage,
calcification, edema, necrosis, and cystic lesions. The solid part
of tumor parenchyma was defined as the area of enhancement
on contrast-enhanced T1-weighted images. If there was no
enhancement on contrast-enhanced T1-weighted images, the
solid part was defined as the area of abnormal signal on
T2 FLAIR and T2 FSE. Then, the ROI was copied to each
parameter map to obtain the measurements for each parameter.
Similar to the previous studies (Figini et al., 2018; Wang
et al., 2019), the minimum ADC, D, f, DDC, a, MD, and
maximum D∗, MK, ODI, and ICVF from all ROIs for each
patient were recorded.

Statistical Analysis
Chi-square tests or R × C columnar tables were used to test
categorical variables. Mann–Whitney U test was used to test
continuous variables. Receiver operating characteristic (ROC)
curves were performed to evaluate the diagnostic efficacy of each
parameter. And area under the curve (AUC) was compared by Z
test. The correlation between each parameter and proliferation
index was calculated by Spearman correlation analysis. All
statistical analyses were performed with SPSS (Version 19.0.0,
IBM, Armonk, NY, United States) and MedCalc (Version 15.8,
MedCalc Software, Acacialaan, Ostend, Belgium). P < 0.05 was
considered to connote statistical significance.

RESULTS

Patient Characteristics and
Demographics
In this study, there were 42 patients with IDH1-mutant glioma
and 49 patients with IDH1 wild-type glioma. Patients with
IDH1-mutant glioma were younger than those with IDH1 wild-
type glioma (P = 0.008). There was a significant difference of
pathological grade distribution between IDH1-mutant group and
IDH1 wild-type group (P < 0.001) (Table 1).

TABLE 1 | Patient characteristics and demographics.

Characteristics IDH1-Mut IDH1-WT P-value

No. of patients 42 49 NA

Age (years),
median (interquartile range)

53 (46.5, 58) 41 (34.75, 50.25) 0.001

Sex, n (%) 0.405

Male 20 (47.6%) 28 (57.1%)

Female 22 (52.4%) 21 (42.9%)

Pathological grading, n (%) <0.001

II 19 (45.2%) 8 (16.3%)

III 13 (31.0%) 7 (14.3%)

IV 10 (23.8%) 34 (69.4%)

F, female; M, male; Mut, mutant; WT, wild-type; NA, not applicable.
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Correlation of Diffusion Magnetic
Resonance Imaging Parameters With
Isocitrate Dehydrogenase 1 Genotype
and Grade
Figure 1 shows the contrast-enhanced T1-weighted images and
dMRI parameter maps of typical IDH1-mutant and IDH1 wild-
type glioma patients. In grade II and grade III lower-grade
gliomas (LrGGs), IDH1 wild-type group showed significantly
lower ADC, D, f, DDC, α, and MD values (P < 0.05) and
higher D∗, MK, and ICVF values (P < 0.05) than IDH1-mutant
group. However, there was no significant difference in FA and
ODI values (P = 0.126 and 0.164, respectively) between the two
groups (Figure 2). Table 2 shows the AUC values, sensitivity,
specificity, and cutoff values for discriminating IDH1 genotype
in LrGGs. ADC, D, D∗, f, DDC, α, MD, MK, and ICVF all
showed high diagnostic efficacy in predicting IDH1 genotype in
LrGGs; however, their AUC values were not significantly different
(P > 0.05) (Figure 3). For glioblastomas (GBMs), no significant
difference of these parameters was found between IDH1-mutant
and IDH1 wild-type groups.

The dMRI-derived parameters of tumor lesions in LrGGs and
GBMs in the presence of the same IDH1 genotype are presented

in Table 3. In IDH1-mutant group, all parameters of dMRI,
except D∗, and FA, can significantly distinguish LrGGs from
GBMs (P < 0.05). In the IDH1 wild-type group, only ADC
showed a critical statistical difference between LrGGs and GBMs
(P = 0.048).

Correlation Between Diffusion Magnetic
Resonance Imaging Parameters and Cell
Proliferation Index
The expression of Ki-67 LI was detected by
immunohistochemical staining in 87 patients in this study.
Figure 4 shows the Spearman correlation between Ki-67 LI and
dMRI parameters in gliomas. Significant positive correlation
was found between Ki-67 LI and D∗ (r = 0.316, P = 0.003), MK
(r = 0.567, P < 0.001), ODI (r = 0.300, P = 0.005) as well as
ICVF (r = 0.528, P < 0.001). In contrast, ADC, D, f, DDC, α

and MD showed a significant negative correlation with Ki-67
LI (r = −0.479, P < 0.001; r = −0.503, P < 0.001; r = −0.433,
P < 0.001; r = −0.466, P < 0.001; r = −0.462, P < 0.001;
r = −0.528, P < 0.001, respectively). FA had no significant
correlation with Ki-67 LI (r = 0.201, P = 0.062). MK has the
maximal correlation coefficient and D∗ has the minimal.

FIGURE 1 | (1a–l) Correspond to a 38-year-old female with a IDH1-mutant grade III glioma in the left frontal lobe (white thin arrow). The ADC, MD, D, f, and DDC as
well as α maps show increased values in the solid part of the tumor, while D*, MK, ODI, and ICVF maps show decreased values. (2a–l) Corresponds to a 59-year-old
female with a IDH1 wild-type grade III glioma in the right basal ganglia (white thick arrow). The ADC, MD, D, f, and DDC as well as α maps show decreased values in
the solid part of the tumor, while D*, MK, ODI, and ICVF maps show increased values. ADC, D, D*, and DDC as well as MD are in units of 10−3 mm2/s.
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FIGURE 2 | Box and whisker plots of DWI (A), IVIM (B–D), stretched-exponential DWI (E,F), DTI (G,H), DKI (I), and NODDI (J,K) parameter in LrGGs and GBMs
stratified according to IDH1 genotype. Boxes represent the median ± quartiles, with whiskers extending to the maximum and minimum values. ADC, D, D*, and
DDC as well as MD are in units of 10−3 mm2/s. Mut, mutant; WT, wild-type; LrGG, lower-grade glioma; GBM, glioblastoma.

DISCUSSION

Our study showed the six diffusion models all provide at least one
parameter with effective prediction performance on the IDH1
genotype in LrGGs. Also, dMRI parameters are promising in the

TABLE 2 | ROC results of dMRI-derived parameter in differentiating IDH1
genotype in LrGGs.

Parameters AUC Sensitivity % Specificity % Cut-off value

ADC 0.750 59.38 93.33 1.084

D 0.758 68.75 80.00 0.553

D* 0.752 56.25 86.67 2.258

f 0.750 65.62 86.67 0.454

DDC 0.752 59.38 86.67 1.085

α 0.817 71.87 80.00 0.814

FA 0.640 87.50 40.00 0.318

MD 0.756 68.75 73.33 0.819

MK 0.788 71.87 80.00 0.613

ODI 0.627 81.25 46.67 0.518

ICVF 0.753 56.25 86.67 0.240

ADC, D, D*, DDC, and MD are in units of 10−3 mm2/s.

assessment of cell proliferation, especially maximal correlation
coefficient, found between MK and proliferation index.

Radiological differences were found between IDH1-mutant
and wild-type groups in LrGGs. We suspected that IDH1 wild
type existed in the LrGGs when more complex organizational
structure, more abundant microvasculature, higher cell density,
and more diffusion barriers appeared. However, none of the
parameters showed significant differences in the identification
of IDH1-mutant and wild-type groups in GBMs due to a single
parameter with insufficient ability to discriminating diffusion and
perfusion patterns of highly malignant and structurally complex.
This hints that we should further explore differences in the GBM
groups using a combination of multiple parameters in the future.

Previous studies have demonstrated the ability of conventional
DWI and DTI to distinguish IDH-mutant gliomas from IDH
wild-type gliomas (Xiong et al., 2016; Wu et al., 2018). In our
study, ADC and MD values of IDH1 wild-type group were
significantly lower than that of IDH1-mutant group in LrGGs. FA
showed ineffective prediction on IDH1 genotype, possibly due to
the high heterogeneity in FA values for the solid component of the
tumor, which is consistent with the results of Tan et al. (2019).

Many studies have found that DKI has excellent efficacy in
the grading diagnosis, differential diagnosis, molecular marker
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FIGURE 3 | ROC curves of each parameter for distinguishing mutant and wild-type IDH1 in LrGGs. (A) ROC curves of DWI, IVIM, and stretched-exponential DWI
parameters. (B) ROC curves of DTI, DKI, and NODDI parameters.

TABLE 3 | dMRI-derived parameters in LrGGs and GBMs under the same IDH1 genotype.

Parameters IDH1-Mut IDH1-WT

LrGGs GBMs P-value LrGGs GBMs P-value

ADC 1.142 (0.958, 1.436) 0.803 (0.606, 1.035) 0.003 0.963 (0.799,1.046) 0.792 (0.693,0.907) 0.095

D 0.611 (0.516, 0.732) 0.447 (0.358, 0.499) <0.001 0.452 (0.390.0.553) 0.425 (0.354,0.503) 0.186

D* 2.242 (2.068, 2.611) 2.383 (2.241, 2.937) 0.140 2.630 (2.324,3.363) 2.791 (2.453,3.101) 0.558

f 0.539 (0.406, 0.693) 0.352 (0.234, 0.438) 0.007 0.425 (0.321,0.442) 0.325 (0.289,0.391) 0.165

DDC 1.110 (0.893,1.415) 0.665 (0.477, 1.017) 0.003 0.855 (0.730,1.060) 0.675 (0.575,0.834) 0.083

α 0.874 (0.807, 0.914) 0.771 (0.738, 0.825) 0.005 0.747 (0.701, 0.814) 0.755 (0.719, 0.790) 0.712

FA 0.208 (0.129, 0.307) 0.297 (0.169, 0.462) 0.125 0.267 (0.176, 0.352) 0.299 (0.229, 0.364) 0.386

MD 0.953 (0.740, 1.156) 0.655 (0.509, 0.865) 0.003 0.731 (0.629, 0.897) 0.590 (0.530, 0.724) 0.048

MK 0.522 (0.417, 0.649) 0.771 (0.647, 0.939) <0.001 0.730 (0.613, 0.836) 0.827 (0.692, 0.984) 0.159

ODI 0.388 (0.309, 0.517) 0.556 (0.455, 0.714) 0.015 0.513 (0.351, 0.636) 0.491 (0.386, 0.655) 0.720

ICVF 0.233 (0.145, 0.376) 0.446 (0.334, 0.687) 0.002 0.430 (0.262, 0.528) 0.537 (0.392, 0.657) 0.073

Each parameter is presented as median (interquartile range). Mut, mutant; WT, wild-type; LrGGs, lower-grade gliomas; GBMs, glioblastomas. *means the parameter “fast
ADC”.

prediction, and prognostic assessment of glioma (Jiang et al.,
2015; Pang et al., 2016; Hempel et al., 2018, 2019; Tan et al.,
2019; Zhang et al., 2019; Haopeng et al., 2020). A DKI parameter
MK reflects the complexity of the tissue microenvironment under
the assumption of non-Gaussian distribution in the organism.
Similar to the results reported by Zhao et al. (2019), our finding
showed MK effectively discriminated IDH1-mutant group from
wild-type group in LrGGs. IDH1-mutant gliomas have lower
cell density, lower tissue complexity, and less aggressiveness, so
they have decreased MK values, while IDH1 wild-type gliomas
have a more heterogeneous tissue microenvironment, higher cell
density, and more aggressive phenotype, resulting in significantly
increased MK values.

Orientation dispersion index and ICVF computed based on
the NODDI model represent neurite dispersion characteristics
and neurite density, respectively. Maximov et al. (2017) found
that two index parameters, ICVF and ODI, could identify low-
grade glioma and high-grade glioma, and ICVF had the highest
diagnostic efficacy and was significantly better than DTI. Li et al.
(2019) considered NODDI to be a promising method for grading
gliomas and predicting cell proliferation. Diffuse overgrowth

of tumor cells with increased density leads to an increase in
ICVF values. In addition, tumor cells grow infiltratively along
adjacent vessels and around nerve axons, often accompanied
by degradation and destruction of white matter nerve fiber
bundles, causing microstructural changes and elevated dispersion
in axonal bundles, leading to increased ODI. Our results showed
only ICVF significantly distinguished IDH1-mutant group from
IDH1 wild-type group in LrGGs. IDH1 wild-type gliomas may
be more proliferative and aggressive due to more complex
microstructure and thus possess higher ICVF values. Zhao et al.
(2018) reported that the mean ICVF was significantly higher in
GBMs with IDH1 mutation than that without IDH1 mutation.
However, only four cases of IDH1-mutant GBMs were collected
in their study, and the findings still need to be confirmed as even
different to ours.

The IVIM model was proposed by Le Bihan et al. (1986),
where D represents the diffusion movement of water molecules
inside and outside the cell, D∗ reflects the blood perfusion of the
microcirculation, and f represents the abundance of capillaries
in the tissue. In recent years, IVIM has been widely used
in the grading and differential diagnosis of glioma, reflecting
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FIGURE 4 | Scatter diagrams demonstrating the correlations between Ki-67 labeling index and parameters of DWI (A), IVIM (B–D), stretched-exponential DWI (E,F),
DTI (G,H), DKI (I), and NODDI (J,K). And r represents the Spearman correlation coefficient.

microscopic features such as tumor cell density and vascular
proliferation (Bai et al., 2016; Shen et al., 2016; Kusunoki et al.,
2020; Jiang and Minh Duc, 2021). Shen et al. (2016) studied the
predictive efficacy of IVIM for glioma grading and considered
that IVIM may be an imaging approach that combines arterial
spin labeling (ASL) and ADC to assess tumor perfusion and
diffusion. Minh Duc (Jiang and Minh Duc, 2021) found that
IVIM has excellent diagnostic performance for distinguishing
pilocytic astrocytoma from ependymoma. Increased D and f can
reflect the pathological characteristics of pilocytic astrocytoma
with low cell proliferation and high microvessel density, while
decreased D and f reflects the high cell proliferation and low
microvessel density of ependymoma. In the current study, the
performance of D was slightly better than that of ADC in
identifying the mutation status of IDH1 genotype in LrGGs
perhaps due to D eliminates the influence of perfusion and
more accurately reflects the diffusion and movement of water
molecules. The D∗ value of IDH1 wild-type group is higher than
that of IDH1-mutant group in LrGGs, indicating that IDH1 wild-
type glioma has more abundant blood perfusion. Furthermore,
f -value is higher in IDH1-mutant gliomas, inconsistent with
Wang et al. (2019). The same contradictory results exist in
studies of glioma grading, where f -values are higher in low-
grade gliomas than in high-grade gliomas (Hu et al., 2014). Le
Bihan (2019) suggested that the IVIM model is sensitive to fluid
flow distributed within any voxel, not just blood flow. More
relatively unrestricted water molecules outside the IDH1-mutant
glioma cells may have contributed to the increase of f -values.
Alternatively, these differences may be due to different IVIM
model parameters, fitting methods, and ROI plotting methods
(Cho et al., 2015).

The α is a parameter in stretched-exponential DWI that
reflects the heterogeneity of the tissue. The high heterogeneity
of tumor tissue, such as heterogeneous cells and proliferating
vessels, leads to a decrease in α value (Chakhoyan et al., 2018;
Chen et al., 2018). The DDC is a parameter reflecting diffusion
in the stretched-exponential DWI, which is the weighted
sum of ADC values. It can overcome the limitations of the
biexponential DWI model regarding the assumption of fast
and slow diffusion to reflect the diffusion characteristics of
glioma, which is negatively correlated with tumor density. The
stretched-exponential DWI model showed excellent efficacy in
IDH1 genotype discrimination in our study, and α was able
to distinguish IDH1 mutation status in LrGGs with the largest
AUC value and high sensitivity and specificity. Lower α values
indicate that the diffusion of water molecules in the tissue was
inhomogeneous, and the heterogeneity of the tissue was higher
(Bai et al., 2016). We speculate that the microenvironment of
IDH1 wild-type glioma is more complicated, such as cell swelling
and vascular proliferation, so it exhibits greater heterogeneity of
intra-voxel diffusion.

In the ROC analysis of the diffusion parameters, we found
that ADC, D, D∗, f, DDC, α, MD, MK, and ICVF were
all characterized by higher specificity and lower sensitivity in
identifying LrGG IDH1 genotypes. Of these, α and MK had the
highest sensitivity and AUC values. We therefore considered that
α and MK may be more appropriate diffusion parameters for
identifying LrGG IDH1 genotypes.

This is of great clinical importance for the prediction of
IDH1 wild-type LrGGs, which have a malignant clinical course
despite being pathologically relatively inert alterations. Therefore,
accurate and non-invasive prediction of the IDH1 genotype in
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LrGGs allows for timely treatment planning to impede malignant
transformation of the disease.

We also investigated the prediction of glioma grading by
dMRI under the same IDH1 genotype. Generally speaking, high-
grade gliomas tend to be more heterogeneous, as shown in our
findings. However, IDH1 wild-type LrGGs and GBMs showed
only marginally statistically different ADC. Some studies have
found that even in patients with IDH wild-type LrGG, tumors
exhibit high levels of aggressiveness, with overall survival times
similar to those of IDH wild-type GBM (Eckel-Passow et al., 2015;
Wijnenga et al., 2017). This may explain our results, probably
because the similar high heterogeneity and aggressiveness of
IDH1 wild-type gliomas, resulting in most parameters that do
not differ significantly between LrGGs and GBMs both with wild-
type IDH1. In a word, with the increase of pathological grade, the
tumor microstructure is more complex, with higher cell density
and more disturbed water molecule movement, but IDH1 gene
phenotype will affect the development of gliomas at a microscopic
point of view. Compared with previous pathological grading
studies (Bai et al., 2016), our study combined the pathological
grading of gliomas with molecular phenotypes, which contributes
to a more comprehensive understanding of the characteristics
and microstructure of gliomas.

Nuclear protein Ki-67 is associated with cell proliferation
specifically expressed in tumor cells (Alexiou et al., 2010; Gates
et al., 2019). As the malignancy of the tumor increases, the blood
supply becomes more abundant, the number of cells increases,
malignant biological behavior ensues, such as hemorrhage and
necrosis, and neovascularization forms further (Raab et al., 2010;
Tietze et al., 2015). And these aforementioned alterations can
affect the complexity and heterogeneity of tumor microstructure,
when cellular gaps are smaller, water molecules diffusion is more
restricted, and movement is more disturbed. Zhang et al. (2018)
found MK and D have considerable potential to predict the
degree of proliferation in diffuse astrocytomas. This is similar to
our findings, where MK has maximal correlation coefficient with
cell proliferation index. However, no significant correlation was
found between FA and Ki-67 LI, which may be because the level
of cell proliferation in response to Ki-67 only affects the size of
the diffusion and not the pattern of diffusion routes.

We studied the predictive efficacy of multiple dMRI
parameters for glioma IDH1 genotype and cell proliferation
and found their great potential. However, dMRI still has some
limitations that hinder its applicability in the routine clinical
diagnosis of gliomas. There is currently no consensus on the
optimal protocol parameters and post-processing methods for
dMRI. This concerns acquisition parameters (e.g., number of
directions, b-values) as well as post-processing methods. Further
technical and methodological advances in the field of dMRI
are necessary. Standardization and validation criteria for dMRI
acquisition and post-processing techniques are needed in order
to improve comparability between research centers.

Our study had some limitations. First, the sample size
was small, especially for IDH1 wild-type LrGGs and IDH1-
mutant GBMs. Although this is related to the uneven
distribution of IDH1 mutation status in gliomas, future
prospective studies with large samples are needed to ensure

the accuracy of the experiment. Second, only one molecule,
IDH1, was considered in this study, but many other molecules
status such as 1p/19q codeletion and O6-methylguanine-DNA
methyltransferase promoter methylation also play an important
role in the development of gliomas, which needs to be further
investigated. Finally, the ROI in this study was placed on
the solid part of the tumor tissue; although this approach
is more flexible and can better avoid areas of hemorrhage,
necrosis, and calcification, it does not consider the tumor
tissue as a whole. In the future, we can outline 3D ROIs
on the parenchymal part of the whole tumor to validate our
results of this study.

CONCLUSION

Our findings reveal the relationship between dMRI parameters
and IDH1 genotype and proliferation index in gliomas. dMRI
has great potential to provide imaging markers that are sensitive
to microstructural changes in gliomas caused by IDH1 mutation
and cell proliferation, thereby facilitating prognostic prediction
and treatment of glioma patients.
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