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Production and comprehension of speech are closely interwoven. For example, the ability

to detect an error in one’s own speech, halt speech production, and finally correct the

error can be explained by assuming an inner speech loop which continuously compares

the word representations induced by production to those induced by perception

at various cognitive levels (e.g., conceptual, word, or phonological levels). Because

spontaneous speech errors are relatively rare, a picture naming and halt paradigm can

be used to evoke them. In this paradigm, picture presentation (target word initiation) is

followed by an auditory stop signal (distractor word) for halting speech production. The

current study seeks to understand the neural mechanisms governing self-detection of

speech errors by developing a biologically inspired neural model of the inner speech loop.

The neural model is based on the Neural Engineering Framework (NEF) and consists of

a network of about 500,000 spiking neurons. In the first experiment we induce simulated

speech errors semantically and phonologically. In the second experiment, we simulate a

picture naming and halt task. Target-distractor word pairs were balanced with respect

to variation of phonological and semantic similarity. The results of the first experiment

show that speech errors are successfully detected by a monitoring component in the

inner speech loop. The results of the second experiment show that the model correctly

reproduces human behavioral data on the picture naming and halt task. In particular, the

halting rate in the production of target words was lower for phonologically similar words

than for semantically similar or fully dissimilar distractor words. We thus conclude that

the neural architecture proposed here to model the inner speech loop reflects important

interactions in production and perception at phonological and semantic levels.

Keywords: neurocomputational model, speech production and perception, inner speech, spiking neural networks,

speech errors

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2016.00051
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2016.00051&domain=pdf&date_stamp=2016-05-31
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:bkroeger@ukaachen.de
http://dx.doi.org/10.3389/fncom.2016.00051
http://journal.frontiersin.org/article/10.3389/fncom.2016.00051/abstract
http://loop.frontiersin.org/people/346953/overview
http://loop.frontiersin.org/people/2498/overview


Kröger et al. Modeling Interactions between Speech Production and Perception

INTRODUCTION

Speech production is a hierarchical process starting with the
activation of an idea, which is intended to be communicated,
proceeds with the activation of words, then with modification
and sequencing of words with respect to grammatical and
syntactic rules, and ends with the activation of a sequence of
motor actions that realize the intended utterance (Dell and
Reich, 1981; Dell et al., 1997; Levelt et al., 1999; Levelt and
Indefrey, 2004; Riecker et al., 2005). Despite the complexity
and depth of the speech production hierarchy, the production
process runs nearly error free. Speech errors occur relatively
seldom and typically need to be evoked in experiments if we
want to study them (Levelt, 1983; Nooteboom and Quené,
2015). This robustness supports the assumption that speech
production benefits from a robust neural mechanism for
activating and processing already learned and stored cognitive
and sensorimotor speech units (e.g., syllables, words, short
phrases). Additionally, this robustness supports the assumption
that speech production may be monitored at different levels in
order to detect and repair occurring errors (Postma et al., 1990;
Postma, 2000; Hartsuiker and Kolk, 2001; Schwartz et al., 2016).

Restricting our attention to single word production (such as
in a picture naming task), speech production starts with the
activation of semantic concepts (e.g., “has wheels,” “can move,”
“can transport persons,”), retrieves an associated word (e.g.,
“car”) and its phonological form (/kar/) from the mental lexicon
(see e.g., Dell and Reich, 1981; Levelt et al., 1999), activates the
relevant motor plan, which can be thought of as a collection of
intended speechmovements (such as: form tongue, lower jaw and
lips for /k/, then for /ar/; in parallel open glottis for production of
the unvoiced speech sound /k/ and then for the voiced sound /ar/)
and then executes these speech movements or actions in order
to articulate the intended word and to generate the appropriate
acoustic signal (see e.g., Kröger and Cao, 2015). This production
process mainly consists of two stages, one cognitive and one
sensorimotor. The cognitive stage consists of concept activation,
word selection and the subsequent activation of the related
phonological representation (Dell et al., 1997; Levelt et al., 1999),
while the sensorimotor stage consists of motor plan activation
(also called motor planning) and execution (Riecker et al., 2005;
Kröger and Cao, 2015).

Both the cognitive and sensorimotor stages of speech
production mainly involve retrieving and activating units or
chunks already stored in repositories of cognitive knowledge
and sensorimotor skill, respectively. This knowledge and these
skills were learned during speech and language acquisition.
The cognitive knowledge repository that plays a central role in
word production is called the mental lexicon. Here, a neural
word node (also called lemma node) is associated both with
a semantic or conceptual representation of the word and
a lexical or phonological representation of the word (Levelt
et al., 1999). The sensorimotor skill repository is called the
mental syllabary. Within this repository, phonological forms
of syllables or (short) words are associated with motor plans,
as well as with auditory and somatosensory mental images of
the already acquired syllable or word (Kröger and Cao, 2015).

Monitoring at the sensorimotor level is mainly a matter of
comparing learned auditory and somatosensory images with
the sounds generated during speech articulation, which are fed
back through the auditory system (auditory self-perception).
This monitoring process is slow, because it includes both motor
execution and auditory perception (Postma, 2000). A faster
monitoring loop called the inner speech loop compares word
representations activated at the cognitive level of the production
hierarchy to those activated by a level of the perception
hierarchy, here better labeled as comprehension. This monitoring
mainly consists of comparing the intended conceptual and
phonological representations with the instantaneously-activated
conceptual and phonological representations evoked during
speech production, and leads to inner self-perception (Hartsuiker
and Kolk, 2001). Inner self-perception assumes the existence
of inner speech (also called covert speech), while auditory self-
perception or outer self-perception requires the production of
audible speech, also called overt speech (Oppenheim and Dell,
2008).

It can be assumed that speechmonitoring, i.e., the comparison
of intended and produced speech, can be realized by linking
production and perception outcomes at different levels or
stages (e.g., concept, phonological form, or motor plan levels).
While the slower outer speech loop includes all stages (from
conceptualization to articulation and back), the inner speech
loop only includes conceptualization until retrieval of the
phonological form and vice versa. This inner loop theory of
speech monitoring has been successful in explaining the fact that
speech errors are often repaired so quickly that the involvement
of the (slow) auditory feedback loop (outer speech loop) can be
ruled out (Postma, 2000; Hartsuiker and Kolk, 2001).

Because it is not trivial to evoke speech errors, in this study
a picture naming and halt paradigm is used (Slevc and Ferreira,
2006). In this paradigm, utterance of a target word is elicited
by normal picture naming, where picture-to-word associations
are pre-learned in an initial familiarization procedure (Slevc
and Ferreira, 2006, p. 520). About 400 ms later, an acoustically
presented halt signal (distractor word) is presented and subjects
are required to stop production of the target word if the distractor
word is different from the target word. One significant finding
of the picture naming and halt study performed by Slevc and
Ferreira (2006) was that the mean stopping rate depends on
the phonological similarity between the target and distractor
word, but not on the semantic similarity. Semantically similar
distractor words were found to have the same stopping accuracy
as distractor words dissimilar from the target word (Slevc and
Ferreira, 2006, p. 521). It should be noted that this paradigm
does not directly relate to speech error detection, but is a method
for investigating the mechanisms governing speech monitoring.
A second main result of the experiment described by Slevc
and Ferreira (2006) is that the speech monitor is capable of
detecting differences more easily in the case of distractor words
which are completely dissimilar to the target word as well
as to distractor words which are semantically similar, while
phonologically similar distractor words are not detected as easily.
The halting rate for phonologically similar words was found to be
the lowest.
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The main goal of this study is to develop a neural architecture
for speech production and perception (and comprehension),
which, on the one hand, enables fast, effortless and error-free
realization of word production, and, on the other hand, allows for
the simulation of speech errors and realistic and effective speech
monitoring. Thus, the neural architecture of our model consists
of speech production, perception and monitoring components
and, furthermore, should be capable of detecting and correcting
speech errors. A further major goal of this study is to underline
the tight connection between speech production and perception
(e.g., Pickering and Garrod, 2013).

The neural model of speech processing developed here
uses the principles of the Neural Engineering Framework
(NEF, Eliasmith and Anderson, 2003; Eliasmith, 2013). We
used this framework because it allows for the development of
neurobiologically plausible large-scale models of both cognitive
and sensorimotor components, and because it has already
been shown to be capable of producing models that match
human performance on a number of non-speech behavioral tasks
(Eliasmith et al., 2012). Three basic principles characterize the
NEF: representation, transformation, and dynamics (Eliasmith
and Anderson, 2003). (i) Representation means that the NEF
allows to code external (sensory or motor) signals as neural
states and to decode neural states as non-neural (external
physical) signals. These neural states are represented within the
NEF as neural activation patterns or spike patterns of specific
neuron ensembles. Thus, a neuron ensemble is the basic unit
within the NEF for representing neural states. Each neural
ensemble consists of a specific number of individual neurons;
in this study leaky integrate-and-fire (LIF) neurons are used.
(ii) Transformation means that neuron ensemble A can be
connected to a downstream neuron ensemble B by establishing
a neural connection from each neuron within ensemble A to
each neuron within ensemble B. These neural connections not
only allow communication of a neural state from A to B, but can
also be constructed to transform the neural state represented by
A into a neural state in B that is a function of the neural state
represented by A. (iii) Dynamics means that a neural state of a
neuron ensemble changes with respect to input over time. Input
can be provided by other neuron ensembles, or by the same
neuron ensemble through recurrent connections. Here, the each
neuron within the neuron ensemble is connected to the other
neurons in the neuron ensemble. This allows for the neural state
to maintained in the absence of input, implemented a type of
neural memory.

A model of speech production, speech perception, speech
monitoring, and speech error detection and repair is complex
and must include cortical as well as subcortical components.
For building complex models using the NEF it is advantageous
to use the Semantic Pointer Architecture (SPA, Eliasmith, 2013;
Stewart and Eliasmith, 2014; Gosmann and Eliasmith, 2016). The
SPA is based on the NEF and allows for more complex neural
representations and transformations than would otherwise be
possible. In the SPA, complex neural states are called semantic
pointers (SPs). Semantic pointers (e.g., “A,” “B,” and “C”) are
capable of representing different cognitive states, for example
semantic concepts (e.g., A = ‘Is_Blue’, B = ‘Has_Four_Legs’, C =

‘Apple’, Eliasmith, 2013; Blouw et al., 2015), or orthographic and
phonological forms of words, or high level visual or auditory
representations of concepts or words. Semantic pointers are
defined as N-dimensional vectors (typically N = 512 for the case
of coding an entire lexicon of a particular language, Crawford
et al., 2015). The neural state representing a semantic pointer is a
specific neural activation pattern occurring within a cortical SPA
buffer. SPA buffers consist of several neuron ensembles that each
represent a subset of the N dimensions in the semantic pointer.
Like ensembles, the input to buffers can change over time,
allowing a SPA buffer to represent different semantic pointers
depending on input. While neuron ensembles can be decoded
into a real-valued vector, SPA buffers require an additional
operation to decode. In order to determine the semantic pointer
currently represented by the neural state of a cortical SPA
buffer, the similarity of the neural state is calculated for all
semantic pointers defined for the current neural model. This
similarity is calculated using the dot-product operation (Stewart
and Eliasmith, 2014). The dot product should be near 1 if
the state matches the target semantic pointer, and near 0 for
other semantic pointers. Thus, a useful way of characterizing
the activity pattern within a cortical SPA buffer is by way of
its similarity values with all currently defined semantic pointers.
Throughout this work we will make extensive use of this kind of
characterization for visualization purposes (e.g., see Figures 2–11
in Sections Methods and Results of this paper).

Semantic pointers are also the vehicles for representing
actions, e.g., whether the production of a word should be started
(e.g., buffer A1 = ‘SPEAK’) or halted (e.g., buffer A2 = ‘HALT’).
The neural states for these semantic pointers are activated at the
level of a cortical task control buffer, which is closely connected
with an action selection module. This buffer, together with the
basal ganglia and thalamus complex, forms the cortico-cortical
action selection loop (Stewart et al., 2010a,b).

Because it is non-trivial to generate an amount of semantic
pointers for representing the concepts, words (i.e., lemmas and
orthographic forms), and phonological forms of words for a
specific natural language vocabulary, including a representation
of the similarities of words at the concept (or semantic) and at the
phonological-phonetic level, a semantic pointer network module
constitutes a further part of the NEF. Here N words WORD_i,
where i= 1, ... N, are stored within three subnetworks of semantic
pointers, e.g., WORD_1_CONCEPT = ‘Apple_Apfel’ is part of
subnet “concepts,” WORD_1_LEMMA = ‘W_Apple’ is part of
subnet “words,” and WORD_1_PHONOL = ‘St_E_pel’ is part
of the subnet “phonological representations.” The nomenclature
for the semantic pointers is given in Section Methods. Thus,
this semantic pointer network module allows the specification of
semantic pointers for words at different levels of representations
(e.g., conceptual, orthographic, and phonological levels), as well
as the specification of relations and similarities between semantic
pointers at different representation levels (see SectionMethods in
this paper and see Section 5.2 in Crawford et al., 2015).

In the following sections we introduce our model for
speech production and perception including speech monitoring
and error-processing, and we present experimental results (i)
modeling halting in production when distortions are evoked at
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semantic and phonological levels within the model and (ii) for
simulating a picture naming and halt task (Slevc and Ferreira,
2006).

METHODS

Architecture of the Neural Model
The architecture of the neural model comprises an input module,
a production and a comprehension pathway forming the core of
the inner speech loop, and an action selection module (Figure 1).
The speech production module, shown in Figure 1, has been
described in previous studies (Kröger et al., 2014, 2016; Senft
et al., 2016) and is not included in the current study in order
to keep simulation time low. The input module consists of three
cortical SPA buffers: the perceptual, conceptual, and phonological
input buffers (see Figure 1). The neural activations occurring
at the level of the perceptual input buffer indicate the points
in time when a visual or audio input signal appears. Semantic
pointers are defined for representing these perceptual events,
i.e., the points in time for the beginning and end of input in
the visual and auditory domains. The neural signals generated
in the perceptual input buffer are directly forwarded to the
action selection module (Figure 1). In parallel, visual input
information evokes a neural state within the conceptual input
buffer and auditory input information evokes a neural state
within the phonemic input buffer. Visual input is represented here
in the form of conceptual semantic pointers, which encodes the
meaning of the picture presented as the input signal at that point
in time. Thus, specific visual processing is not currently included
in our model. This omission of visual processing is justified,
because subjects participating in the picture naming and halt
experiment (Slevc and Ferreira, 2006; Experiment 1) undergo an
initial familiarization procedure wherein they learn to associate
18 concrete English words (18 target words) with 18 concrete line
drawings which are later presented in the task. Similarly, auditory
processing was simplified by directly activating the phonological
representation (i.e., a sequence of speech sounds or phones)
associated with an acoustically presented distractor word (halt
signal). This simplification too is justified, because the goal of
this study is to test the inner speech loop (see Slevc and Ferreira,
2006, p. 518, Figure 2). The three buffers that make up the input
module (like all other buffers in our model) are implemented
as cortical SPA buffers (Stewart and Eliasmith, 2014), capable of
representing 512 dimensional vectors (semantic pointers) using
50 neurons per dimension (25,600 neurons per buffer).

The inner speech loop consists of six cortical SPA buffers,
representing the conceptual, word, and phonological state of a
currently activated word. Within these six cortical SPA buffers
(three for the production pathway and three for the perception
pathway, see Figure 1), only neural states that represent semantic
pointers of concept, word, or phonological forms of already
learned words can be activated. These semantic pointers are
stored as vectors within a portion of our neural model called the
mental lexicon module. The concepts, words, and phonological
forms stored in that module are listed in Appendix A. During
picture naming, the neural state activated in the concept input
buffer (i.e., the concept corresponding to the target word

presented visually) directly co-activates concept-level, word-
(lemma)-level, and phonological-level neural states for the
target word in the production pathway (Figure 1). Subsequently,
the phonological neural state of the production pathway co-
activates a phonological, word, and perceptual neural state within
the comprehension pathway in order to allow self-perception
and self-monitoring. If, in addition, external speech (produced
not by the model itself but by an interlocutor) is presented
acoustically, then the phonological input representation, i.e.,
phonological representation of an external acoustically presented
word (activating the phone input buffer within the input module
of our model, see Figure 1), also co-activates the phonological,
word, and conceptual SPA buffers of the perception pathway
of the inner speech loop (the arrow from input module
to inner speech loop in Figure 1). This externally-elicited
activation interferes with the activation in the comprehension
pathway that stems from the current state of the phonological
component of the production pathway (see left-to-right arrow,
also called a “shortcut” between both phonological buffers
in Figure 1). The direct co-activation of related conceptual,
word, and phonological states within both the production and
perception pathways of the model is implemented using four
(hetero-)associative memories (Voelker et al., 2014), labeled
as AM in Figure 1. The associations stored in these four
associative memories are considered to be part of the mental
lexicon. For example, for the concept coded by the semantic
pointer ‘Apple_Apfel,’ the semantic pointer ‘W_apple’ is the
associated representation at the word (lemma) level and the
semantic pointer ‘ST_E_pel’ is the associated representation at
the phonological level (see also Appendix A; concept pointers
like ‘Apple_Apfel’ are written in two languages, because a concept
is not necessarily language specific; the word representation for
apple is labeled as ‘W_Apple’; phonological forms are given
as phonetic-phonological transcriptions (e.g., ‘ST_E_pel’ for
“apple”). Within these transcriptions, syllables are separated by
an underline and the most stressed syllable within a word is
marked by the prefix ‘St_’; the transcriptions in part follow
SAMPA notation, SAMPA, 2005).

From a functional viewpoint, the neural model presented here
is designed for (i) self-detection of speech errors occurring during
word production by self-monitoring, and for (ii) realizing a
picture naming and halt task, which requires the self-monitoring
component in order to compare self-produced target words to
externally produced distractor words. Consequently, the action
selection module used in our model is primarily designed for
doing self-monitoring and, in particular, for evaluating the degree
of similarity between the neural states active in the production
buffers to those active in the comprehension buffers at concept,
word, and phonological levels (see arrow from inner speech loop
to action selection module in Figure 1). In addition, the neural
states that are currently active in the perceptual input buffer are
fed to the action selection module in order to identify the points
in time at which the comparison of production and perception
neural states needs to be carried out in order to activate a ‘HALT’
action.

The similarity values representing concept, word, and
phonological levels can be calculated as dot products (see
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FIGURE 1 | Architecture of neural model of speech production and speech perception for modeling self-detection of speech errors and for modeling a

picture naming and halt task.

Section Introduction). Thus, dot products are used here
for calculating utility values Ui for actions Ai (i = 1,
..., M) at the level of the basal ganglia. The action Ai
exhibiting the highest utility value Ui is selected by the
thalamus component of the action selection module (Stewart
et al., 2010a; Eliasmith, 2013; Stewart and Eliasmith, 2014).
The neural implementation of action selection relies on the
interacting dynamics of excitatory AMPA connections and
inhibitory GABA connections between different parts of the
basal ganglia (i.e., striatum, substantia nigra, and globus pallidus
externus/internus). Moreover, a detailed realization of the
cortico-cortical loop including basal ganglia and thalamus has
been implemented (Stewart et al., 2010b). It should be noted
that the detailed modeling of post-synaptic time constants at
cortical levels as well as at the level of the basal ganglia
thalamus action selection module leads to a typical time
interval of around 50 ms for action selection, also called the
“cognitive cycle time” (Anderson et al., 2004; Stewart et al.,
2010b).

The basic actions which can be selected in our model
are A1 = ‘NEUTRAL’ (do nothing), A2 = ‘SPEAK’, A3 =

‘CONSIDER_HALT’, and A4 = ‘HALT’. If one of these actions
becomes chosen, its semantic pointer similarity value approaches
1 within the time course of the neural activation patterns of the
task control cortical SPA buffer within the action selectionmodule
(Figure 1; see row 4 in Figures 2–11 below). Action selection
works as follows: all dot products are continuously evaluated in
order to estimate the utility values U2(t), U3(t), and U4(t) for the
if-statements (ii) to (iv). Specifically,

U2(t)= DOT_PROD(perceptual_input_buffer,
‘NEW_VISUAL’)

U3(t)= DOT_PROD(perceptual_input_buffer,
‘NEW_AUDIO’)

U4(t)= DOT_PROD(perceptual_input_buffer, ‘WORD’)−
DOT_PROD(concept_buff_perc,
WORD_i_CONCEPT)+
DOT_PROD(word_buff_perc, WORD_i_LEMMA)+
DOT_PROD(phonol_buff_perc, WORD_i_PHONOL)

(i) if all utility values Ui(t) < 0.25 (where Ui(t) ranges between
0 and 1)
then: select action ‘NEUTRAL’ (i.e., do nothing);

(ii) if U2(t) is highest utility value currently
then: select action A(t)= ‘SPEAK’;

(iii) if U3(t) is highest utility value currently
then: select action A(t)= ‘CONSIDER_HALT’;

(iv) if U4(t) is highest utility value currently
then: select action A(t)= ‘HALT’;

Thus, action selection mainly leads to ‘NEUTRAL’ if no dot
product is above 0.25 (if-statement i). If a new word is activated
by a visual signal at the concept input buffer, the ‘SPEAK’
action will always be chosen (if-statement ii). The semantic
pointers ‘NEW_VISUAL’ indicates the beginning of a visual
presentation of a new word during the time interval ‘WORD’. If
an external audio signal is presented quickly after the activation
of ‘SPEAK’ (as happens in the picture naming and halt tasks)
then ‘CONSIDER_HALT’ will be activated (if-statement iii).
In addition, if a word is clearly activated within all buffers

Frontiers in Computational Neuroscience | www.frontiersin.org 5 May 2016 | Volume 10 | Article 51

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kröger et al. Modeling Interactions between Speech Production and Perception

FIGURE 2 | Simulation of picture naming task without error stimulation;

visual input (Vin): “duck,” no additional input; phonological form:

‘St_dak’. Rows indicate neural activation levels of different cortical SPA buffers

over time. Row 1: perceptual input buffer, row 2: conceptual input buffer (visual

input ‘Vin_...’ is directly converted in a concept representation), row 3: error

input buffer (not indicated in Figure 1), row 4: task control buffer, rows 5–10:

cortical buffers for concepts, words, and phonological forms within production

and perception/comprehension pathway of inner speech loop. In row 2, row 3,

and rows 5–10, the activation levels of all 90 semantic pointers are displayed.

Only the semantic pointers with the highest activation levels are labeled by text.

of the inner speech loop (which is always the case after the
‘NEW_VISUAL’ input appears) the ‘HALT’ action could be
chosen if the difference between semantic pointers activated in

the production (i.e., WORD_i_CONCEPT, WORD_i_LEMMA,
and WORD_i_PHONOL) and perception/comprehension
pathways (i.e., current neural activation pattern within
cortical SPA buffers concept_buff_perc, word_buff_perc,
and phonol_buff_perc) is small at each of the concept, word and
phonological levels (if-statement iv). If this difference is large,
then utility value U4 will be low, leading to no activation of the
‘HALT’ action.

In our model, action selection indirectly leads to an activation
of a go-signal for the speech production module (see the arrow
from action selection to speech production in Figure 1). The
go-signal will be activated if the ‘SPEAK’ action is selected
and if no ‘HALT’ action becomes activated during the next
100 ms. The speech production module consists of a premotor
buffer for representing the motor plan of the word that is
currently activated in the phonological component of the inner
speech loop (see the arrow between the inner speech loop
and speech production module in Figure 1), a motor buffer
for representing the muscle activation patterns of the speech
articulators, and the (external) vocal tract model for representing
the articulator movements and for generating the acoustic speech
signal (assumed to represent the M1 cortical area; for the
separation of motor planning and execution see Kröger and
Cao, 2015 and Kröger et al., 2016). The production model
allows primary motor activation only in the case of an active
go-signal and if a motor plan is activated in the premotor
buffer of the speech production module, which can only be the
case if a clear and strong activation of a phonological form
occurs in the phonological buffer within the production pathway
of the inner speech loop. In order to keep simulation times
low, the production module is not included in the simulations
described in this paper. The neural model developed here for the
simulations described belowwas programmed inNengo (Bekolay
et al., 2014).

Network Implementation of the Mental
Lexicon
It has been mentioned above that the neural states activated in
the concept, word, and phonological buffers within the inner
speech loop are neural activation patterns equivalent to or
represented by semantic pointers. These semantic pointers are
stored as vectors within the mental lexicon module of our model
(not shown in Figure 1). The vector representations and the
neural states associated with these pointers are assumed to have
been learned during speech and language acquisition. Because
learning is beyond the scope of this paper, the collection of
semantic pointers making up the mental lexicon is predefined
in our neural model. This is realized by using semantic pointer
networks, which define not only the number of semantic pointers
but also the relations between them (e.g., relation “is a” in
“apple is a fruit”; Eliasmith, 2013; Blouw et al., 2015; Crawford
et al., 2015). Semantic pointer networks should not be confused
with neural networks; rather, semantic pointer networks can be
thought of as a way of representing a knowledge base, which
can be implemented or realized by a spiking neural network
using NEF methods. Before running a simulation, the semantic
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FIGURE 3 | Simulation of picture naming task with stimulation of a

semantic (conceptual) speech error; visual input (Vin): “duck,” error

input (conceptual): “raven”; phonological forms: ‘St_dak’, ‘St_rEI_wen’.

Rows indicate neural activation levels of different cortical SPA buffers over time

(see Figure 2).

pointer network is generated for a pre-defined natural language
vocabulary (see Appendix A).

In the case of the mental lexicon, the semantic pointer
network needs to be subdivided into subnetworks for concepts,
deep concepts, words, phonological forms, deep phonological
forms, visual input, and auditory input (see Appendix A).
All semantic pointers defined in each subnetwork and all

FIGURE 4 | Simulation of picture naming task with stimulation of a

phonological speech error; visual input (Vin): “duck,” error (word) input:

“dub”; phonological forms: ‘St_dak’, ‘St_dab’. Rows indicate neural

activation levels of different cortical SPA buffers over time (see Figure 2).

relations between semantic pointers needed in each subnetwork
and between different subnetworks are predefined and then
used in the simulation in order to (i) generate a vector
representation for each semantic pointer and to (ii) generate
an associated neural state (neural activation pattern) for each
semantic pointer. The subnetworks including all labels for
semantic pointers and their relations are listed in Appendices
A1–A5. While the subnetworks for concepts, words and
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FIGURE 5 | Simulation of picture naming and halt task for dissimilar

inputs; visual input (Vin): “duck,” auditory input (Ain): “brass”;

phonological forms: ‘St_dak’, ‘St_bras’. Rows indicate neural activation

levels of different cortical SPA buffers over time (see Figure 2 with exception of

row 3). Row 3: phone input buffer (audio input ‘Ain_...’ is directly converted in

a phonological representation).

phonological forms consist of 90 items each in the case
of our vocabulary, the deep_concept and deep_phonological
networks contain the semantic pointers needed to specify the
relations between specific concepts and specific phonological
forms.

Our neural model also requires subnetworks for visual
representations of concepts and for auditory representations

FIGURE 6 | Simulation of picture naming and halt task for semantically

similar inputs; visual input (Vin): “duck,” auditory input (Ain): “raven”;

phonological forms: ‘St_dak’, ‘St_rEI_wen’. Rows indicate neural

activation levels of different cortical SPA buffers over time (see Figure 5).

of words. In our experimental scenario, visual images are
closely related to concepts, and aural signals are closely related
to phonological forms. Each of these subnetworks contains
90 items, each of which corresponds directly to one of the
words defined in the subnetworks for concepts, words, and
phonological forms. The semantic pointers for visuals are labeled
with the prefix ‘V_’ (e.g., ‘V_Apple_Apfel’) and the semantic
pointers for aural signals are labeled with the prefix ‘A_’
(e.g., ‘A_apple’). In addition, semantic pointers are defined for
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FIGURE 7 | Simulation of picture naming and halt task for

phonologically similar inputs; visual input (Vin): “duck,” auditory input

(Ain): “dub”; phonological forms: ‘St_dak’, ‘St_dab’. Rows indicate neural

activation levels of different cortical SPA buffers over time (see Figure 5).

visual and auditory input representations. The pointers within
these subnetworks are labeled with an initial ‘Vin_’ or ‘Ain_’
respectively.

Word Corpus
Eighteen different input or target words are used in both
simulation experiments (listed in the first column of Table 1).
In Experiment 1, semantically similar distractor word activations

FIGURE 8 | Simulation of picture naming and halt task for semantically

and phonologically dissimilar inputs; visual input (Vin): “duck,” auditory

input (Ain): “dove”; phonological forms: ‘St_dak’, ‘St_daw’. Rows

indicate neural activation levels of different cortical SPA buffers over time (see

Figure 5).

are added at the word level and phonologically similar
distractor word activations are added at the phonological
level. These distractor words are listed in columns 2 and
3 of Table 1. In Experiment 2, the 18 visually presented
target words are combined with four different auditory input
words (i.e., stop signal or distractor words, cf. Slevc and
Ferreira, 2006). These distractor words are (i) semantically

Frontiers in Computational Neuroscience | www.frontiersin.org 9 May 2016 | Volume 10 | Article 51

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kröger et al. Modeling Interactions between Speech Production and Perception

FIGURE 9 | Simulation of picture naming task without error stimulation

for the rare event: no production signal (phonological level); visual

input (Vin): “bee,” no additional input. Rows indicate neural activation

levels of different cortical SPA buffers over time (see Figure 2).

similar, (ii) phonologically similar, (iii) semantically and
phonologically similar, or (iv) semantically and phonologically
dissimilar words in relation to their corresponding target word
(see columns 2–5 in Table 1). The resulting 90 words for
picture naming and/or for distortion (distractor or stop signal
words) are collected into in a semantic pointer network (see
Appendix A).

FIGURE 10 | Simulation of picture naming task without error

stimulation for the rare event: weak production signal (phonological

level); visual input (Vin): “apple,” no additional input. Rows indicate neural

activation levels of different cortical SPA buffers over time (see Figure 2).

Experiment 1
Experiment 1a

We conducted 35 trials in which productions of each of the
18 target words were simulated (630 simulations in total). No
distractors or stop signals were activated. Neural activation levels
for different semantic pointers in different cortical SPA buffers
are displayed in Figure 2 for a typical simulation trial. Here,
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FIGURE 11 | Simulation of picture naming task without error

stimulation for the rare event: weak signals in perception pathway

(here: concept level) leading to (weak) halt signal; visual input (Vin):

“squirrel,” no additional input. Rows indicate neural activation levels of

different cortical SPA buffers over time (see Figure 2).

the similarity between the neural activity and the most similar
semantic pointers is given for 10 different cortical SPA buffers.
It can be seen that all cortical SPA buffers for concept, word
and phonological form reflect full activation for the target word
semantic pointers during production as well as during perception
(Figure 2, rows 5 to 10 for the concept/word/phonological form
of “duck”). The perceptual input buffer (Figure 2, row 1) signals

that a full activation of visual input ‘NEW_VISUAL’ occurs at
approximately t = 100 ms. This input is held for a time interval
of 150 ms until t = 250 ms (see activation of semantic pointer
‘WORD’ in Figure 2, row 1). The concept input buffer (Figure 2,
row 2) indicates that the concept activation from visual input
starts at about 50 ms, while full activation occurs at around
100 ms and holds for 150 ms until t = 250 ms. No error
signal is generated (see Figure 2, row 3: activation of error input
buffer is ‘NEUTRAL’). The semantic pointer activation within the
task control buffer (Figure 2, row 4) indicates that the action
‘SPEAK’ will be activated at around t = 170 ms. This action
results from the evoked perceptual input (i.e., we evoke the
‘NEW_VISUAL’ semantic pointer). The action selection module
always activates the ‘SPEAK’ action if the neural activity pattern
within the cortical task control buffer previously represented the
‘NEW_VISUAL’ semantic pointer (see Section Architecture of the
Neural Model).

In the lower part of Figure 2 (rows 5–10) the levels for
the semantic pointers activated at the concept, word, and
phonological form levels are displayed for the production and
perception pathways; these will be interpreted in the Results
Section.

Experiment 1b

We simulated ten trials in which the model produces each
of the 18 target words with some kind of distortion (column
1 in Table 1; 180 simulations in total). Two different types
of distortions were introduced (5 trials each). (i) A “concept
distortion” was introduced by activating a distractor word which
was semantically similar to the target word (column 2 in
Table 1) and by adding this activation in the word buffer of the
production pathway (Figure 1). (ii) A “phonological distortion”
was introduced by activating a distractor word which was
phonologically similar to the target word (column 3 in Table 1)
and by adding this activation to the phonological buffer in the
inner speech loop (Figure 1).

The induction of a conceptual (or semantic) speech error in
a picture naming task was simulated by adding a second concept
buffer to the production pathway and by connecting the output of
that second buffer (“side branch buffer”) together with the output
of the original concept buffer (given in Figure 1) to the word
buffer within the production pathway. The temporal activation
pattern of this second concept buffer is displayed in the third row
in Figure 3 (see error input buffer; in this example the concept
activation for the distortion word “raven” is displayed). Thus, this
“side branch production concept buffer” (not shown in Figure 1)
is activated by a word which is semantically similar but not
identical to the target word (“duck”).

A similar process was used to induce phonological speech
errors. Specifically, a second word-level buffer was added to the
production pathway of the inner speech loop, and was connected
to the phonological buffer of the production pathway. This new
word-level buffer is activated by a word which is phonologically
similar but not identical to the target word. This leads to strong
activation of the distortion word in the phonological buffer of
the production pathway, which is then propagated to all levels
of the perception pathway. The temporal activation pattern of
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TABLE 1 | Words used as target words (column 1) or as distractor/stop signal words (columns 2–5) in the simulation experiments.

Picture name (target

word) (visual input)

Semantically similar

word (auditory input)

Phonologically similar

word (auditory input)

Phonologically and semantically

similar word (auditory input)

Dissimilar word (auditory input)

Apple Peach Apathy Apricot Couch

Basket Crib Ban Bag Thirst

Bee Spider Beacon Beetle Flag

Bread Donut Brick Bran Nail

Camel Pig Cash Calf Bucket

Carrot Spinach Cast Cabbage Evening

Duck Raven Sub Dove Brass

Elephant Moose Elm Elk Stripe

Fly Moth Flu Flea Rake

Lamp Candle Landing Lantern Package

Peanut Almond Piano Pecan Dress

Rabbit Beaver Raft Rat Coffee

Snake Eel Snack Snail Fire

Spoon Ladle Sparkle Spatula Cable

Squirrel Mole Skate Skunk Chain

Train Bus Trophy Trolley Fox

Truck Jeep Trap Tractor Celery

Trumpet Horn Traffic Trombone Corner

Word list is adapted from Damian and Martin (1999, Experiment 3).

the second word buffer is displayed in the third row in Figure 4

(error input buffer; displays the word activation for the distortion
word “dub”).

Experiment 2
Five trials of 72 word combinations (i.e., 18 target words and 4×
18 = 72 distractor words) were used in the picture naming and
halt task. Target words were activated by picture naming (column
1 of Table 1). Distractor words were activated after a short delay.
Four different categories of distractor words were used: (i) words
semantically similar to the target word (column 2 of Table 1),
(ii) words phonologically similar to the target word (column 3 of
Table 1), (iii) words semantically and phonologically similar to
the target word (column 4 of Table 1), and (iv) words dissimilar
to the target word along both dimensions (column 5 of Table 1).
The results of a simulation experiment for each of these four cases
are displayed in Figures 5–8.

In all four simulations of the picture naming and halt task,
visual input starts at about 100ms and is fully activated at 150
ms. The audio input starts at about 500 ms and is fully activated
at 550 ms. The perceptual input buffer signals the presentation
of new visual or audio input (row 1 in Figures 5–8). The visual
input signal is represented in the visual input buffer directly by
its concept representation while the audio input is represented in
the audio input buffer directly by its phonological representation
(rows 2 and 3 in Figures 5–8).

Source Code of the Model and the
Experiments
Nengo source code for this model can be downloaded at
http://www.phonetik.phoniatrie.rwth-aachen.de/bkroeger/

documents/ipynb_InnerSpeechLoop.zip. This zip file includes 4
scripts in IPython notebook format, representing Experiment
1a, Experiment 1b with semantic distortions, Experiment
1b with phonological distortions, and Experiment 2 (picture
naming with halts). This source code requires Nengo (version
2.0; Bekolay et al., 2014), which can be downloaded at
http://www.nengo.ca/download.

RESULTS

Experiment 1a
We simulated normal productions of the 18 target words listed
in Table 1 (column 1) for 35 trials each (630 simulations
in total). Semantic pointer activation patterns for a typical
simulation trial are given if Figure 2. We can see that the
temporal succession of word semantic pointer activations at
concept, word and phonological levels for the production and
perception pathways of the inner speech loop depends only
on the signal activation in the visual (or conceptual) input
buffer. Furthermore, it can be seen from Figure 2 that the
time delay between activation of the concept buffer in the
production pathway and the activation of the concept buffer
in the perception pathway is only about 70 ms. This results
from the direct associations realized by the associative memories,
occurring between all six cortical SPA buffers in the inner speech
loop. Thus, in our model the ‘SPEAK’ action (i.e., the action for
starting the production and articulation process) is activated once
the word has been propagated through all buffers of the inner
speech loop, from production to perception. This time interval
overlaps with the time interval for the input semantic pointer
‘WORD’.
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It can further be seen that in the case of normal production
(i.e., no distractor or error signal activation) the activities in
all six cortical SPA buffers represent the (same) target word
(“duck” in the case of the example given in Figure 2). At the
phonological level, a weak co-activation of phonologically similar
words also occurs. This results from the fact that the target word
“duck” is phonologically (as well as phonetically and acoustically)
similar to the words “dub” and “dove” (see also the relations
for these words in Appendix A3; the semantic pointer of the
deep phonological subnetwork, ‘PSt_da,’ is similar for these
words). Thus, this co-activation directly results from the close
relation of the phonological forms of these three words; i.e., it
directly results from the organization of the mental lexicon at
the level of the semantic pointer network (see Section Network
Implementation of the Mental Lexico). Similarly, at the concept
level of the perception pathway we can see a weak co-activation
of semantically similar words (i.e., “dove” and “raven”; see
Appendix A1: “duck,” “dove,” and “raven” all contain the deep
concept ‘Bird_Vogel’, making the conceptual semantic pointers
of these words similar to one another). This co-activation of
concepts once again results from the organization of the mental
lexicon at the conceptual level.

In summary, for all 630 simulation trials, at no point in time
were any of the conceptual, word or phonological buffers found
to represent a semantic pointer for any word different from
the target word. The phonological buffer within the production
pathway was not activated at all in four trials (0.6% of all trials;
see Figure 9 for an example, and see Table 2). A very weak
and temporally discontinuous target word activation within the
production pathway phonological buffer occurred in nine trials
(1.4% of all trials; see Figure 10 for an example, and see Table 2).
In all such cases, the neural connections linking the concept
buffer to the word buffer and those linking the word buffer to the
phonological buffer did not relay the neural activation patterns
correctly, which seems to be the cause for these rare events. The
‘HALT’ action in the cortical task control buffer was activated
in all of these instances. This action leads to a complete stop
of production, which is the correct choice if no phonological
representation is provided by the inner speech loop as input to
the speech production module (see Figure 1). In other trials,
weak activation of at least one of the three buffers occurred
in the comprehension pathway, while neural activation within
production pathway SPA buffers was normal (23 trials, 3.7%; see
Figure 11 for an example, and see Table 2). This weak activation
may lead to erroneous self-perception, and subsequently the
activation of a ‘HALT’ action at the level of the task control
buffer. Here, the utility of the ‘HALT’ action is lower than in the
previously described production pathway deficits (see Figure 10
vs. Figure 11) and does not lead to the generation of a stop signal,
but may lead to delayed activation of speech execution.

Experiment 1b
The same neural model as in Experiment 1a (i.e., the model given
in Figure 1) was used for Experiment 1b, with the addition of
phonological or semantic distractor activations (phonological or
semantic “distortions”) induced by the inner speech loop through
“side branches” (see Section Experiment 1).

TABLE 2 | Percentage (and absolute number) of trials exhibiting “rare

events” and generating “HALT” actions.

Rare event (630 total trials) Not accumulated Halt signals accumulated

No production signal 0.6% (4) 0.6% (4)

Weak production signal 1.4% (9) 2.0% (13)

Erroneous self-perception 3.7% (23) 5.7% (36)

Three cases can be separated: (i) no or (ii) weak production signal at level of phonological

buffer; (iii) weak self-perception signals (i.e., weak signals in at least one of the perception

buffers).

Semantic distractor activation (Figure 3): Since both concept
buffers (normal and side branch) are connected to the word
buffer in the production pathway, we get a strong activation of
two words at this level (see Figure 3, row 7: activation of “raven”
and “duck”; i.e., an ambivalent neural activation pattern). It can
be seen from the example in Figure 3 that further activation of
buffers in the inner speech loop leads to a strong activation of
the distortion word at phonological, word and conceptual levels.
The resulting difference in neural activation at the SPA buffers
in the production and perception pathways is fed back to the
action selection module and leads to a strong activation of the
‘HALT’ action at the level of the task control cortical buffer (see
fourth row in Figure 3). Thus, the inner (semantic) speech error
is clearly detected by the model itself.

Phonological distractor activation (Figure 4): In a manner
similar to the semantic distractor activation above, here as well
the disparity between representations in the production and
perception pathways (rows 5–10 in Figure 4) is detected by the
action selection module, which subsequently issues a ‘HALT’
action, signaling that the error has been detected.

In both the semantic distractor and phonological distractor
cases, we consider two conditions with respect to the relative
strength of the side-branch connections compared to the
standard connections: (i) strong coupling, in which the side
branch connections were twice as strong as the regular
connections, and (ii) weak coupling, in which the side branch
connections had the same strength as the regular connections.
In each condition, five trials were simulated for each of the 18
target words (column 1 in Table 1) by adding a semantically
(column 2 in Table 1) or phonologically (column 3 in Table 1)
similar distortion word as side branch input. Results are given in
Table 3. It can be seen from Table 3 that our model is capable
of generating phonologically as well as semantically induced
errors with a high rate. Semantically induced errors are detected
with greater frequency than phonetically induced errors in both
coupling conditions (Fisher’s exact test: p < 0.001 in both cases).

Experiment 2
Five trials of 72 word combinations were used in the picture
naming and halt task (18 target words induced by picture naming
coupled with 18 semantically similar, phonologically similar,
semantically and phonologically similar, and dissimilar distractor
words for a total of 72 combinations; see Section Experiment 2).

For every word combination, ‘SPEAK’ and ‘CONSIDER_
HALT’ actions are activated by the action selection module
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TABLE 3 | Results of experiment 1b: Percentage (and absolute values) of

evoked halts in the picture naming task with semantically or

phonologically induced distortion words and different degrees of side

branch coupling within the inner speech loop (90 trials per cell).

Degree of coupling

(90 total trials)

Semantically similar Phonologically similar

Strong 100.0% (90) 31.1% (28)

Weak 56.7% (51) 10.0% (9)

(see row 4 in Figures 5–8). These actions result from the input
signals ‘NEW_VISUAL’ and ‘NEW_AUDIO’ forwarded from the
perceptual input buffer. The ‘SPEAK’ action is activated upon
presentation of visual input and the ‘CONSIDER_HALT’ action
is activated upon presentation of audio input. For some distractor
words, the ‘CONSIDER_HALT’ action is directly followed by
a ‘HALT’ action (Figures 5, 6), while no such action occurs in
other cases, e.g., if the similarity between the target and distractor
words is too strong; see the if-then rules defined for the action
selection system of our model (Section Architecture of the Neural
Model). Rows 5–10 in Figures 5–8 show the semantic pointer
activation levels for the conceptual, word and phonological
buffers within production and comprehension pathways of the
inner speech loop.

It is interesting to see that the phonological input signal to
the comprehension pathway always overrides the input signal
from the production pathway (i.e., the inner speech signal) in
the case of phonologically different word pairs (Figures 5, 6).
This is not the case for phonologically similar word pairs which
may prevent speech error detection in the case of phonologically
similar distractor words (Figures 7, 8 and see Section Discussion
in this paper).

In summary, the percentage and absolute number of
halted trials is given in Table 4 for each of the four
types of target/distractor word combinations and for three
different degrees of coupling strength of auditory input to the
phonological buffer of the perception pathway. Strong, medium,
or weak coupling means that the strength of the connection
between the auditory input and phonological buffer is three, two
or one times the strength of all other connections, respectively.
Each cell in Table 4 results from 5 × 18 = 90 trials (1080
simulations in total).

It can be seen from Table 4 that the percentage of halted
productions is nearly zero when the target and distractor are
phonologically similar, while this is not the case for dissimilar
or (only) semantically similar word combinations. Furthermore,
semantic vs. dissimilar word pairs result in a significant difference
in all three cases of degree of coupling (Fisher’s exact test:
p < 0.001 in all three cases).

DISCUSSION

The main goal of this paper is to develop a spiking neuron model
of speech processing at multiple cognitive levels, mainly for word
and phonological form selection and monitoring at the level of

the mental lexicon. Because temporal aspects can be modeled in
the Neural Engineering Framework and because this model—
as with all spiking neuron models—generates variations from
trial to trial at the level of neural states and their processing,
it was possible to test the quality of this model by (i) checking
the “natural” occurrence of speech errors, by (ii) checking
whether the model is capable of generating speech errors if
we evoke ambivalent neural states at different cognitive levels
within speech production by including “side branches,” and
by (iii) comparing the simulation results of a picture naming
and halt task with human data. Our model and simulation
results showing error-production and picture naming and halt
performance reinforce the assumption that an inner speech loop
exists. That is, the assumption of interacting production and
perception pathways reinforce the existence of an inner speech
monitor that compares production and perception related neural
states at different cognitive levels within the inner speech loop.
Thus, our spiking neuron model is a comprehensive cognitive
approach for modeling and monitoring lexical access.

Because of the trial-to-trial variation of our neural model,
“rare events” occurred at the cognitive levels of neural activation,
which resulted in a stop of word production in 2.0% of 630
trials of normal word production (Experiment 1a; see Table 2).
These rare events resulted from weak neural activations in the
production buffers representing word and/or phonological states
within the speech production pathway of the inner speech loop.
In a further 3.7% of the trials weak or ambiguous activations
occurred in the (self-)perception pathway (see Table 2). It is
hypothesized that these further “rare events” could lead to
delayed execution of the intended target word. It should be
noted that we were not able to generate speech errors in form of
word substitutions. This may result from the fact that the neural
activation level for competitive phonologically or semantically
similar words is stronger in humans than in the model developed
here. But as was stated in Sections Methods and Results, our
model already generates co-activations of words if these words
are semantically and/or phonologically similar to the target word.
Because speech errors in the form of word substitutions are very
rare (around 0.1% in normal spontaneous speech; 166 word,
syllable and segment errors were identified in 3000 to 5000
words spoken by 34 subjects in Garnham et al., 1981) it could
be necessary to do more simulations (e.g., around 10,000 word
productions) in order to generate roughly 10 substitutions. This
error-scarcity is one of the reasons that researchers evoke speech
errors by using specific experimental paradigms (communication
scenarios) in behavioral experiments (Frisch and Wright, 2002;
Goldstein et al., 2007).

In order to generate speech errors in our model, “side
branches” were addedwithin the production pathway of the inner
speech loop (Experiment 1b, and see descriptions of the side
branches in Sections Methods and Results). These side branches
result in an increase in activation of competitive words which
are semantically or phonologically similar to the target word.
In both cases (adding neural activations for semantically or
phonologically similar words) the model is capable of generating
and detecting speech errors at a high rate (between 10 and 100%,
see Table 3). The results of this experiment suggest that speech
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TABLE 4 | Percentage (and absolute number) of evoked halts in the picture naming task for different types of target/distractor word combinations and for

different degrees of coupling of auditory input with the inner speech loop.

Degree of coupling (90 total trials) Semantically similar Phonologically similar Semantically and phonologically similar Dissimilar

Strong 60.0% (54) 0% (0) 0% (0) 96.7% (87)

Medium 21.1% (19) 0% (0) 0% (0) 68.9% (62)

Weak 5.6% (5) 1.1% (1) 0% (0) 14.4% (13)

errors occur more often for semantically similar words than
phonologically similar words (factor 3 to 6, see Table 3).

Because the introduction of “side branches” is a modification
of the production model (modeling a modification within the
brain of the speaker), speech errors are induced in behavioral
experiments by modifying the communication or production
scenario (i.e., the experimental paradigm). One kind of “artificial”
production scenario—not directly for evoking speech errors
but to investigate the speech monitoring function—is the
introduction of an acoustical stop signal in a picture naming
task (Slevc and Ferreira, 2006). A simulation of this experimental
paradigm using our neural model exhibited the behavioral
patterns (similar to those found in human behavioral data)
that dissimilar distractor words and semantically, but not
phonologically, similar distractor words lead to a high rate
of halting in the production of the target word (Table 4). In
our neural model, this halting results from the detection of
dissimilarities between the target and distractor words at the level
of the inner speech loop and can be explained by assuming an
inner speech monitor that is constantly comparing the neural
states in the production and the perception pathways. This
monitoring is assumed to be an important speech error detection
mechanism in slips of the tongue and thus the picture naming
and halting paradigm is a promising experiment for investigating
speech (self-)monitoring and self-detection of speech errors
(Hartsuiker and Kolk, 2001).

In the case of phonologically similar distractor words, human
data give a halting rate of about 20% in comparison to a
halting rate of around 40% for semantically similar or completely
dissimilar distractor words (Slevc and Ferreira, 2006, p. 521). We
were not able to reproduce the 20% result using our model, but
as in the human data our model predicts that halting occurs
significantly more often for dissimilar or semantically similar
distractor words. The fact that we were not able to model that
result more closely from a quantitative viewpoint may result from
low magnitudes for the dot products for phonologically similar
distractor to target words occurring within the production and
perception pathway of the inner speech loop, which is fed back
to the action selection module in order to allow the starting of a
‘HALT’ action. It could be a task for a future study to modify the
thresholds of the utility values in the basal ganglia (see Section
Architecture of the Neural Model), or to modify the semantic
pointers generated for the simulation in order to obtain a better
quantitative match with human data.

In summary, like humans, the model is capable of halting
when the distractor is dissimilar or only semantically similar
to the target word. The fact that the model does not halt on

distractors that are phonologically similar to the target forms in
the picture naming and halting paradigmmay result from the fact
that the evaluation of similarities of neural activations between
production and perception pathways in the inner speech loop
seems to under-emphasize differences at the phonological level
in comparison to differences at the semantic level. But recall
that our model includes an “inner loop shortcut” connecting
the phonological buffer of the production pathway to that of
the perception pathway. This shortcut could be the source of
an assimilation of the phonological forms within the production
and perception pathways and thus also be the source of the
difficulty of detecting differences between phonological forms
in the production and perception pathways. But this shortcut
is inevitable, because it is the basis for self-monitoring of inner
speech. Moreover, we have demonstrated that phonological
errors can be induced and detected by our model when side-
branches are used (see the results of Experiment 1b, Table 3).

Finally, it should be noted that the degree of similarity
for phonologically and semantically similar word pairs
is quantitatively comparable from the viewpoint of the
implementation of these representations at the level of the mental
lexicon. For all 18 word pairs (rows in Table 1) the combination
of the target word with phonological or semantically similar
words leads to the same deep representations at the level of
concepts (Appendices A1, A2) as well as to the same deep
representations at the level of phonological forms (Appendices
A3, A4). Eighteen different deep representations occur in
the case of the concept representations, but only 15 different
deep representations occur in the case of the phonological
representations for modeling the similarity with the 18 target
words. Fifteen different deep representations occur in the case
of the phonological forms because the same deep phonological
representations are used for three target words. The remaining
7 deep representations for concepts describe higher level
dependencies within the deep concept network itself, while
the other 18 deep representations only describe deep concepts
directly used in the concept network (Appendix A1).

CONCLUSIONS

In this paper we have proposed a comprehensive spiking neuron
model of the inner speech loop. This model includes a word
production pathway starting from the conceptual level and
ending with the phonological level, as well as a word perception
(and comprehension) pathway starting from the phonological
level and ending with the conceptual level. While this paper
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has focused on interactions between production and perception
during inner speech, the proposed model also has the potential
to be a sensible starting point for speech processing in general.
In particular, a number of straightforward extensions suggest
themselves. (i) A sentence-level module could be added in order
to facilitate production and comprehension of whole utterances.
This could be a good starting point for investigating face-to-face
communication processes from a modeling perspective (Kröger
et al., 2010, 2011). (ii) While this word processing model focuses
on retrieving information from the mental lexicon (i.e., semantic
and phonological knowledge repositories for words), it should
be possible to add a lower level speech production module
controlling an articulatory model, which could then generate
acoustic speech signals (Kröger et al., 2011), as well as incorporate

a lower level speech perception module in order to process
acoustic signals and activate words or phonological forms directly
from acoustic input (Kröger and Cao, 2015). In summary, a
complete biologically informed model of speech processing can
not only shed light on the neural processes of speech production
and perception, but may also be a valuable starting point for
solving open problems in speech synthesis (e.g., highly natural
sounding speech, Zen et al., 2009) and speech recognition (e.g.,
speech recognition in noisy environments, Mattys et al., 2012).
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APPENDIX

Appendix A1: Subnetwork for Concepts
(Python Dictionary)
i) First two lines: Relation types are listed here. ‘VisR’: Visual
Impression related to a concept; ‘AudiR’: auditory impression
of the word, representing the phonological form of the word;
‘OrthoR’: orthographic representation of the word; ‘PhonoR’:
phonological representation of the word; ‘IsA’: concept is
member of a group, defined by a subordinate concept.
ii) Concepts = {}: 90 concepts are listed as semantic pointers
in the Python dictionary concepts ={}. Each semantic pointer,
representing one concept is listed at the beginning of a new line.
Relations are listed in the same line.

Concepts are defined by an English-German word pair,
representing that concept (e.g., ‘Apple_Apfel’). Visual
representations are directly related to concepts and include
a prefix ‘V_’. Auditory, orthographic and phonological
representations are related to a word, here to the English
word, representing the concept.

visR= ‘VisR’, audiR= ‘AudiR’, orthoR= ‘OthoR’, isA= ‘IsA’
Relation_types= [visR, audiR, orthoR, phonoR, isA]
concepts= {
‘Almond_Mandel’: [(visR, ‘V_Almond_Mandel’), (audiR,
‘A_Almond’), (orthoR, ‘W_Almond’), (phonoR, ‘St_El_mend’),
(isA, ‘Nut_Nuss’)],
‘Apathy_Apathie’: [(visR, ‘V_Apathy_Apathie’), (audiR,
‘A_Apathy’), (orthoR, ‘W_Apathy’), (phonoR, ‘St_E_pe_si’)],
‘Apple_Apfel’: [(visR, ‘V_Apple_Apfel’), (audiR, ‘A_Apple’),
(orthoR, ‘W_Apple’), (phonoR, ‘St_E_pel’), (isA, ‘Fruits_Obst’)],
...
‘Trumpet_Trompete’: [(visR, ‘V_Trumpet_Trompete’), (audiR,
‘A_Trumpet’), (orthoR, ‘W_Trumpet’), (phonoR, ‘St_trOm_pet’),
(isA,
‘BrassWind_BlechblasInstr’)]
}

Appendix A2: Subnetwork for Deep
Concepts (Python Dictionary)
i) First two lines: Relation type: ‘IsA’: concept is member of a
group, defined by a subordinate concept.
ii) concepts_deep = {}: Deep Concepts are listed as semantic
pointers in the Python dictionary concepts_deep = {}. Each
semantic pointer, representing one deep concept is listed at the
beginning of a new line. Relations are listed in the same line. Deep
concepts will be used in concept dictionary (see Appendix A1)

isA=‘IsA’
Relation_types= [isA]
concepts_deep= {
# deep concepts, describing relations between concepts in
concept-network:
‘Bin_Behaelter’: [(isA, ‘Object_Gegenstand’)],
‘Bird_Vogel’: [(isA, ‘Animal_Tier’)],
‘Bluebottle_Brummer’: [(isA, ‘Insect_Insekt’)],
...
‘Vegetables_Gemuese’: [(isA, ‘Food_Nahrung’)],

# deep concepts, describing relations within deep concept
network:
‘ClovenHoofed_Paarhufer’: [(isA, ‘FourLeg_Vierbeiner’)],
‘FourLeg_Vierbeiner’: [(isA, ‘Animal_Tier’)],
‘Insect_Insekt’: [(isA, ‘Animal_Tier’)],
‘Vehicle_Fahrzeug’: [(isA, ‘Object_Gegenstand’)]
# basic level:
‘Animal_Tier’: [],
‘Food_Nahrung’: [],
‘Object_Gegenstand’: [],
}

Appendix A3: Subnetwork for Phonological
Representations (Python Dictionary)
i) First two lines: Relation type: ‘InclPhon’: phonological
representation of a word includes sub-representations (e.g.,
single phones, groups of phones, syllables)
ii) phonos = {}: Phonological representations of words are listed
as semantic pointers in the Python dictionary phonos = {}. Each
semantic pointer labels the phonological representation of a word
and is listed at the beginning of a new line. Relations are listed in
the same line.

Phonological representations of words include an underline
in order to separate syllables. The phonological transcriptions
in part use SAMPA notation (SAMPA, 2005). In addition,
the prefix ‘ST_’ marks a stressed (vs. unstressed) syllable.
Sub-representations (see deep phonological representations in
Appendix 4) always start with the prefix ‘P_’ for part. If a sub-
representation is part of a stressed syllable, the prefix ‘ST_’ is
included as well. Phonological representations are always related
to a word (see Appendix A1).

inclPhon= ‘InclPhon’
Relation_types= [inclPhon]
phonos= {
‘St_El_mend’: [(inclPhon, ‘PSt_El’), (inclPhon, ‘P_mend’)],
‘St_E_pe_si’: [(inclPhon, ‘PSt_Ep’), (inclPhon, ‘PSt_E’),
(inclPhon, ‘P_pe’), (inclPhon, ‘P_si’)],
‘St_E_pel’: [(inclPhon, ‘PSt_Ep’), (inclPhon, ‘PSt_E’), (inclPhon,
‘P_pel’)],
...
‘St_trOm_pet’: [(inclPhon, ‘PSt_tr’), (inclPhon, ‘PSt_trOm’),
(inclPhon, ‘P_pet’)],
}

Appendix A4: Subnetwork for Deep
Phonological Representations (Python
Dictionary)
Deep phonological representations are single phones, groups
of phones, syllables. They are listed as semantic pointers in
the Python dictionary phonos_deep = {}. These representations
always start with the prefix ‘P’ for part. If a sub-representation
is part of a stressed syllable, the prefix ‘ST_’ is included as well.
Deep phonological representations are related to phonological
representations (Appendix A3).

phonos_deep= {
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# syllables or parts of syllables, occurring in more than one
word:
‘PSt_Ep’: [], ‘PSt_bE’: [], ‘PSt_bi’: [], ‘PSt_br’: [], ‘PSt_da’: [],
‘PSt_kE’: [], ‘PSt_El’: [], ‘PSt_fl’: [], ‘PSt_lE’: [], ‘PSt_pi’: [],
‘PSt_rE’: [], ‘PSt_snE’: [],
‘PSt_sp’: [], ‘PSt_sk’: [], ‘PSt_tr’: [],
# other words or syllables, not necessarily describing
dependencies between phonological representations within
phonological network:
‘P_bel’: [], ‘P_bIdZ’: [], ‘P_bIt’: [], ‘P_boUn’: [], ‘P_del’: [], ‘P_der’:
[], ‘P_dIN’: [], ‘P_fent’: [], ‘P_fi’: [], ‘P_fIk’: [], ‘P_je’: [], ‘P_kel’: [],
‘P_ken’: [], ‘P_kIdZ’: [], ‘P_kIt’: [], ‘P_kOt’: [], ‘P_la’: [], ‘P_le’: [],
‘P_lI’: [], ‘P_mel’: [], ‘P_mend’: [], ‘P_nat’: [], ‘P_ne’: [], ‘P_nIN’:
[], ‘P_nItS’: [], ‘P_noU’: [],
‘P_pe’: [], ‘P_pel’: [], ‘P_pet’: [], ‘P_pi’: [], ‘P_pri’: [],
‘P_rel’: [], ‘P_ret’: [], ‘P_rI’: [], ‘P_si’: [], ‘P_te’: [], ‘P_tel’:
[], ‘P_ten’: [], ‘P_tje’: [], ‘P_we’: [], ‘P_wen’: [], ‘P_wer’:
[], ‘PSt_bas’: [], ‘PSt_bEg’: [], ‘PSt_bEn’: [], ‘PSt_bras’: [],
‘PSt_brEd’: [], ‘PSt_brEn’: [], ‘PSt_brIk’: [], ‘PSt_bU’: [],
‘PSt_bUs’: [],
‘PSt_dab’: [], ‘PSt_dak’: [], ‘PSt_daw’: [], ‘PSt_doU’: [], ‘PSt_drEs’:
[], ‘PSt_dZip’: [], ‘PSt_E’: [], ‘PSt_EI’: [], ‘PSt_Elk’: [], ‘PSt_Elm’:
[], ‘PSt_faI’: [],
‘PSt_flaI’: [], ‘PSt_flEg’: [], ‘PSt_fli’: [], ‘PSt_flu’: [], ‘PSt_fOks’: [],
‘PSt_hOrn’: [], ‘PSt_i’: [], ‘PSt_il’: [], ‘PSt_kaf ’: [], ‘PSt_kast’: [],
‘PSt_kaUtS’: [],
‘PSt_kEI’: [], ‘PSt_kEn’: [], ‘PSt_kEs’: [], ‘PSt_kO’: [], ‘PSt_kOr’:
[], ‘PSt_krIb’: [], ‘PSt_lEI’: [], ‘PSt_lEmp’: [], ‘PSt_lEn’: [],
‘PSt_mOs’: [], ‘PSt_moUl’: [],
‘PSt_muz’: [], ‘PSt_nEIl’: [], ‘PSt_pE’: [], ‘PSt_pI’: [], ‘PSt_pIg’: [],
‘PSt_pitS’: [], ‘PSt_raft’: [], ‘PSt_rEI’: [], ‘PSt_rEIk’: [], ‘PSt_rEt’:
[], ‘PSt_s9rst’: [],
‘PSt_sE’: [], ‘PSt_skEIt’: [], ‘PSt_skUI’: [], ‘PSt_skUnk’: [],
‘PSt_snEIk’: [], ‘PSt_snEIl’: [], ‘PSt_snEk’: [], ‘PSt_spaI’: [],
‘PSt_spar’: [], ‘PSt_spE’: [],
‘PSt_spI’: [], ‘PSt_spun’: [], ‘PSt_straIp’: [], ‘PSt_trE’: [],

‘PSt_trEIn’: [], ‘PSt_trEk’: [], ‘PSt_trEp’: [], ‘PSt_trO’: [],
‘PSt_trOm’: [], ‘PSt_troU’: [],
‘PSt_trUk’: [], ‘PSt_tSEIn’: []
}

Appendix A5: Subnetwork for Word
Representations (Python Dictionary)
Word (i.e., orthographic representations) are listed as
semantic pointers in the Python dictionary words={}. These
representations always start with the prefix ‘W_’ followed by the
English word.

words= {
‘W_Almond’: [], ‘W_Apathy’: [], ‘W_Apple’: [], ‘W_Apricot’:
[], ‘W_Bag’: [], ‘W_Ban’: [], ‘W_Basket’: [], ‘W_Beacon’:
[], ‘W_Beaver’: [], ‘W_Bee’: [], ‘W_Beetle’: [], ‘W_Bran’: [],
‘W_Brass’: [], ‘W_Bread’: [], ‘W_Brick’: [], ‘W_Bucket’: [],
‘W_Bus’: [], ‘W_Cabbage’: [], ‘W_Cable’: [], ‘W_Calf ’: [],
‘W_Camel’: [], ‘W_Candle’: [], ‘W_Carrot’: [], ‘W_Cash’: [],
‘W_Cast’: [], ‘W_Celery’: [], ‘W_Chain’: [], ‘W_Coffee’: [],
‘W_Corner’: [], ‘W_Couch’: [],
‘W_Crib’: [], ‘W_Donut’: [], ‘W_Dove’: [], ‘W_Dress’: [],
‘W_Dub’: [], ‘W_Duck’: [], ‘W_Eel’: [], ‘W_Elephant’: [], ‘W_Elk’:
[], ‘W_Elm’: [], ‘W_Evening’: [], ‘W_Fire’: [], ‘W_Flag’: [],
‘W_Flea’: [], ‘W_Flu’: [], ‘W_Fly’: [], ‘W_Fox’: [], ‘W_Horn’:
[], ‘W_Jeep’: [], ‘W_Ladle’: [], ‘W_Lamp’: [], ‘W_Landing’:
[], ‘W_Lantern’: [], ‘W_Mole’: [], ‘W_Moose’: [], ‘W_Moth’:
[], ‘W_Nail’: [], ‘W_Package’: [], ‘W_Peach’: [], ‘W_Peanut’:
[], ‘W_Pecan’: [], ‘W_Piano’: [], ‘W_Pig’: [], ‘W_Rabbit’: [],
‘W_Raft’: [], ‘W_Rake’: [], ‘W_Rat’: [], ‘W_Raven’: [], ‘W_Skate’:
[], ‘W_Skunk’: [], ‘W_Snack’: [], ‘W_Snail’: [], ‘W_Snake’: [],
‘W_Sparkle’: [], ‘W_Spatula’: [], ‘W_Spider’: [], ‘W_Spinach’:
[], ‘W_Spoon’: [], ‘W_Squirrel’: [], ‘W_Stripe’: [], ‘W_Thirst’:
[], ‘W_Tractor’: [], ‘W_Traffic’: [], ‘W_Train’: [], ‘W_Trap’: [],
‘W_Trolley’: [], ‘W_Trombone’: [], ‘W_Trophy’: [], ‘W_Truck’:
[], ‘W_Trumpet’: []
}
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