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Abstract 

Background:  Immunotherapies targeting ligand-receptor interactions (LRIs) are advancing rapidly in the treatment 
of colorectal cancer (CRC), and LRIs also affect many aspects of CRC development. However, the pattern of LRIs in CRC 
and their effect on tumor microenvironment and clinical value are still unclear.

Methods:  We delineated the pattern of LRIs in 55,539 single-cell RNA sequencing (scRNA-seq) samples from 29 
patients with CRC and three bulk RNA-seq datasets containing data from 1411 CRC patients. Then the influence of 
tumor microenvironment, immunotherapy and prognosis of CRC patients were comprehensively investigated.

Results:  We calculated the strength of 1893 ligand-receptor pairs between 25 cell types to reconstruct the spa-
tial structure of CRC. We identified tumor subtypes based on LRIs, revealed the relationship between the subtypes 
and immunotherapy efficacy and explored the ligand-receptor pairs and specific targets affecting the abundance 
of tumor-infiltrating lymphocytes. Finally, a prognostic model based on ligand-receptor pairs was constructed and 
validated.

Conclusion:  Overall, through the comprehensive and in-depth investigation of the existing ligand-receptor pairs, 
this study provides new ideas for CRC subtype classification, a new risk screening tool for CRC patients, and potential 
ligand-receptor pair targets and pathways for CRC therapy.
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Introduction
According to the latest estimates of the global cancer 
burden released by the International Agency for Research 
on Cancer (IARC) in 2020, colorectal cancer (CRC) is 
the third most common cancer globally, with the second 
highest case fatality rate. In recent years, research on 
advanced CRC has advanced rapidly, and preoperative 
neoadjuvant therapy and total neoadjuvant therapy have 

been widely studied in clinical trials. After the publica-
tion of the KEYNOTE 177 study in 2020, PD-1 blockade 
therapy based on the ligand-receptor interaction (LRI) 
between tumor cells and T cells became the first-line 
therapy for MSI-H metastatic CRC [1]. Increasing atten-
tion has been given to research on intercellular LRIs in 
CRC treatment.

As an essential component of cell–cell communication, 
LRIs play a vital role in the development and treatment 
of cancer. LRIs involve various cells in the tumor micro-
environment, and interactions in different cells produce 
different effects. Current research is mainly limited to the 
impact of a single ligand-receptor pair between two cell 
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types, but the comprehensive effect of multiple ligand-
receptor pairs between different cells is still unclear. 
With the widespread use of single-cell RNA sequencing 
(scRNA-seq), several studies have developed algorithms 
and tools to investigate the effects of LRIs via scRNA-seq 
data [2, 3], which makes it possible to explore LRIs in a 
holistic way. However, the entire landscape of LRIs in the 
colorectal cancer ecological environment has not been 
fully clarified.

We delineated the existing LRIs between several cell 
types in the tumor microenvironment by analyzing 
scRNA-seq data from human CRC samples. After clus-
tering and annotating scRNA-seq data, we calculated the 
strength of the LRIs between different cells, described the 
general situation of the LRIs, and reconstructed the spa-
tial structure of CRC by LRI strength, which will allow us 
to explore the pattern of cell–cell communication. Fur-
thermore, based on the strength of the LRIs, we identi-
fied malignant epithelial cell subtypes and CRC subtypes 
and revealed differences in the tumor microenvironment 
and changes in immunotherapy-related factors. In addi-
tion, a survival model and ligand-receptor network were 
established to explore the impact of ligand-receptor 
interactions on the survival of CRC patients.

Material and methods
RNA‑seq data acquisition
The scRNA-seq data of 29 human CRC samples con-
taining 55,543 cells was obtained from the Gene Expres-
sion Omnibus database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo/) from two studies, and the accession numbers were 
GSE132465 and GSE144735 [3]. Three bulk RNA-seq 
profiles of CRC samples were accessed from the TCGA 
database (https://​portal.​gdc.​cancer.​gov/) and the Gene 
Expression Omnibus database (Accession Numbers 
GSE39582 and GSE17538). The RNA-seq data of CRC 
cell lines was downloaded from CCLE (https://​sites.​
broad​insti​tute.​org/​ccle).

scRNA‑seq data processing
The ‘Seurat’ package was used to analyze the matrix of 
unique molecular identifier (UMI) counts per gene. Cell 
selection was based on the following criteria: cells with 
> 1000 UMI counts, > 200 genes, < 6000 genes and < 5% 
mitochondrial gene expression in UMI counts. The 
‘scTransform’ package and ‘harmony’ package were used 
for batch correction and scRNA-seq data integration. The 
t-distributed stochastic neighbor embedding (tSNE) algo-
rithm was used for dimensionality reduction and cluster 
classification analysis. The number of principal compo-
nents (NPCs) was selected based on the elbow plot, and 
the resolution was determined by the number of cells. 
Adjusted P-value < 0.05 and log2(fold change) > 0.5 were 

considered the cutoff thresholds for identifying marker 
genes. Clusters were annotated by the ‘singleR’ package, 
marker genes and annotation file of the original research. 
The ‘Monocle’ package was utilized to construct single-
cell pseudotime trajectories of dendritic cells (DCs).

Ligand‑receptor pair interaction strength calculation 
and analysis
The 1893 currently confirmed ligand-receptor pairs were 
downloaded from the published database and research 
[4]. The strength of the LRIs was calculated by referenc-
ing the research of Lei Zhang et al. [5]. The LRI strength 
calculation is briefly described as follows. For single-
cell samples, the average ligand expression value of cell 
type A is multiplied by the average receptor expression 
value of cell type B. For bulk samples, the ligand expres-
sion value of the same sample is multiplied by the recep-
tor expression value. The statistical significance of the 
ligand-receptor pairs between different pairwise cells was 
achieved by 1000 permutation tests. The reconstruction 
of intercellular spatial structure in the scRNA-seq data 
was performed by Cellular Spatial Organization map-
per (CSOmap) based on the LRIs [6]. Cells that were 
located away from the LRI were defined as those that are 
40 units away from the origin. Differentially expressed 
pairs (DEPs) were screened by the ’edgeR’ package, 
and significantly DEPs were defined as having adjusted 
P-value < 0.05 and log2(fold change) > 0.5. Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID, https://​david.​ncifc​rf.​gov/​home.​jsp) v6.8 was 
used to perform functional enrichment analyses of the 
differentially expressed genes, and significantly enriched 
terms were defined as having Benjamini-corrected 
P-value < 0.05. Whole genome expression profile data 
were analyzed by gene set enrichment analysis (GSEA 
4.1.0).

Ligand‑receptor subtypes classification of CRC​
An unsupervised k-means subclustering algorithm was 
applied to classify LRI subtypes in the three bulk RNA-
seq datasets through ligand-receptor expression patterns. 
The ‘ConsensusClusterPlus’ package was used to perform 
unsupervised consensus clustering. The clustering pro-
cedure was iterated 1000 times, with 80% sampling in 
each iteration. The optimal number of clusters was deter-
mined by CDF curves and a consensus heatmap. The 
50 most significantly upregulated ligand-receptor pairs 
were selected by the ‘edgeR’ package as the character-
istic ligand-receptor pairs of each subtype. A silhouette 
value was used to evaluate the clustering effect, and the 
closer the silhouette value was to 1, the better the clus-
tering effect was. The unsupervised subclass mapping 
method (SubMap; https://​cloud.​genep​attern.​org/​gp/) 
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was applied to evaluate the similarity between the differ-
ent subtypes in the three bulk RNA-seq datasets [7]. A 
Bonferroni-corrected P-value < 0.05 was considered sta-
tistically significant. Then, Kaplan–Meier (KM) survival 
curves were used to evaluate the overall survival (OS) of 
patients with different LRI subtypes. The log-rank test 

was used to analyze the significance of survival differ-
ences between groups. The characteristic ligand-receptor 
pairs of each subtype were used to identify the LRI sub-
type of the single-cell samples. The abundance of tumor-
infiltrating lymphocytes (TILs) and efficacy of immune 
checkpoint blockade therapy in the bulk RNA-seq 

Fig. 1  Flowchart of the study design and process

Fig. 2  Ligand-receptor pair interaction strength calculation and analysis. A t-SNE plot showing clusters of 6 main cell types from 25 CRC scRNA-seq 
samples. B Description of the strength of 1733 ligand-receptor pairs’ interactions strength. The heatmap shows ligand-receptor pairs’ interaction 
strength between 6 main classes and 25 subclasses cells. The density plot shows average interaction strength between the different cell types. C 
Network plot diagram shows ligand-receptor pair interactions in 24 cell types. D CSOmap was used to reconstruct the three-dimensional spatial 
structure of the 25 CRC scRNA-seq samples. E Diagrams and density plot of different longitudinal sections of tumor tissue spatial structure. F 
The statistical significance of interactions between different cell types. G Proportion of cell types away from the interaction center. H Functional 
enrichment of the downregulated DEGs in malignant epithelial cells far from the interaction center

(See figure on next page.)
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samples were estimated by ImmuCellAI (http://​bioin​fo.​
life.​hust.​edu.​cn/​ImmuC​ellAI#​!/), a tool used to estimate 
the abundance of immune cells and predict the response 
to immunotherapy from a gene expression dataset [8]. 
The correlation between the LRI intensity and the abun-
dance of TILs was analyzed using Pearson correlation. 
Submap was utilized to analyze the consistency of the 
expression profiles of immunotherapy response and the 
LRI subtypes.

The “maftools” R package was utilized to analyze 
the single nucleotide polymorphism (SNPs) and copy 
number variations (CNVs) of ligand-receptor interac-
tion subtypes in TCGA-COREAD cohort. The muta-
tion information of CRC cell lines was downloaded from 
CCLE. The GISTIC 2.0 was applied to define the ampli-
fied and deleted regions of each subtype [9]. The G-score 
is calculated by weighing regions of aberration against 
the likelihood for random occurrence through permuta-
tion test [10].

Co‑culture and reactivity assay
Peripheral blood was collected from healthy volunteer 
from the First Affiliated Hospital of Fujian Medical Uni-
versity. Peripheral blood mononuclear cells (PBMC) 
were isolated with Ficoll–Hypaque by density gradient 
centrifugation. Cell culture dish were coated with 10 μg/
mL anti-CD3 (novoprotein, GMP-A018) and anti-CD28 
(GMP-A063) and kept overnight at 4  °C. PBMC were 
culture in RPMI 1640 with 10% fetal bovine serum, 
1:100 Penicillin–Streptomycin and 500 U/ml IL-2 (novo-
protein, c013). Half of the medium, including IL-2, was 
refreshed every other day. To evaluate the activation of 
CD8 + T-cells, cells were washed with PBS and stained 
with human anti-CD3-APC(Biolegend), anti-CD4-
FITC(Biolegend), anti-CD8-PE(Biolegend) for 30  min at 
4 °C. Cells were washed twice with PBS and recording at 
flow cytometer (BD FACSCanto II).

CRC cell lines (HCT116, CACO2, SW480, HT29) were 
seeding in 96-well plates with 5000 cells/well for 24  h. 
The next day, CRC cells were pretreated with signal-
ing pathways inhibitors, including PI3K/AKT inhibitors 
(LY294002, PI-103), MEK/ERK inhibitors (PD98059, FR 
180204), TNF-α inhibitor (R-7050, Geraniin) and TGF-β 
inhibitor (A83-01, SB-431542). All pathway inhibitors 
were purchased from MCE. The effect of inhibitors on 
CRC cell was detected by CCK8 kit (Meilunbio).

Activated CD8 + T-cells were seeded at a 10:1 
effector:target ratio in 96-well plates. Co-culture was per-
formed in T cell medium for 24 h. Lactate dehydrogenase 
(LDH) kit (Beyotime) was used to measure the cytotoxic-
ity of CD8 + T cells to CRC cells.

Generation and validation of the LRI prognostic risk score 
model
Univariate analysis was performed to determine the 
survival-related ligand-receptor pairs in the GSE39582 
dataset. The survival-related pairs with P-values < 0.05 
in univariate analysis were further filtered by least abso-
lute shrinkage and selection operator (LASSO) regres-
sion analysis. Multivariate Cox regression was used to 
calculate the regression coefficients and the prognostic 
risk score. The CRC patients in the bulk RNA-seq data-
sets were classified into either a low-risk (low score) 
group or a high-risk (high score) group according to the 
median value. Thirty percent of the GSE39582 dataset 
was used as the internal validation group, and the TCGA 
colorectal adenocarcinoma and rectum adenocarcinoma 
(TCGA-COREAD) and GSE17538 datasets were used as 
the external validation group to jointly verify the survival 
prediction ability of the ligand-receptor pair risk score. 
The risk score combined with clinicopathological factors 
was used to construct an LRI prognostic model. The pre-
dictive accuracy of the prognostic model was assessed by 
time-dependent receiver operating characteristic (ROC) 
curve analysis within 3 years and 5 years. A nomogram 
was drawn using the ‘rms’ package. Calibration plots for 
3-year and 5-year OS predictions were constructed to 
assess the calibration and discrimination of the survival 
model.

Results
Discovery of LRI patterns in human CRC using scRNA‑seq 
data
A schematic diagram of our research process is presented 
in Fig.  1. After batch calibration and quality control of 
two CRC scRNA-seq datasets, 53,537 CRC cells were 
further studied. The tSNE algorithm was applied to clas-
sify all cells into 33 clusters, and six main types and 25 
kinds of cells were annotated by ‘singleR’ and the origi-
nal annotation files (Fig.  2A, Additional file  4: Fig. S1). 
Then, we calculated the strength of the LRIs from these 
cells. The heatmap and density plot of CRC tissue cells 

(See figure on next page.)
Fig. 3  Identification of ligand-receptor pair interaction subtypes in CRC bulk RNA-seq data. A Consensus clustering matrix for the optimal cluster 
number (k = 3) in the GSE39582 dataset. B, D, F Heat maps of marker genes for three ligand-receptor pair subtypes. C, E, G The consistency 
between each sample and each subtype was evaluated by the silhouette value. H GO-BP enrichment analysis results of the marker genes of each 
subtype. I The consistency of the identified subtypes in the three bulk RNA-seq datasets can be found through submap analysis. J Kaplan–Meier 
survival analysis was used to compare the survival differences of each receptor subtype. **P < 0.01

http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
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illustrated that the strength of ligand-receptor pairs was 
high between myeloid cells and stromal cells (Fig.  2B). 
Through the circle plot of LRIs in CRC, we found that 
myeloid cells and stromal cells are at the center of the 
interaction pattern, especially endothelial cells, fibro-
blasts, and stromal cells (Fig.  2C). Then, we used CSO-
map to reconstruct the spatial relationships in CRC 
tissue. We found that the interaction between myeloid 
and stromal cells and malignant epithelial cells con-
stitutes the center of the tumor, and T cells and B cells 
do not interact closely with other cells (Fig.  2D–F). In 
addition, malignant epithelial cells have substantial het-
erogeneity. Some of the malignant epithelial cells were 
clustered in the spatial center of the tumor, while some 
were separated from the interaction center. Analysis 
of the DEGs in these two types of malignant epithelial 
cells revealed that epithelial cells far from the LRI center 
showed downregulation in certain terms, including cell 
adhesion, negative regulation of apoptotic process, anti-
gen processing and presentation via MHC class I and 
positive regulation of neutrophil chemotaxis (Fig. 2G, H, 
Additional file 1).

Identification of LRI subtypes in colorectal cancer
To distinguish the LRI subtypes of patients with CRC, 
we calculated the LRI strength in the three bulk RNA-
seq datasets (GSE39582, GSE144735, and TCGA-
COREAD). An unsupervised analysis was performed on 
CRC patients from the GSE39582 dataset using consen-
sus clustering. According to the consensus heatmap, the 
optimal number of clusters was determined to be three 
(Fig.  3A). The top 50 upregulated marker pairs of each 
subtype in GSE39582 were identified, and subtype2 could 
be well distinguished in the three datasets (Fig.  3B–G, 
Additional file 2). Each subtype in the different datasets 
was mapped through a submap, and the results showed 
that the LRI patterns of subtype2 in the three datasets 
were significantly matched (Fig.  3I). Functional enrich-
ment analysis of each subtype’s marker pairs was per-
formed. We found that the GO-BP terms mainly enriched 
in subtype1 included cell adhesion, integrin receptor and 
G protein-coupled receptor pathway. Subtype2 was sig-
nificantly enriched in immune-, inflammation- and cell 
adhesion-related terms. Subtype3 was enriched in terms 

related to the fibroblast growth factor receptor pathway, 
MAPK pathway and ERK cascade (Fig. 3H). In addition, 
we found that the prognosis of patients with subtype2 
was worse than that of patients with the other two sub-
types (Fig. 3J). We found that the expression of immuno-
therapy-related genes (PDL1, PDL2, CTLA4, CD80, and 
CD86) were significantly higher in subtype2 than in the 
other two subtypes (Additional file 5: Fig. S2A–C). Fur-
thermore, the expression pattern of subtype2 patients 
matched that of patients with a poor response to immune 
checkpoint blockade therapy (Additional file 5: Fig. S2D).

We further analyzed the differences of genomic alter-
ations between the ligand-receptor subtypes in the 
TCGA-COREAD dataset. We separately showed the 
significantly mutated genes among the three subtypes 
(Additional file 6: Fig. S3A). In addition, we determined 
the mutations associated with targeted therapy for CRC 
among subtypes (Additional file 6: Fig. S3B). The muta-
tion of oncogenic signaling pathways were analyzed, and 
it was found that the mutant genes in subtype2 were less 
than those in the other two subtypes (Additional file  6: 
Fig. S3C). Tumor mutation burden (TMB) is a biomarker 
to predict clinical response to immunotherapy, it was 
found that the subtype3 had the lowest TMB, and signifi-
cantly lower than subtype1 (Additional file 6: Fig. S3D). 
The fraction of genome altered of subtype2 had lower 
levels (Additional file  6: Fig. S3E). We further deline-
ate the significantly CNVs of each subtype (Additional 
file 6: Fig. S3F). In each subtype, functional enrichment 
of genes which the expression levels were affected by 
CNV was applied. We found that subtype1 was enriched 
in cytokine receptor binding and subtype2 was enriched 
in phospholipid binding and oxidoreductase activity, and 
subtype3 has no specific enrichment function.

Analysis of ligand‑receptor subtype at the scRNA‑seq 
and cell level
As mentioned earlier, we identified a ligand-receptor 
subtype that showed upregulation in immune-inflam-
mation-related pairs in the bulk RNA-seq datasets. Next, 
cluster analysis was performed on two scRNA-seq data-
sets, and the results showed that the LRI patterns of 
KUL-01, SMC-14 and SMC-20 were consistent with the 
characteristics of subtype2 (Fig. 4A). The cell interactions 

Fig. 4  Analysis and verification of ligand-receptor subtype 2 in CRC cell lines and scRNA-seq data. A scRNA-seq data of 29 CRC single-cell samples 
were clustered according to the subtype marker ligand-receptor pairs. B t-SNE plot of the scRNA-seq data of SMC14, SMC20 and KUL01. C Pathway 
enrichment analysis of DEGs between subtype 2 and other subtypes of malignant epithelial cells. D GSEA analysis of differential pathways of 
malignant epithelial cells in scRNA-seq sample. E 3D visualization of the spatial structure of SMC14, SMC20 and KUL01 (right panel). Cell types 
and density scatter diagrams of longitudinal sections of tumor tissue spatial structure (left panel). F Flow cytometry analysis results of activated 
CD8 + T-cells. G–J left panel: GSEA analysis of PI3K/AKT, TNFA, TGF-Beta and MAPK pathways in 4 CRC cell lines. G–J right panel: LDH level measured 
the cytotoxicity of CD8 + T-cell to co-cultured tumor cells in vitro. E:T, effector:target ratio. *P < 0.05, **P < 0.01, ***P < 0.001

(See figure on next page.)
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of subtype2 CRC were explored by spatial reconstruc-
tion (Fig. 4C). We obtained a significant difference from 
the previous tumor model of all specimens, where T cells 
were more closely linked to themselves and other cells, 
and the density plot illustrated the appearance of another 
interaction center (Fig.  4D). In addition, we found that 
tumor cells of subtype2 was significantly enriched in 
PI3K-AKT, MAPK, TNF, and TGFB pathways, (Fig.  4), 
and the effect of inhibitors of these pathways on CRC 
cells vitality was verified by CCK8 experiments (Addi-
tional file 7: Fig. S4A).

In order to verify whether subtype2 affects the interac-
tion with T cells through the above-mentioned pathways, 
and further affects the survival of CRC patients and the 
efficacy of immunotherapy, we conducted the co-culture 
of tumor cells and CD8 + T cells. We isolated T cells from 
the peripheral blood of healthy people and activated the 
main tumor-killing component, CD8 + T-cells (Fig.  4F). 
The activated CD8 + T-cells were co-cultured with tumor 
cells treated with different pathway inhibitors. The results 
of LDH assay showed that PI3K inhibitor and MAPK 
inhibitor could significant promoted the tumor-killing 
ability of CD8 + T-cell in SW480 and HT29 (Fig.  4G, 
J right side). After TNF receptor inhibitor treatment, 
LDH was significantly reduced and the tumor killing 
ability was weakened in HCT116, SW480 and CACO2 
(Fig. 4H right side). After TGF-β receptor inhibitor treat-
ment, the tumor killing ability was weakened in SW480 
and CACO2, HCT116 and HT29 had the opposite phe-
notype (Fig. 4I right side). By analyzing the transcription 
profile and mutation profile of these cell lines, it is found 
that significant differences exist in genetic background 
(Fig. 4G–J left side, Additional file 7: Fig. S4B).

Effect of LRI on tumor immune infiltration in CRC​
To investigate the relationship between TILs and LRIs, 
we analyzed the correlation between LRI intensity and 
the abundance of B cells, T cells, DCs, macrophages, 
and NK cells in three datasets (Fig.  5A). The results 
demonstrated that LRIs significantly influenced the 
infiltration of DCs and macrophages in all three data-
sets. The intersecting ligand-receptor pairs of the three 
datasets showed that TGFB1:SDC2, HEBP1:FPR3, and 

CD14:ITGB1 were significantly positively correlated 
with the abundance of DCs and macrophage infiltra-
tion (Fig.  5B). The other 9 ligand-receptor pairs were 
significantly associated with DC infiltration. We fur-
ther explored the role of these ligand-receptor pairs on 
DCs using scRNA-seq data. We assessed the infiltra-
tion of various types of cells in the sample (Fig.  5C). 
We analyzed the correlation between the strength of 
the LRI and the proportion of DC infiltrates, as well 
as the significance of the difference in the strength 
of ligand-receptor pair interactions between DCs 
and other cells (Fig.  5D, E, Additional file  8: Fig. S5). 
Through correlation analysis and strength analysis of 
the LRIs,  we found that  through ICAM1:IL2RA, the 
specific interaction among mDCs, DCregs and regu-
latory T cells affects the infiltration of DCs in CRC 
tissues. In addition, ICAM1 expressed on mDCs and 
Dregs interacts with ITGAM on M1 macrophages, sig-
nificantly and specifically affecting the infiltration of 
DCs. The clustering process for monocytes and DCs is 
shown in Additional file 9: Fig. S6.

Generation and validation of the LRI‑based prognostic risk 
score model to predict CRC patient survival
As mentioned earlier, the different LRI subtypes are 
related to different prognostic outcomes. To better 
explore the influence of LRIs on the survival of CRC 
patients, we constructed a prognostic prediction model 
for CRC patients. Univariate Cox analysis was performed 
and identified 421 prognosis-associated ligand-receptor 
pairs in the GSE39582 training set (Fig.  6A, Additional 
file  3). Bubble plots showed the ligand-receptor pairs 
that influence prognosis in CRC patients, and these pairs 
were mainly involved in cell proliferation, extracellu-
lar matrix, cell communication, and immune response 
(Fig.  6B). LASSO regression followed by multivariate 
Cox analysis was performed, and 30 survival-related 
pairs were identified (Additional file 10: Fig. S7A–C). 30 
ligand pairs were further analyzed by functional enrich-
ment analysis (Additional file 11: Fig. S8). The prognos-
tic risk score was developed based on these pairs. Risk 
scores were calculated for all patients in the training set 
(GSE39582) and validation set (GSE144735 and TCGA-
COREAD), and the patients were divided into either 

(See figure on next page.)
Fig. 5  Ligand-receptor interactions affect tumor-infiltrating immune cells. A Pearson’s correlation analysis was performed between the 
ligand-receptor interaction strength and the abundance of tumor-infiltrating immune cells in the bulk RNA-seq data. B The ligand-receptor pairs 
that collectively influence DC and macrophage infiltrates in three datasets. C The proportion of tumor-infiltrating cells in 29 single-cell samples. D 
Correlation analysis of the 9 ligand-receptor pairs’ interaction strength and abundance of DCs in the scRNA-seq data. E The interaction strength and 
significance of two LR pairs (ICAM1:IL2RA and ICAM1:ITGAM) between DCs and other cell types. The significance was calculated by permutation 
tests. F Expression of ICAM1, IL2RA, and ITGAM in the CRC scRNA-seq data. Th17, T helper 17 cells; Tfh, T follicular helper cells; DC, dendritic cells; ECs, 
endothelial cells; DCregs, regulatory dendritic cells; mDCs, mature dendritic cells; imDCs, immature dendritic cells. ****P < 0.0001



Page 10 of 16Lin et al. Journal of Translational Medicine          (2021) 19:497 

Fig. 5  (See legend on previous page.)



Page 11 of 16Lin et al. Journal of Translational Medicine          (2021) 19:497 	

a high-risk (high score) group or a low-risk (low score) 
group using the median value of the risk score as the cut-
off value (Fig.  6C). KM survival analysis demonstrated 
that patients in the high-risk group had significantly 
poorer OS than those in the low-risk group (Fig. 6D). We 
constructed a prognostic model including the risk score 
combined with clinicopathological data and drew a nom-
ogram (Fig. 6G). Time-dependent ROC analysis indicated 
that this model showed excellent performance in predict-
ing the 3-year and 5-year survival rates of CRC patients 
(Fig.  6E). The calibration plots showed that the predic-
tions were in concordance with the actual observations 
for the 3-year and 5-year survival rates in the training 
set and validation set (Fig. 6F). The survival-related LRI 
network was delineated to further demonstrate the inter-
cellular interactions of these pairs (Fig. 7). These findings 
suggested the appreciable reliability of the prognostic 
model, which can be applied in diverse CRC patients.

Discussion
In the tumor microenvironment, the communication 
between different cell types is associated with mecha-
nisms of oncogenesis, tumor progression, therapeutic 
resistance, immune infiltration, and inflammation [2, 
11]. scRNA-seq is an effective method to analyze the 
LRIs that occur in CRC [3, 5]. With the development of 
cell–cell interaction-based immunotherapy in colorec-
tal cancer, it is crucial to understand the existing ligand-
receptor pairs further. By analyzing scRNA-seq data from 
human and mouse CRC, Lei et al. also revealed that DCs 
and macrophages are key regulators of cell communica-
tion in the tumor microenvironment and further identi-
fied the specific target of anti-CSF1R treatment [12]. Our 
study of the existing ligand-receptor pairs can provide 
a holistic and realistic view of cell-to-cell communica-
tion in the tumor microenvironment. By analyzing LRI 
strength, we found that myeloid cells and stromal cells 
were the core of LRIs.

As early as 2011, Piero Dalerba carried out single-cell 
research, exploring the multilineage differentiation pro-
cesses and cellular heterogeneity of CRC [13]. Intra-
tumoral heterogeneity plays an important role in the 
resistance to cancer therapy, and finding new intratu-
moral cell types can help to identify therapeutic targets 

and explore drug resistance [14]. We identified a subtype 
(subtype2) of malignant epithelial cells characterized 
by low cell adhesion, inhibition of neutrophil chemot-
axis, and inhibition of antigen presentation, which has 
the potential for immune escape and distant metastasis. 
We further analyzed the differences between subtypes at 
the SNP and CNV levels, and found that subtype2 was 
characterized by lower oncogenic-related mutations and 
lower fraction genome altered. The spatial reconstruc-
tion of tumors based on LRIs, which was accomplished 
by using CSOmap, a computational tool for inferring 
cell-to-cell interactions, makes up for the lack of spatial 
information in single-cell data and provides validation 
for the ligand-receptor subtypes. In addition, we identi-
fied an LRI subtype in the transcriptome of CRC patients 
that shows upregulation in chemokines and intercellu-
lar adhesion-related ligand-receptor pairs. Chemokines 
play an important role in immune and inflammatory 
responses, are involved in CRC progression and metas-
tasis and are also associated with poor prognosis, which 
is consistent with our findings [15, 16]. In addition, ana-
lyzing the related pathways of tumor cells in the subtypes 
shows that pathways related to immune escape are signifi-
cantly enriched, including PI3K/AKT, TGF-β, and MAPK 
pathways. Previous studies have suggested that inhibiting 
these pathways can reverse tumor immune escape [17–
19]. Our research results also found that these pathways 
inhibitors can enhance the cytotoxicity of CD8 + T-cells 
when co-cultured with some CRC cell lines. However, the 
role of TNF in tumors is a double-edged sword. On the 
one hand, it kills tumor cells through cytotoxicity, and 
on the other hand, it also participates in the occurrence 
and development of tumors. TNFR inhibitors can signifi-
cantly decreased anti-tumor activity of CD8 + T-cells co-
culture in vitro experiment. However, co-culture systems 
may have different responses to inhibitors due to differ-
ences in genetic background between different cell lines 
and the effect of inhibitors on tumor cell viability.

Through the analysis of the influencing factors of TILs, 
we revealed that the infiltration of monocytes in CRC 
tissues was significantly affected by LRIs. We also found 
that ICAM1:IL2RA and ICAM1:ITGAM could increase 
the infiltration of DCs by interacting with Tregs and 
monocytes/macrophages, respectively. ICAM-1 plays an 

Fig. 6  Construction of the prognostic model of CRC patients based on ligand-receptor pairs. A Volcano plot showing ligand-receptor pairs that 
significantly influence survival in the GSE39582 dataset. B The bubble plot shows the mean hazard ratios (HRs) of all genes in each GO-BP term 
enriched in survival-related ligand-receptor pairs. C Risk curve (upper panel) and dot plot (bottom panel) describe the relationship between 
the risk score and patient survival status. D KM survival analysis illustrated the survival condition of high-risk and low-risk patients in the training 
group, internal validation group and external validation group. E ROC curve analysis was performed to estimate the prognostic capacity of the 
ligand-receptor pair predictive model. F Calibration plots of the prognostic model for predicting survival rates in all cohorts. G The nomogram of 
the CRC prognostic model was constructed based on the ligand-receptor risk score and clinicopathological data in GSE39582

(See figure on next page.)
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Fig. 6  (See legend on previous page.)



Page 13 of 16Lin et al. Journal of Translational Medicine          (2021) 19:497 	

important role in leukocyte-mediated inflammation and 
T cell activation and was found to interact with ITGAM 
as early as 1990 [20]. Previous studies have shown that 
ITGAM-encoded CD11b (MAC-1) is highly expressed 
on macrophages and mediates intercellular adhesion 

[21], which was also observed in the CRC scRNA-seq 
datasets. Few studies on the function of ICAM1:ITGAM 
[22] and no studies on this pair between DCs and mac-
rophages have been found before. We found that the 
infiltration of mDCs in tumor tissues can be promoted by 

Fig. 7  CRC survival-related ligand receptor interaction network. The color of the line between the ligand receptors represents the regression 
coefficient
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the expression of ICAM1 and interaction with ITGAM 
expressed in macrophages.

Furthermore, several studies have indicated that Tregs 
can downregulate the maturation process of DCs and 
abrogate the antigen-presenting capacity of DCs [23–25]. 
Previous studies have shown that IL2 is crucial for Treg 
development and maturation, and the long-term survival 
of Tregs requires continuous IL2 signaling [26]. Here, we 
speculate that ICAM1 inhibits IL2RA through competi-
tive binding with IL-2 and inhibits the inhibitory effect of 
Tregs on DCs.

In previous research, prognostic risk models of CRC 
based on LRI have not been constructed; however, many 
prognostic models have included ligand-receptor pair-
related genes [27–30], and several genes in this model 
have been shown to influence CRC development [31–36]. 
Our survival model based on LRIs has good predictive 
efficacy for 3-year and 5-year survival rates, providing a 
new tool for the early assessment of adjuvant interven-
tion in patients with CRC.

The current study has some limitations. The single-
cell data lacked spatial information, and we used spatial 
reconstruction, but further spatial transcriptome verifi-
cation is needed. The factors affecting TILs in this study 
need to be further verified by in-depth experiments. This 
prognostic model has yet to be further validated for clini-
cal effectiveness in a larger cohort of CRC patients.

Conclusions
We delineated the LRI network of CRC using scRNA-seq 
and bulk RNA-seq datasets and calculated each ligand-
receptor pair’s strength across different cells. We identi-
fied a malignant epithelial cell subtype with potential for 
distant metastasis and immune escape and a CRC sub-
type that showed upregulation in immunoinflammatory 
ligand-receptor pairs, which is also associated with CRC 
immunotherapy response and survival. And it was found 
that this CRC subtype induces the hypo-responsiveness 
of CD8 + T-cells by regulating PI3K/AKT, MAPK, TGF-
Beta and TNFA pathways. We explored ligand-receptor 
pairs affecting TILs and found that ICAM1:IL2RA and 
ICAM1:ITGAM specifically affected the infiltration of 
DCs. We also constructed a prognostic prediction model 
for colorectal cancer based on LRIs to predict patients’ 
prognostic risk and provide suggestions for further guid-
ing treatment strategies.
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