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Abstract: The proteasome system is a large and complex molecular machinery responsible for the
degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is
impaired, unwanted proteins accumulate, which can lead to several diseases including age-related
and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small
molecules may therefore be a valuable strategy for the treatment of various neurodegenerative
diseases such as Parkinson’s, Alzheimer’s, and Huntington’s diseases. In this review, we discuss
the structure of proteasome and how proteasome’s proteolytic activity is associated with aging and
various neurodegenerative diseases. We also summarize various classes of compounds that are
capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.

Keywords: proteasome; neurodegeneration; cancer; ubiquitin; 20S; 26S; misfolded; disordered;
degradation; protein

1. Introduction

The degradation of proteins is a continual process that is highly regulated by the
two major proteolysis systems, the lysosomal degradation pathway and the proteasome-
mediated pathway. Protein degradation helps maintain biological homeostasis in cells
which are needed for all cell functions and for maintaining optimal conditions for en-
zyme function [1]. The proteasome pathway is the major pathway for the degradation of
misfolded, oxidatively damaged, and redundant proteins. Dysregulation of proteasome
function has been identified in the pathogenesis of several neurodegenerative diseases
including Parkinson’s disease (PD) [2], Alzheimer’s disease (AD), and other neurodegener-
ative diseases [3]. The proteasome pathway is also involved in the regulation of several
other cellular processes such as cell cycle, stress signaling, gene expression regulation,
inflammatory response, cell differentiation, and apoptosis, which makes it an appealing
target in the treatment of other types of diseases, including cancer [4]. Due to the critical
role of the proteasome-mediated degradation pathway in cell regulation, the modulation
of proteasome proteolytic activity has become a valuable strategy in the pursuit of new
therapeutics to treat several neurodegenerative diseases [5–8].

1.1. The Human Proteasome

The human proteasome is a large complex protein responsible for the intracellular
degradation of unwanted and damaged proteins via a ubiquitin-dependent and ubiquitin-
independent degradation pathway. The most common proteolytic clearance of proteins
proceeds by tagging the protein with polyubiquitin, after which it is degraded into small
peptides of seven to eight amino acids by the 26S proteasome [9]. Highly disordered pro-
teins can also be degraded in a ubiquitin-independent manner by the 20S proteasome [10].
In this review, we will cover the use of small molecules to enhance the proteolytic activity
of both the 26S proteasome and the 20S proteasome.
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1.2. Ubiquitin-Proteasome System
1.2.1. Ubiquitin

Ubiquitin (Ub) is a small protein (approximately 8600 Da) with 76 amino acid residues
responsible for tagging a wide range of cellular proteins for proteolytic degradation. In
the ubiquitin-proteasome system (UPS) (Figure 1), proteins are tagged for proteolysis by
covalent ligation to ubiquitin [11]. Ubiquitination of proteins requires three enzymes in
chronological order (see Figure 1a). The E1 ubiquitin-activating enzyme, just like its name,
activates the C-terminal glycine residue of the ubiquitin in an ATP-dependent manner. The
binding of the ubiquitin to a cysteine residue of E1 forms a Ub-E1 complex via a thioester
linkage. The E2 ubiquitin-conjugating enzymes transfer the ubiquitin from the Ub-E1
complex to itself via a trans-thioesterification to form the Ub-E2 complex and release the
E1 enzyme from the system. Lastly, the ubiquitin ligases E3s are responsible for selecting
proteins for ubiquitin-mediated proteolysis. Humans have two E1 enzymes, about 40 E2
enzymes, and are estimated to have about 500–1000 E3s [12].
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Figure 1. Ubiquitin-proteasome system [13]. (a) Protein polyubiquitination process using the
ubiquitin-activating enzyme E1, conjugating enzymes E2 and the E3 ligase; (b) Polyubiquitinated
proteins are degraded by 26S proteasome into small peptides following its deubiquitination.

After monoubiquitination of the targeted protein, the C-terminus of each ubiquitin
molecule can be linked to any of the other seven lysine residues (K6, K11, K27, K29,
K33, K48, and K63) on the previous ubiquitin to extend the ubiquitin chain and form the
polyubiquitinated tagged protein [14,15]. However, the signal for protein degradation
by the proteasome usually involves the linking of Ub to the K48 of the previous Ub
on the protein [16,17]. In addition, K11, K29, and K63 linked chains have also been
shown to play a role in proteasomal degradation [17,18]. The 26S proteasome degrades
polyubiquitinated proteins (see Figure 1b), and a previous study shows that proteins
marked for degradation must be tagged with at least four ubiquitin molecules to be
recognized by the 26S proteasome [16,19]. However, shorter chains, monoubiquitinated
and multiple monoubiquitinated proteins can also be targeted for degradation by the
proteasome [20–23]. It is also important to note that the ubiquitination process is reversible,
and the deubiquitinating enzymes (see Section 3.1.1) are present in the cell to remove
ubiquitin-tagged proteins [24].
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1.2.2. The 26S Proteasome

The 26S proteasome has a molecular weight of approximately 2.5 MDa and it is made
up of the 20S core particle (CP), and one or two 19S regulatory particle(s) (RP) attached to
one or both end(s) of the CP [25]. The 19S RP (also known as PA700) binds to the 20S CP
and facilitates the gate opening of the CP for proteolytic degradation of polyubiquitinated
proteins [26]. The 19S RP is also responsible for recognizing, unfolding, and translocating
polyubiquitinated protein into the 20S CP [27]. Cryo-EM studies have shown many confor-
mation states of the 26S proteasome when engaged with substrate [28–35]. Some of these
studies showed the processes by which substrate is engaged, deubiquitylated, unfolded,
and translocated by the proteasome [28,29]. The proteasome is also referred to as the 30S
proteasome when the 20S CP is capped at both ends with the 19S RP [36]. However, in this
review, we will refer to the 26S proteasome without distinguishing between the singly or
doubly capped CP.

1.3. The 20S Proteasome or Core Particle

The 20S proteasome is a 700 kDa protein with a cylindrical-like structure. The CP
contains four heptameric rings stacked on each other in an α1-7β1-7β1-7α1-7 fashion. The
outer α-rings form a gate, and they recognize regulatory particles that allow the opening
and closing of the gate [37]. The inner β-rings contains six proteolytic sites, three on each
β-ring (β1, β2, and β5), and are responsible for the proteolytic activity of the proteasome.

The three different proteolytic sites of the 20S CP exhibit different substrate preferences
even though they all use N-terminal nucleophilic threonine to carry out their proteolytic
activities. The β1 exhibits a caspase-like (C-L)/PGPH (peptidylglutamyl-peptide hy-
drolyzing) activity and preferentially cleaves after acidic residues. The β2 and β5 exhibit
trypsin-like (T-L) and chymotrypsin-like (CT-L) activities, and they preferentially cleave
after basic and hydrophobic residues, respectively [38]. The 20S proteasome on its own
degrades unstructured proteins using a ubiquitin-independent pathway.

1.4. Small Molecule Regulation of Proteasome Function

Due to the role of the proteasome in cellular functions, the regulation of proteasome
has become a valuable target for the development of therapeutic molecules [39]. Proteasome
inhibition is a therapeutic approach for the treatment of cancer. For example, bortezomib, a
dipeptide boronate, was approved by the FDA in 2003 as an anticancer drug to treat mantle
cell lymphoma and multiple myeloma [40,41]. Bortezomib inhibits the 26S proteasome
by forming a covalent bond between its boron atom and threonine oxygen in the CT-L
catalytic site of the 20S CP [40]. Molecules that inhibit the proteasome have also been
shown to induce apoptosis in cell cultures and murine models of cancer. One of the
proposed mechanisms is that proteasome inhibition prevents the degradation of the IκB,
an NF-κB inhibitor, which prevents NF-κB nuclear translocation and consequently NF-
κB mediated gene expression [42]. Proteasome inhibition results in the accumulation of
IκB [43–48], cyclin-dependent kinase (CDK) inhibitor p21 [43,49,50], tumor suppressor p53,
and other pro-apoptotic proteins [51–53]. The exceptional increase in apoptosis of certain
multiple myeloma cells when treated with proteasome inhibitors has also been linked to an
increase in protein unfolding and increasing substrate load on the proteasomes [54,55]. In
addition, proteasome inhibition leads to lethal shortage of amino acids in the cells, which
are the building blocks for cells to make new proteins. This amino acid scarcity caused by
proteasome inhibition results in increasing ER stress and cell apoptosis [56]. Many reviews
on proteasome inhibition have recently been published [57–66], including a recent review
by our group on natural products scaffolds as inhibitors of the proteasome [67].

Proteasome activation by small molecules is a proposed strategy for the treatment of
age-related diseases and several neurodegenerative diseases such as Parkinson’s disease
(PD), Alzheimer’s Disease (AD), Huntington’s Disease (HD), and Amyotrophic Lateral
Sclerosis [8,68–72]. Increasing the proteolytic activity of proteasome enhances the degra-
dation of specific intrinsically disordered proteins (IDPs) such as α-synuclein, β-amyloid,
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and tau, to mention a few, which are associated with the pathogenesis of these neurode-
generative diseases. This review will focus on the use of small molecule enhancers of
proteasome-mediated proteolysis as a potential strategy for the treatment of various neu-
rodegenerative diseases.

2. Proteasome Activity and Diseases

As humans age, there is a decline in proteasome function [3,73]. This reduction could
be due to the reduction in the expression of proteasome subunits [74], oxidative dam-
age of the protein [75,76], and disassembly of the 26S proteasome holocomplex [77,78].
The decrease in proteasome proteolytic function leads to lower rates of unwanted pro-
tein degradation which can induce toxic signaling upon accumulation and aggregation
(Figure 2). In particular, the accumulation of specific intrinsically disordered proteins
(IDPs), such as amyloid-β and α-synuclein, have been identified as a driving cause of many
neurodegenerative diseases [79–98]. The exact mechanism by which these oligomers in-
duce neurotoxicity is complex and still debated, but it is widely accepted that dysregulated
IDPs accumulate, and the resulting soluble oligomeric forms of these protein aggregates
are likely toxic species in disease pathogenesis [79,93,99–102]. These soluble oligomeric
forms are also responsible for impairing proteasome function, which further drives disease
progression [94,103–120]. Multiple studies have indicated that enhancing proteasome
proteolytic activity prevents the accumulation of these IDPs, reduces brain damage and
improves cognitive performance in mouse models, and may be a new therapeutic strategy
to treat neurodegenerative diseases [8,68–70,72,119,121–132]. More recently, it has been
recognized that the 20S proteasome of the proteasome plays a critical role in maintain-
ing proteostasis by the direct degradation of oxidatively damaged and highly disordered
proteins [10,133–138]. The 20S proteasome, therefore, serves as the default protease to
unremittently maintain low levels of these unwanted IDPs without the need for post-
translation modifications, including protein ubiquitination [10,133]. Highly disordered
proteins appear to be the main target of the 20S proteasome [139]. IDPs are also naturally
short-lived, but basal levels are secured by forming proteolytically stable structured com-
plexes with “nannies”, chaperones, or other protein complexes [140]. However, when these
IDPs production outpaces their degradation, they accumulate, oligomerize, and aggregate,
resulting in the induction of downstream cytotoxic signaling events.

2.1. Aging

During aging, proteins are more susceptible to several types of modification, such as
oxidation, glycoxidation, glycation, conjugation with peroxidation products, etc. These
protein modifications can lead to decreased enzyme activity and thermodynamic stabil-
ity [141,142], resulting in the accumulation of damaged proteins in the cell. Several models
used to study proteasome proteolytic activity showed a decline in proteasomal activity as
we age [143,144] and decreased degradation of oxidized proteins in cell cultures [145,146].
Reactive oxygen species accumulate during aging, resulting in an increase of oxidatively
damaged proteins and an increased demand on the proteasome degradation system to
eliminate these pathogenic aggregation-prone proteins [113]. Unfortunately, proteasome
proteolytic activity declines as we age [3,73,75], resulting in the accumulation of oxidatively
damaged proteins [147].

These unwanted protein aggregates interact with the proteasome and further reduce
its proteolytic capacity [104–107,111,113]. This inhibition of proteasome leads to a com-
pounding accumulation of more unwanted proteins and a vicious cycle of progressively
worsening aggregation of oxidatively damaged proteins [94,104–107,116–119,148–150].
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Figure 2. Accumulation of partially unfolded, misfolded, and dysregulated intrinsically disordered
proteins (IDPs) such as amyloid-β and α-synuclein leads to neurotoxicity and neuronal cell death.
The 20S proteasome degrades unwanted IDPs; however, small molecules can enhance the rate of
proteasome-mediated degradation of these IDPs and prevent their accumulation.

2.2. Neurodegenerative Diseases
2.2.1. Parkinson’s Disease (PD)

Approximately 10 million people worldwide are affected by PD, making it the second
most prevalent neurodegenerative disorder [151]. PD is characterized pathologically by
the loss of dopaminergic neurons as a result of the accumulation of Lewy bodies in the
substantia nigra pars compacta (SNc) [152]. Lewy bodies are the defining pathological
hallmark of PD, and its major components are α-synuclein, ubiquitin, parkin, proteasomal
components, and other UPS-related proteins. PD has been linked to various UPS proteins
such as parkin and UCH-L1. Additionally, the expression of mutant α-synuclein in rat cells
inhibits proteasome proteolytic activity, causing essential features common to PD such as
inclusion body formation, accumulation of undegraded ubiquitinated protein, and cell
death. Dysregulation of proteasome-mediated protein degradation has been associated
with both familial and sporadic PD [153].

Different approaches have been used to determine the role of the proteasome in
the pathology of PD. Rat models have been developed to display characteristics such as
bradykinesia, tremor, and abnormal posture, which are similar to PD when treated with
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proteasome regulators [154]. In addition, α-synuclein and ubiquitin-containing inclusion
resembling Lewy bodies were also present at the neurodegenerative sites of the rat neu-
rons. However, other studies could not reproduce similar output [155], which became
controversial and indicated that proteasome inhibition is not a reliable model to study
PD. As an alternative approach to study the development of PD, mouse models of pro-
teasome subunits knock-out were generated. However, the removal of most proteasome
genes causes embryonic lethality except for a few immune-related subunits [109,156]. The
deletion of the proteasomal ATPase subunit Psmc1/Rpt2 in the dopaminergic neurons
leads to intraneuronal α-synuclein and ubiquitin-positive inclusion, which resulted in
neurodegeneration and thus resembling the human PD. This study provided direct support
for the involvement of neuronal proteasome and Lewy-like inclusion seen in PD [157].

2.2.2. Alzheimer’s Disease (AD)

AD is the most common cause of dementia, and it is ranked as the sixth leading
cause of death in the United State as of 2019 [158]. AD is associated with loss of cognitive
functioning such as memory, thinking, and reasoning. It also impacts behavioral activities
such as the ability to carry out daily life activities [159].

The pathogenesis of AD has been attributed to protein misfolding and aggrega-
tion [80–82,84,89]. It is characterized by the aggregation of extracellular β-amyloid plaques
and intracellular accumulation of neurofibrillary tangles [160]. The neurofibrillary tangles
(NFTs) are mostly composed of hyperphosphorylated microtubule-associated tau. Fila-
mentous tau formation is triggered due to changes in the concentration of β-amyloid [160].
Although β-amyloid appears to be more specific to AD, tau is also associated with other neu-
rodegenerative diseases such as corticobasal degeneration, chronic traumatic encephalopa-
thy, argyrophilic grain disease, and progressive supranuclear palsy [161].

Different experimental and clinical data have shown that the main drivers of synaptic
dysfunction, cognitive decline, and neuronal loss in AD patients are associated with
soluble toxic β-amyloid oligomers which impair proteasome proteolytic activity, rather
than insoluble β-amyloid plaques [111,162–165].

The ubiquitin-dependent proteasome system is associated with AD and degradation
of β-amyloid [120,166–168]. Studies showed that the activity of the proteasome decreases
in some parts of the brain in AD patients [169]. Similarly, inhibition of the 26S proteasome
by lactacystin resulted in the accumulation of β-amyloid in both astrocytes and neurons,
suggesting that β-amyloid could be a substrate for proteasomal degradation [166]. These
results indicate that enhancing proteasome proteolytic activity may alleviate some of the
factors that drive the pathogenesis of AD.

2.2.3. Huntington’s Disease (HD)

HD is a brain disorder caused by the mutations of the huntingtin (Htt) gene. HD affects
mood, movement and also leads to progressive cognitive deterioration and psychosis as a
result of changes in the central part of the brain. The disease is dominant, which implies
that it is inheritable by children from their parents.

In HD the disorder of polyglutamine in the Htt protein results in toxic functions
of mutant Htt, which consequently leads to neurodegeneration. The HD mutation is an
unstable expansion of trinucleotide CAG repeats within the Htt gene, which causes polyg-
lutamine stretch in the N-terminal of the protein and results in the formation of fibril and
aggregates [170]. Remarkably, the mutant Htt still retains some of the functions of a normal
Htt. The number of CAG repeats correlates to the progression of HD and the symptoms.
Individuals with 36–40 CAG repeats may or may not develop HD symptoms. However,
those with CAG repeats above 40 will eventually develop HD [171,172]. Greater than
50 long CAG repeats cause early onset of the disease (juvenile HD) [173]. Several studies
suggest that mutant Htt aggregates impair the ubiquitin-proteasome system [104,116,174].
However, the actual mechanism of interaction between the mutant Htt aggregate and the
proteasome remains unclear. Interestingly, unlike the soluble Htt, the Htt aggregates have
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been found to be ubiquitinated, and those insoluble aggregates have also been shown not
to impair the activity of the 26S proteasome [175,176]. The inclusions associated with HD
have been proposed to be toxic and lead to neuronal death. But the exact mechanism of
toxicity remains unsolved. Increasing proteasome-mediated substrate degradation has
been shown to increase survival in HD patients’ mutant huntingtin-expressing striatal and
skin fibroblasts neurons. Over expression of PA28γ, a proteasome activator subunit also
improved cell viability [177].

2.2.4. Amyotrophic Lateral Sclerosis (ALS)

ALS is another progressive neurodegenerative disease that affects the motoneurons in
the brain and spinal cord. ALS is characterized by spasticity, muscle weakness, atrophy,
and paralysis. The disease is often lethal within three to five years after diagnosis [178–180].
Like other neurodegenerative diseases, most ALS cases are sporadic (sALS), while about
10% could be familial (fALS) and result as a mutation in multiple genes [178]. Also, both
sALS and fALS are clinically indistinguishable. Efforts at determining the mechanism
underlying different fALS forms are thought to give insight into target identification and
therapeutics development for both forms of diseases.

The first ALS-linked genetic mutation was found in 1993, and it was located in the
gene coding of Cu-Zn superoxide dismutase 1 (SOD1) [181]. Since then, several ALS
mutant genes have been identified [178,182–184]. The recently discovered C9orf72 gene
mutation has been identified as the most common cause of fALS and frontotemporal demen-
tia [185,186]. An expansion of a GGGGCC repeat in the C9orf72 gene translates into five
dipeptide-repeats proteins: poly-GA, poly-GP, poly-GR, poly-PR, and poly-PA [187–191].
A study showed that poly-GA aggregates recruit numerous 26S proteasome complexes
which may affect neuronal proteasome-mediated proteostasis and the protein degradation
process [192].

Both the sALS and fALS are often considered proteinopathies since they both tend to
aggregate and accumulate misfolded and abnormal proteins generated in the damaged
neurons [193,194]. The presence of ubiquitinated rich protein inclusions in motor neurons
is a feature considered a common hallmark of not only human ALS but also in cellular and
animal models of the disease [195,196]. The abundant accumulation of these ubiquitinated
proteins suggests a significant contribution of the ubiquitin-proteasome system in these
neuropathological features. In addition, the use of different cellular and animal models of
ALS has provided substantial evidence of the involvement of the ubiquitin-proteasome
system in the formation of inclusion and neuronal death [197].

3. Small Molecule Enhancers of 26S Proteasome Activity

The role of the proteasome in the regulation of cellular functions has made it an
important target for the development of new treatments for cancer and neurodegenerative
diseases. In addition, understanding proteasome regulation has allowed scientists to probe
the mechanism of different cellular processes that involve the proteasome.

Small molecules that directly activate the 26S proteasome are rare and most of the
well-studied approaches to enhance the 26S proteasome involve indirect activation by
modulation of post-translational modification and by genetic manipulation. A recent
review highlights some of the cellular mechanisms that activate 26S proteasomes [198]. In
this review, we will focus on small molecules that activate the 26S proteasome.

3.1. Indirect Activation of 26S Proteasome
3.1.1. Inhibition of Deubiquitinase

Deubiquitinating enzymes (DUBs) play a critical role in the ubiquitin-proteasome
system (UPS). The 19S RP of the proteasome uses deubiquitinase activity to remove and
recycle polyubiquitin from protein substrates that are condemned for proteolysis [199].
There are three essential DUBs: RPN11, UCH37, and USP14 that are associated with
the 19S RP of human proteasome [124,200,201]. The main function of these DUBs is to
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remove monoubiquitin and polyubiquitin chains from substrates tagged for proteasomal
degradation [202–205]. USP14, a DUB of the cysteine protease class, interacts reversibly
with the proteasome [124,206–208] and it cleaves the ubiquitin chain off the targeted
protein before degradation by the proteasome [209,210], thereby inhibiting the degradation
of ubiquitin-protein conjugates in vitro and in vivo [124]. Unlike USP14, the RPN11, a
DUB of the metalloprotease class, is part of the 19S RP and cleaves the ubiquitin chain
after degradation has been initiated by the proteasome [200]. The mechanism of action of
UCH37 is not completely understood yet but this DUB could edit the ubiquitin chains and
either prevent the protein from being degraded or enhance its degradation depending on
the proteasome needs [200,211,212].

A study conducted in 2010 showed that USP14 inhibits protein degradation by the
proteasome in murine embryonic fibroblasts. In the same study, the authors showed
that inhibition of USP14 by 1-[1-(4-fluorophenyl)-2,5-dimethylpyrrol-3-yl]-2-pyrrolidin-1-
ylethanone (IU1, Figure 3, compound 1) drastically stimulate the degradation of oxidized
proteins by the proteasome [124]. IU1 was identified as a USP14 inhibitor from high-
throughput screening (HTS) of over sixty-three thousand compounds for their ability
to inhibit USP14. From the HTS, 215 compounds were identified as true inhibitors of
USP14, however, screening of the hit compounds against several DUBs only provided three
compounds as selective inhibitors of USP14. IU1 was found to be the most active of the
three with IC50 of 4–5 µM [124]. Further optimization of IU1 has led to the discovery of more
potent analogues such as IU1-47 (IC50 of 0.6 µM) (Figure 3, compound 2) [213], IU1-248
(IC50 of 0.83 µM) (Figure 3, compound 3) [214], and 1B10 and 1D18 (Figure 3, compound 4 &
5 respectively) which have better membrane permeability [215]. A recent review by Moon
et al. [210], is focused on small molecules that inhibit proteasome-associated deubiquitinase
and can be consulted for more information on DUB inhibitors.
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In a recent study by Kim et al. [216], proteasome-mediated proteolysis was increased
by knocking down USP14 with small interfering RNA (siRNA) which led to a significant
impairment of autophagic flux. This proteasome activation led to an increase in the
microtubule-associated protein tau (MAPT) degradation and a decrease in the concentration
of its oligomeric forms. This result is also consistent with Boselli et al.’s observation that
USP14 inhibition enhances tau degradation in cultured neurons [213].

3.1.2. Modulation of cAMP-Dependent Protein Kinase A (PKA) and cGMP-Dependent
Protein Kinase G

Phosphorylation of proteasome subunits was recently established as a promising way
to proteasome regulation [217]. The phosphorylation of Ser-14 of Rpn6, a subunit of 19S
regulatory particle, by cAMP-dependent PKA has been shown to enhance the hydrolysis of
polyubiquitinated proteins and small peptides in cells and in vivo studies [218–221]. In addi-
tion, impeding the phosphorylation of Thr-25 of Rpt3 by dual-specificity tyrosine-regulated
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kinase 2 (DYRK2) [222,223] and Ser-120 of Rpt6 by calcium/calmodulin-dependent pro-
tein kinase II (CaMKII) [224,225] or PKA [119] have been shown to impair proteasome
proteolytic capacity and impedes cell proliferation. Small molecules that raise cAMP have
therapeutical promise because they enhance the capacity of cell cultures [220] and mouse
brains [119,226] to degrade misfolded proteins such as tau, which has been implicated in
the pathogenesis of Alzheimer’s disease.

Small molecule inhibitors of phosphodiesterase have been found to increase protea-
some function by cAMP/PKA-mediated phosphorylation. Rolipram (Figure 4, compound
6) is an example of phosphodiesterase type-4 inhibitor (PDE4) that was developed as an an-
tidepressant drug in the early 1990s [227]. A study shows that Rolipram decreases the level
of insoluble tau and improves cognitive performance in mice by increasing proteasome
function through activating cAMP-PKA signaling [119]. Cilostazol (Figure 4, compound
7) is another phosphodiesterase type-3 inhibitor (PDE3). Administration of Cilostazol in
rTg4510 mice also showed improved cognitive performance and increased proteasome
function through the cAMP/PKA pathway [226]. This small molecule was approved by the
FDA to treat intermittent claudication and can also be used for secondary stroke preven-
tion [228]. In late 2020, the FDA completed the clinical trial to determine the therapeutical
use of cilostazol for patients with mild cognitive impairment [229].
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Tadalafil (9), BAY41-2272 (10), and Cinaciguat (11) are molecules that raise cGMP level and induce
cGMP-mediated proteasome activation.

Like cAMP-mediated modulation of 26S proteasome, small molecules that raise cGMP
and activate PKG were recently shown to enhance proteasome proteolytic activity without
affecting lysosomal degradation and increase the rate of degradation of both short-lived
and long-lived proteins, including tau and mutant Htt. [198,230]. In the study conducted
by VerPlank et al. [230], treatment of human neuroblast cells (SH-SY5Y) with molecules
that raises cGMP such as sildenafil (Figure 4, compound 8) or tadalafil (Figure 4, com-
pound 9) which are phosphodiesterase type-5 inhibitors (PDE5), or BAY41-2272 (Figure 4,
compound 10) and cinaciguat, (Figure 4, compound 11) which are stimulators of soluble
guanylyl cyclases, led to a rapid increase in proteasomal activity in cell lysates. However,
unlike phosphorylation of Rpn6 by PKA [220,221], Rpt3 by DYRK2 [222,223], or Rpt6 by
CaMKII) [224,225] or PKA [119], phosphorylation of Rpn6, Rpt3, or Rpt6 subunit was not
observed in the PKG pathway [230]. Overexpression of PKG in SH-SY5Y and HEK293
cells led to an increase in the level of phosphorylated proteins compared to cells that were
transfected with empty vectors during proteasome preparations. Thus, the 26S proteasome
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subunit or an associated protein that is phosphorylated in the cGMP-mediated proteasome
activation is still unknown and the mechanism of action remains unclear.

3.1.3. Inhibition of p38 Mitogen-Activated Protein Kinase (MAPK)

MAPKs are enzymes that phosphorylate the hydroxyl group of threonine and serine
residues in proteins. These kinases play an important role in the control of cell proliferation
and apoptosis. The p38 MAPK is involved in a signaling pathway that regulates various
biological functions including biosynthesis of cytokinesis such as interleukin-1β (IL-1β)
and tumor necrosis factor-α (TNF-α) [231,232]. The activation of the p38 MAPK pathway as
a defense to osmotic stress has been shown to lead to phosphorylation of 19S RP at Thr-273
of the Rpn2 subunit, which resulted in the inhibition of the 26S proteasome proteolytic
activity [233].

In ALS and AD, the over-activation of the p38 MAPK pathway has been reported
in animal models and postmortem brains of AD patients [195,234–236]. The activation of
the p38 MAPK pathway in cell lines and animal models has led to tau phosphorylation,
neuroinflammation, neurotoxicity, and synaptic dysfunction, which are events associated
with Alzheimer’s disease. Therefore, the search for p38 MAPK inhibitors became a novel
approach for targeting neurodegenerative diseases [237].

In 2017, Leestemaker et al. [122] discovered imidazole inhibitors of p38 MAPK as
enhancers of 26S proteasome proteolytic activity. The compounds were identified from
high-throughput screening of over 2750 compounds using a proteasome activity-based
probe (Me4BodipyFLAhx3L3VS) that covalently binds to proteasome catalytic sites in an
activity-dependent manner in living cells. The group found that PD169316 (Figure 5,
compound 12), a known inhibitor of p38 MAPK and its structural analogues, SB202190
(Figure 5, compound 13), and SB203580 (Figure 5, compound 14), increases the proteolytic
activity of the proteasome in a dose-dependent manner in MelJuSo cells. Further charac-
terization of these compounds showed that they increase proteasome proteolytic activity
by inhibiting the p38 MAPK pathway without affecting cell viability, subunits abundance,
and the overall level of ubiquitinated proteins [122]. Similarly, Huang et al. [238], demon-
strated that treatment of HAP 40 depleted cells with p38 MAPK inhibitor, PD169316,
increases the CT-L activity of the proteasome and enhances degradation of both soluble
and aggregated forms of mutant Htt in a Huntington’s disease model. These data suggest
that the regulation of the p38 MAPK pathway could be a potential way of modulating
proteasome-mediated proteolytic activity.
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3.1.4. Proteasome Activation by Genetic Manipulation

Another approach to enhancing proteasome proteolytic activity is by proteasome sub-
unit overexpression. Overexpression of β5i subunit in HeLa cells and lymphoblasts has led
to an increase in the CT-L and T-L activities of the proteasome [239,240]. Previous studies
also showed that stable overexpression of the β5 subunit in human fibroblast cell lines
increased the level of other β subunits, increasing the overall proteolytic activity of the three
catalytic sites [241]. Furthermore, overexpression of the 19S RP subunit PSMD11/Rpn6 in-
creases proteasome assembly and proteolytic activity in human embryonic stem cells [242].

Small molecule activation of the transcription factor NRF2, nuclear factor erythroid
2-related factor 2, enhances the expression of the 20S and 19S proteasome particles and in-
creases the proteolytic activity of the proteasome in cells containing NRF2. 18α-glycyrrhetinic
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acid (18α-GA) has been shown to increase proteasome proteolytic activities from 1.5- to
1.8-fold, with the activity of the caspase-like site being the most affected in wide-type
HFL-1 human fibroblasts. In addition, the increase in the proteasome proteolytic activity
was not observed when NRF2 was knockdown using siRNA in HFL-1 cells and the cells
were treated with 18α-GA, further confirming the upregulation of proteasome proteolytic
activity through NRF2 activation [243]. The activation of NRF2 increases the level of
20S proteasome subunits: α4, β1, β2, and β5 in both human fibroblasts [243] and mice
liver [244], and the 19S subunits: Rpt2, Rpt5, and Rpn11 in mice liver [244]. The expression
of antioxidant enzymes such as UDP-glucuronosyltransferase (UGT) [245], glutathione
S-transferase (GST) [246], and NAD(P)H quinone oxidoreductase 1 [247], to name a few, are
also controlled by this transcription factor. Activation of NRF2 by tert-Butylhydroquinone
(t-BHQ) and sulforaphane increases proteasome proteolytic activity in human embryonic
stem cells (hESCs) [248] and also protects against oxidative stress [249].

4. Small Molecule Enhancers of 20S Proteasome Activity
4.1. Sodium Dodecyl Sulfate (SDS)

SDS (sodium dodecyl sulfate), also known as SLS (sodium lauryl sulfate), is a syn-
thetic organosulfate salt used in cleaning, pharmaceutical, and food products. In 1988,
Tanaka et al. [250] showed that 20S proteasome proteolytic activity could be enhanced
at a low concentration of SDS (0.04–0.08%) in biochemical assays. However, at higher
SDS concentrations, the activity of the proteasome is lost, and the SDS inhibits the protea-
some [251]. SDS is an invaluable in vitro tool that is used by most researchers to activate
the proteasome as means to test compounds for subsequent proteasome inhibition. It is
believed that SDS induces gate opening of the proteasome by partial denaturation of the
20S to facilitate substrate entrance into the catalytic core. However, the actual mechanism
of SDS proteasome activation is still unclear and considering that SDS is a detergent, it
should not really be considered as a small molecule activator of the 20S proteasome.

4.2. Natural Product-Based Activators

Several natural products have been identified as 20S proteasome activators, some
of which include betulinic acid (Figure 6, compound 15) [252], ursolic acid (Figure 6,
compound 16) [127], and oleuropein (Figure 6, compound 17) [253]. Betulinic acid is a
triterpene isolated from the bark of Betula pubescens (commonly known as white birch). It
was reported as a selective inhibitor of human melanoma and it has been demonstrated
to induce programmed cell death in human neuroblastoma and neuroectodermal tumor
cells [254]. Betulinic acid is one of the first reported enhancers of the 20S proteasome.
A small peptide assay using Suc-Leu-Leu-Val-Tyr-AMC (used to determine the CT-L
activity of the proteasome) showed that’s betulinic acid enhances the CT-L activity of
the proteasome with EC50 of approximately 2.5 µg/mL. Unfortunately, several chemical
modifications to enhance the activity of betulinic acid resulted in compounds that inhibit
the proteasome [252]. Like betulinic acid, ursolic acid is another triterpenoid that enhances
the activity of the 20S proteasome. Ursolic acid is similar in structurally to betulinic acid,
and they both enhance the CT-L activity of the 20S proteasome [127,252]. Although both
betulinic acid and ursolic acid showed good activity in small peptide assay, unfortunately,
betulinic acid did not show any activity for the turnover of misfolded proteins in vitro and
in vivo [72].

In addition, other natural compounds have been identified as 20S proteasome ago-
nists. Some of these compounds include lipids [255] and fatty acids [256]. In 1993, Ruiz de
Mena et al. [255] studied the effect of phospholipids on the T-L, CT-L, and C-L activities of
the proteasome in rat liver. In the study, the team identified cardiolipin (diphosphatidyl-
glycerol) as a strong CT-L enhancer (up to 60-fold enhancement) and C-L enhancer (up
to 30-fold enhancement). SDS and cardiolipin activation was shown to be additive and
at either optimal or suboptimal concentrations of both compounds. Furthermore, fatty
acids such as oleic, linoleic, and linolenic acids isolated from spinach leaves were found to
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increase proteasome-mediated substrate degradation by enhancing CT-L and C-L activities
at about one-third to one-sixth the required concentration of SDS. Unlike SDS, at extremely
low concentration (0.0007–0.0025%, ~25–90 µM), the T-L catalytic site is inhibited and the
degradation of Boc-L-R-R-AMC is prevented [256].
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4.3. AM-404 and MK-886

Although many compounds show increased peptide cleavage activities using the
standard aminomethyl coumarin tagged small peptide substrates, most have failed to
demonstrate an increase in proteolytic activity under physiological conditions. One likely
explanation is that the small peptide probes, used for detection of in vitro proteasome
proteolytic activity, may be small enough to inadvertently enter the CP-proteolytic cavity
following minor conformational changes to the gate. Trader and Kodadek developed
a follow-up assay that uses larger peptides with a single cleavage site and uses LC-MS
to monitor proteasome proteolytic activity over time. They also validated molecules
from LC-MS assay for their ability to turnover of α-synuclein in cells by monitoring the
appearance of free GFP which correlates to the number of α-synuclein that was degraded.
Using these assays, the lab was able to identify small molecules capable of increasing
20S mediated proteolytic activity [72]. The authors screened 726 compounds in the NIH
Clinical Collection and identified AM-404 (Figure 7, compound 18) and MK-886 (Figure 7,
compound 19) as “true” proteasome enhancers. The study showed both compounds
increase the proteolytic activity of the 20S proteasome by 3- to 4-folds with an EC50 of 32
µM, and they also enhance the degradation of α-synuclein in cell culture [72].
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Recently, the Trader’s lab investigated the structural component of AM-404 needed
to enhance the proteasome proteolytic activity. In the study, they synthesized various
derivatives of AM-404 by varying the aliphatic chain length, degree of unsaturation, and
substitutions. They illustrated the importance of the aliphatic chain length and the cis-
alkene at C8 of the aliphatic chain in stimulating the 20S proteasome [126].

4.4. Imidazolines

Imidazolines are an important class of compounds that are found in various natural
and synthetic bioactive molecules [257,258]. This class of compounds displays a wide
range of biological activities including proteasome and NF-κB modulation [259–261], and
therapeutic significance such as antifungi [262], antitumor [263], antihelminthics [264],
antihyperglycemic [265], and antihypertensive activity [266].
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Our lab reported the imidazoline, TCH-165 (Figure 8, compound 20), as a 20S protea-
some enhancer as a low (1.5 µM) activator of the 20S proteasome [70]. TCH-165 enhanced
20S mediated degradation of IDPs such as α-synuclein, tau, ornithine decarboxylase, and
c-Fos in cell cultures. However, it does not affect the degradation of structured proteins
such as GAPDH. Treatment of HEK293T cells with TCH-165 showed a time-dependent
disassembling of both the singly and doubly capped 26S proteasome and showed an in-
crease in the free 20S CP. TCH-165 prevents the binding of the 19S RP to the 20S proteasome
suggesting that the molecule binds directly on the α-ring of the 20S CP and shifts the
equilibrium between 26S and 20S proteasomes towards an activated 20S CP. To gain insight
into the mechanism of 20S proteasome activation, atomic force microscopy (AFM) imaging
revealed that the ratio of open to closed 20S proteasome increases in a dose-dependent
manner when treated with TCH-165 at concentrations as low as 200 nM [70]. This fur-
ther supports that TCH-165 induces the open gate conformation of the 20S CP. It is also
important to note that this is the only small molecule with biophysical data (atomic force
microscopy (AFM) imaging) that support gate opening of the 20S proteasome [70].
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4.5. Chlorpromazines

During the search for proteasome activators, our lab screened the NIH Clinical Collec-
tion and Prestwick libraries, where we identified chlorpromazine (Figure 9, compound 21)
and related phenothiazines as 20S proteasome activators inducing up to 20-fold activity [69].
Chlorpromazine is an FDA-approved drug that is used in the treatment of schizophrenia
or manic-depression in adults. Chlorpromazine is believed to be a dopamine antagonist
with some antiserotonergic and antihistaminergic properties [267].
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Chlorpromazine and related phenothiazines preferentially enhance the CT-L activity
of the proteasome and promote degradation of IDPs, such as α-synuclein and tau but not
structured proteins in in vitro assays. Chemical modification of chlorpromazine abrogated
its dopamine D2R receptor activity while preserving its ability to enhance the 20S prote-
olytic activity. Analogue 8 (Figure 9, compound 22), an analogue of chlorpromazine with
physiological insignificant potency for dopamine receptor (Ki ≥ 250 µM) showed better
efficacy with about 10-fold maximum enhancement and EC200 (concentration where the
20S mediated proteolysis is increased by 2-fold or 200%) of 13.5 µM.

Interestingly, a structural analogue of chlorpromazine, methylene blue, was also found
to enhance the CT-L and T-L activity of the 20S proteasome. Methylene blue was also
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found to decrease the level of β-amyloid and increase learning and memory in 3xTg-AD
mouse model but does not affect tau phosphorylation in vivo [268]. A recent study also
showed that methylene blue inhibits caspase-6-induced neurodegeneration, decreases
neuroinflammation, and prevents cognitive impairment in mice [269].

4.6. Dihydroquinazolines

The 3,4-dihroquinazoline compounds are found in several natural products and
synthetic compounds with various biological properties. Members of this class of com-
pounds have biological properties that includes antifungal [270], antiparasitic [271], antitu-
mor [272–278], and antiviral activities [279,280].

Earlier this year, Mosey et al. synthesized and evaluated several dihydroquinoline
analogues as 20S proteasome enhancers [125,281]. In this study, they were able to iden-
tify several promising 20S activators with the most potent being dihydroquinazoline
18 (Figure 10, compound 23), doubling proteasome proteolytic activity at 1.3 µM (EC200
1.3 µM). The dihydroquinazolines enhance the three catalytic sites activity of the 20S protea-
some and increase the degradation of α-synuclein, the IDP identified in the pathogenesis
of Parkinson’s disease.
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4.7. Fluspirilene and Acylfluspirilene

Earlier this year, the Tepe group identified fluspirilene (Figure 11, compound 24)
and its synthetic analogues which were capable of enhancing 20S proteasome proteolytic
activity and even restoring the proteolytic activity of 20S proteasome impaired by IDP
oligomers [132]. Fluspirilene and its amide derivative, acylfluspirilene (Figure 11, com-
pound 25) activate the three catalytic sites of 20S CP and prevent IDP aggregation and
oligomerization. Interestingly, acylfluspirilene exhibits more potency (EC200 1.9 µM) com-
pared to fluspirilene and a better maximum fold enhancement of greater than 20-fold.
Furthermore, molecular docking shows that fluspirilene and acylfluspirilene bind to the
α2-3 intersubunit pocket of the 20S CP, which is different from the previously reported
20S enhancers, TCH-165, dihydroquinoline, and chlorpromazine, which bind in the α1-2
pocket of the proteasome. In silico and in vitro structure-activity relationship (SAR) studies
indicated the importance of the in-pocket binding interactions of these molecules with the
20S proteasome. This group of molecules does not enhance the proteolytic activity of the
26S proteasome and may therefore be used to selectively prevent the accumulation of dys-
regulated intrinsically disordered proteins without affecting regular ubiquitin-dependent
protein degradation [132].
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4.8. Pyrazolones

Pyrazolones are a rare class of compounds that enhance proteasome activation. This
class of molecule was first discovered as proteasome activator in 2014 by the Silver-
man group and as potential compounds for the treatment of ALS [71]. The pyrazolones
(Figure 12, compound 26–28) were shown to protect neurons in PC12-SOD1G93A cells in
cellular models of ALS. The compounds also increased ALS transgenic mouse survival by
13%, further confirming their potential in the development of ALS therapeutics. During
the mechanistic investigation of CMB-087229 (Figure 12, compound 27), the compound
was found to antagonize G protein-coupled receptor metabotropic glutamate receptor 5
(mGluR5), a previously identified target in ALS therapeutic [282], to about 65% at 10 µM
concentration. The group investigated if mGluR5 was the target of the pyrazolones by
screening known mGluR5 antagonists in their cell-based assay. However, the screened
mGluR5 receptor antagonists (including MPEP and fenobam) showed no activity in the
assay. Based on the result, it was concluded that the antagonism of the mGluR5 is unlikely
to be the mode of action of the pyrazolones. Pull down experiments indicated several 26S
proteasome regulatory subunits as a possible target for the pyrazolones. The pyrazolones
were able to reverse bortezomib-induced cytotoxicity in the PC12 cells, further supporting
evidence that their mechanism of action involved proteasome activation [283].
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Following up on Silverman’s discovery, Santoro et al. [284] screened a small library of
structurally-related pyrazolones for proteasome enhancement and neuroprotection against
amyloid-induced toxicity in neuroblastoma SH-SY5Y cells. The group reported that the
aminopyrine analogue (Figure 12, compound 29) and nifenazone (Figure 12, compound 30)
displayed up to twofold induction of 26S proteasome proteolytic activity in cells. Using
docking studies coupled with Saturation Transfer Difference (STD) NMR experiments, the
group proposed that aminopyrine enhances the 20S proteasome by a mechanism involving
binding to the α-ring surfaces of the proteasome; however, only a marginal increase in
activity was observed (<30% increase at 10 µM) in a purified proteasome assay.

5. Conclusions

Efficient proteasome function is critical in maintaining healthy cellular homeostasis.
Dysregulation of protein or proteasome impairment can result in a toxic accumulation of
unwanted proteins, which is observed in the pathogenesis of different neurodegenerative
diseases and aging. Enhancing the proteolytic activity of the proteasome by increasing
its capacity, accessibility, or the rate at which it degrades has long been hypothesized as a
means to prevent the accumulation of dysregulated IDPs. More recently, researchers from
various labs have explored the use of small molecules to induce protein proteolysis. Small
molecule proteasome agonists can enhance the proteolytic clearance of unwanted proteins
and restore homeostasis. Small molecule enhancers of the 26S proteasome are described
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herein which mainly induce enhanced 26S-mediated proteolysis of ubiquitinated proteins
via an indirect mechanism of proteasome activation.

Small molecule inhibitors of deubiquitinases prevent proteins marked for ubiquitin-
dependent degradation fromescaping their fate. Even though there are no approved
therapies yet based on deubiquitinating enzyme (DUB) inhibitors, this is an emerging field
with great significance. Small molecule regulation of upstream signaling pathways, in-
cluding cAMP-depending protein kinase A and c-GMP-dependent protein kinase G, affect
the phosphorylation of the proteasome regulatory particles. As a result, small molecule
regulators of phosphodiesterase type-3 (PDE3) can therefore indirectly increase the rate of
substrate degradation by the proteasome. Small molecules that directly interact with the
26S proteasome and enhance the rate of 26S proteasome-mediated protein degradation are
less known and likely a fruitful field for exploration.

Whereas the 26S proteasome targets ubiquitinylated protein substrates, the 20S pro-
teasome is limited to the degradation of only disordered proteins. Several small molecule
enhancers of 20S proteasome-mediated protein degradation have been identified in the lit-
erature. We summarized herein several different classes of small molecule 20S proteasome
enhancers that induce 20S—mediated degradation of dysregulated intrinsically disordered
proteins by direct interaction with the 20S core particle.

The activation of the proteasome by small molecules is a relatively new field in science.
Its potential as a therapeutic approach is still unknown and the consequences of chronic
exposure to proteasome enhancers are not known. However, considering the possibility of
treating multiple disorders for which there are currently no treatment options available,
this approach has enormous potential. However, as in all new fields, the approach still
needs further validation, in vivo studies in particular, to fully understand its therapeutic
potential and limitation. In addition, more studies are needed to elucidate the mechanistic
details of small molecule proteasome activation and its overall cellular consequences.
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