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Abstract The role of the gut microbiota in the induction

of metabolic diseases has now been increasingly recog-

nized worldwide. Indeed, a specific gut microbiota has

been shown to characterize lean versus obese phenotypes

both in humans and mice. We have also recently demon-

strated that a precise gut microbiota is associated with the

host’s responsiveness to a high-fat diet. Therefore, we

hypothesized that insulin resistance in humans could also

be linked to a specific gut microbiota. To this aim,

microbial DNA and RNA were extracted from the appen-

dix contents of insulin-resistant versus insulin-sensitive

obese subjects, matched for body mass index and age, and

analyzed by DNA- and RNA-DGGE. Microbial DNA

analysis showed that the patients fully segregated accord-

ing to their degree of insulin action. Conversely, microbial

RNA investigation showed that some degree of homology

still existed between insulin-sensitive and insulin-resistant

patients. Quantitative trait analysis, ordinary least squares

regression, principal components regression, partial least

squares, canonical correlation analysis, and canonical cor-

respondence analysis also showed a net separation of the

two phenotypes analyzed. We conclude that a specific gut

microbial profile is associated with insulin action in

humans.

Keywords Gut microbiota � Obesity �
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Introduction

Metabolic diseases such as obesity and type 2 diabetes are

characterized by alterations in energy balance which

explains, at least in part, the occurrence of obesity. On one

hand, the impact of genetic trait variants accounts for only
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Institut d’Investigació Biomédica de Girona, and CIBER

Fisiopatologia Obesidad y Nutricion (CB06/03/010),

Instituto de Salud Carlos III, Girona, Spain

e-mail: jmfreal@idibgi.org

E. G. Fuentes � M. Queipo-Ortuño � F. Tinahones

Service of Endocrinology and Nutrition, Hospital Clinico

Universitario Virgen de Victoria de Malaga and CIBEROBN

(CB06/03/010), Instituto de Salud Carlos III, Madrid, Spain
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up to 10 % [1] of the excessive body weight gain [2]. On

the other hand, environmental factors such as stress, a

sedentary lifestyle, and nutrition habit, although impor-

tant, cannot explain the left-over 90 % of the pandemic

progression of metabolic impairment. A recent hypothesis

suggests that human beings can be considered as ‘‘super-

organisms’’ as a result of their symbiotic association with

the gut microbiota [3]. Recent data demonstrated that the

profile of genes expressed by the intestinal microbiota—

the gut microbiome—varies between healthy [4, 5] and

even between lean and obese individuals and was con-

sidered as a specific signature of the metabolic phenotype

[5]. Similarly, obese mice deleted for the leptin gene were

characterized by a change in the Bacteroidetes to Firmi-

cutes ratio, the major phyla present in the intestinal

microbiota of humans [5] and mice [6]. With regard to the

role of environmental factor, we and others showed the

major role of a fat-enriched diet on the change in intes-

tinal microbiota. We first identified lipopolysaccharides

(LPS) from gram negative bacteria as the molecular link

between gut microbiota and the chronic low-grade

inflammatory tone [7, 8] induced by a high-fat diet [7, 8]

that leads to insulin resistance. Hence, LPS could be

considered as an initiator of metabolic diseases [9].

Altogether, gut microbiota unbalance is now considered

as an important trigger of white adipose tissue (WAT)

plasticity, regulating fat-storage [10], energy-harvesting

[11], diet-induced obesity [12], and adiposity [13]. How-

ever, the relationship between gut microbiota and insulin

action in human obesity has never been established. To

this aim, we evaluated the diversity of microbial cecal

(appendix) DNA and RNA in insulin-resistant versus

insulin-sensitive obese subjects.

Results

Gut DNA microbial profiles identify clusters of patients

according to insulin action

To determine whether a DNA-based gut microbial profile

may be associated with insulin action, we performed a

DNA-DGGE on the cecum (appendix) contents from 8

insulin-resistant (IR) and 8 insulin-sensitive (IS) subjects

(all obese; 7 women and 1 man in both groups) comparable

in age and body mass index (BMI). Notably, DNA-DGGE

profiles (Fig. 1a) fully segregated according to insulin-

sensitive (IS) or insulin-resistant (IR) phenotypes, as shown

in Fig. 1b by the evolutionary analysis based on Pearson’s

tree method. Intra-group homology was higher than inter-

group homology. In detail, gut microbial profiles from both

groups of patients were characterized by a specific pattern

of electrophoresis bands (Fig. 1a), hereafter referred to as

microbial markers. In fact, the IR versus IS phenotypes

shared only 4 microbial markers (8 and 7 % out of the total

for IR and IS, respectively), as shown by the Venn’s dia-

gram in Fig. 2a. Therefore, 92 and 93 % of the DNA-based

gut microbial profile was specific for the IR and IS phe-

notypes, respectively.

Next, the intensity of each microbial marker was con-

verted into a heat-map. A Pearson’s tree evolutionary

analysis allowed clusters of microbial markers to be iden-

tified which specifically belonged to a given phenotype

(Fig. 2b, left-side).

We further used the Quantitative Trait Analysis, the

Ordinary Least Squares regression (OLS), Principal Com-

ponents Regression (PCR), Partial Least Squares (PLS),

Canonical Correlation Analysis (CCA), and Canonical

Fig. 1 DNA gut microbial profile from the ceca of insulin-sensitive

and insulin-resistant obese patients. Total DNA from both luminal

and mucosal cecum (appendix) was extracted from obese insulin-

resistant and obese insulin-sensitive patients. The 16S rDNA was

amplified, and the amplicons were separated by electrophoresis on a

gel with a denaturating gradient (DGGE). Each band was referred to

as a microbial marker. The figure shows a the DNA-DGGE gel, with

an internal marker (M) for electrophoresis control and b the cluster

analysis showing the Pearson’s evolutionary tree (left-side)
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Correspondence Analysis (CAnoCO). Characteristic mark-

ers were obtained by selecting those variables retained in

regression models such as OLS, PLS, and PCR or by

selecting those variables that appeared associated with

differences in IR versus IS when representing the data in

reduced dimension after CCA or CANOCO. For OLS, 4

variables were retained after stepwise selection. PCR and

PLS were applied without previous selection of variables,

and 4 variables were retained by PCR and 9 by PLS. CCA

and CANOCO were performed without any previous var-

iable selection. Ten variables were retained by CCA and

CANOCO. Combining all these methods, we found 3 DNA

microbial markers (86.8 and 103.8 from IS patients; 136.4

from IR patients; numbers refer to the relative migration

within the electrophoresis gel) highlighted by all methods,

showing an association with insulin resistance (HOMA

value) (Table 1). Moreover, 3 additional DNA microbial

markers (43.4, 92.5, 96.2, all from IS patients) were

highlighted by at least three approaches (Table 1).

Gut RNA microbial profile varies in accordance

with insulin action

To investigate whether the high level (greater than 91 %)

of segregation of gut DNA microbial profiles observed in

IR versus IS patients may be associated with a differential

encoding activity of gut microbes, we performed a RNA-

DGGE on the same samples analyzed above. Conversely

to what observed on DNA-DGGE, RNA-DGGE gut

microbial profiles (Fig. 3a) still showed a certain degree

of homology between the IR versus IS patients. In fact,

the evolutionary analysis based on Pearson’s tree method

showed a subgroup of patient according to the IR or

IS phenotype (Fig. 3b). Interestingly, IS patients were

Fig. 2 Comparative analysis of microbial markers from the DNA gut

microbial profile of insulin-sensitive and insulin-resistant obese

patients. a Venn’s diagram comparing DNA gut microbial markers

and b heat-map based on microbial marker intensity. Pearson’s tree

evolutionary analysis has been conducted with regard to marker

segregation according to the clinical phenotype (IR vs. IS, top and

left-side of the heat-map)
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characterized by a higher degree of homology than IR

(Fig. 3b, left-side).

In detail, the IR versus IS phenotypes shared 38 micro-

bial markers (65 and 84 % out of the total for IR and IS,

respectively), as shown by the Venn’s diagram reported in

Fig. 4a. Therefore, 35 and 16 % of the RNA-based gut

microbial profile was specific for IR and IS phenotypes,

respectively. In accordance with this result, the heat-map

Table 1 Associative analysis

between DNA microbial

markers and insulin resistance

Microbial

marker

Correlations IR related

(Wilcox)

IR related

(OLS)

Homa related

(PCA-reg)

PIS CCA # of

highlights

43.4 1 X X 3

47.2 X 1

50.9 1 1

67.3 X X 2

76.4 X 1

77.4 X 1

86.8 4 X X X X X 6

92.5 1 X X 3

92.7 X 1

96.2 1 X X 3

100 2 1

103.8 7 X X X X X 6

111.3 X X 2

120.8 X 1

130.2 3 1

130.9 X 1

136.4 5 X X X X X 6

141.5 X 1

150.9 3 X 2

162.3 X 1

170.9 X 1

Fig. 3 RNA gut microbial profile from ceca of insulin-sensitive and

insulin-resistant obese patients. Total RNA from both luminal and

mucosal cecum (appendix) was extracted from obese insulin-resistant

and obese insulin-sensitive patients. The 16S rRNA was retrotran-

scripted, then cDNA amplified, and the amplicons were separated by

electrophoresis on a gel with a denaturating gradient (DGGE). Each

band was referred to as a microbial marker. The figure shows a the

RNA-DGGE gel, with an internal marker (M) for electrophoresis

control and b the cluster analysis showing the Pearson’s evolutionary

tree (left-side)

756 Acta Diabetol (2013) 50:753–761

123



based on RNA microbial markers and the corresponding

Pearson’s evolutionary analysis (Fig. 4b, left-side) showed

clusters of segregation to a lesser extent than DNA-DGGE

analysis.

Discussion

We here report for the first time that insulin action in

humans fully segregates with gut microbiota issued from

the intestine, a result not yet reported from feces. This

original observation suggests first a regulatory role of the

microbiota which is directly in contact with intestinal cells

and hence the rest of the body and second that biomarkers

for the diagnosis of insulin resistance could be identified

from intestinal bacterial DNA.

The role of intestinal microbiota could be due to a

mechanism called bacterial translocation. It corresponds

to the passage of gut indigenous bacteria through the

intestinal mucosa to mesenteric lymph nodes and, in human

appendix, was found to be instrumental for tolerance

induction towards indigenous flora and the stimulation and

normal development of the gastrointestinal-associated

lymphoid tissue [14]. Substantial amounts of immune tis-

sue associated with the appendix strongly suggest immune

function capability from this gut portion.

The association of cecal appendix with substantial

amount of immune tissue was considered as an indicator

that the appendix may have some immune function.

Recently, an improved understanding of the interactions

between the normal gut flora and the immune system has

led to the identification of the appendix as an apparent safe-

house for normal gut bacteria. In fact, cladistic analyses,

indicating that the appendix has evolved independently at

least twice (once in diprotodont marsupials and once in

Euarchontoglires), show a highly significant (P \ 0.0001)

phylogenetic signal in its distribution, and has been

maintained in mammalian evolution for 80 millions years

Fig. 4 Comparative analysis of microbial markers from the RNA gut

microbial profile of insulin-sensitive and insulin-resistant obese

patients. a Venn’s diagram comparing RNA gut microbial markers

and b heat-map based on microbial marker intensity. Pearson’s tree

evolutionary analysis has been conducted with regard to marker

segregation according to the clinical phenotype (IR vs. IS, top and

left-side of the heat-map)
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or longer [15]. To present, studies on gut microbiota are

mostly based on fecal matter analysis [5, 16, 17]. Con-

versely, the aforementioned arguments strongly suggest the

importance to focus on appendix microbiota as a novel

actor capable to modulate host metabolism via shaping

appendix immune function.

We show that a core microbiome based on gene, rather

than taxon level, can be correlated with indexes of insulin

resistance. Our results are in accordance with the concept

of core microbiome identified in twin’s studies [16],

introducing the notion that different phenotypes, that are

lean versus obese, may display different patterns of gut

microbes lineages nonetheless sharing a core of functions.

However, it is noteworthy that further analyses based on

Omics techniques [18] may allow to name the gut microbes

associated with insulin resistance, providing a gut micro-

bial signature for this phenotype, to be associated with the

bacterial signature of obesity, already recognized in the

increased Firmicutes to Bacteroidetes ratio, both in humans

[5] and in mice [6].

This new concept certainly draws the route for new

discoveries regarding markers of clinical phenotypes and

regulatory factors of host metabolism. We recently showed

that bacterial DNA, mostly issued from the Proteobacteria

phylum, was found in the human blood. Importantly, the

amount of 16S rDNA was considered as a predictive

marker of the patients intended to become type 2 diabetic

6–9 years later [19]. Although the importance of the gut

microbiome for host health is now widely recognized [20–

22], it is not yet known which of the many hundreds of

species are key for host health, and little is understood

about the molecular host–microbiome interactions that

influence host metabolic pathways. Each person’s gut

microbial community varies in the specific bacterial lin-

eages, with a comparable degree of co-variation between

adult monozygotic and dizygotic twin pairs [16]. The ori-

gin of such variation is unknown but could be related to a

given phenotypic trait [23]. In fact, a specific gut microbial

profile may be responsible for a given phenotype and hence

represent a target for the development of new therapy,

based on the developing concept of personalized medicine

[3, 24].

With that regard, we have recently showed that a spe-

cific gut microbiota is associated with a given metabolic

phenotype during the phenomenon of metabolic adaptation

to a high-fat diet (HFD) in mice [25]. In fact, by pyrose-

quencing the gut microbes issued from mice fed the same

HFD and having the same genetic background, we have

shown that a different Firmicutes to Bacteroidetes ratio

signs the lean diabetic-sensitive versus lean diabetic-

resistant metabolic phenotypes.

Therefore, our results, together with the herein presented

study, corroborate the hypothesis that gut microbiota may

address host responsiveness towards a given phenotype and

that deviations from a core microbiome may lead to a

different patho-physiologic status, that is, insulin sensitiv-

ity versus insulin resistance. A previous discovery from our

laboratory showed that the blood concentration of LPS was

increased in patient feeding a fat-enriched diet, whereas no

difference was observed in those feeding on a carbohydrate

or protein-rich diet [26]. However, no correlation was

made with obesity suggesting that LPS cannot be consid-

ered as biomarker of obesity. Therefore, other factors need

to be identified. In fact, insulin resistance has been found to

be linked to several antimicrobial proteins that sense LPS

in human plasma [27, 28], suggesting that the immune

system builds specific barriers that shape our microbiota

and metabolic efficiency simultaneously [29, 30].

In conclusion, we here demonstrate that intestinal bac-

terial DNA is a signature of insulin action in humans.

Whether it has a role in the triggering or regulation of

insulin resistance still needs to be determined.

Research design and methods

Cecum intestine (appendix) from 8 insulin-resistant obese

subjects and 8 insulin-sensitive obese subjects (7 women

and 1 man in both groups) comparable in age and BMI

(Table 2) were obtained from visceral depots during elec-

tive surgical procedures (cholecystectomy, surgery for

abdominal hernia, and gastric bypass surgery). The samples

were washed, fragmented, and snap-frozen in liquid

nitrogen before being stored at -808 C. The subjects were

invited to participate at the Endocrinology Service of the

Hospital Virgen de la Victoria de Málaga (Málaga, Spain).

All subjects were of Caucasian origin with no systemic

disease other than type 2 diabetes or obesity, and all were

infection-free during the previous month before the study.

Liver disease and thyroid dysfunction were specifically

excluded by biochemical work-up. Other exclusion criteria

for the patients included the following: (1) clinically sig-

nificant hepatic, neurological, or other major systemic

disease, including malignancy; (2) history or current clin-

ical evidence of hemochromatosis; (3) history of drug or

alcohol abuse, defined as [ 80 g/day, or serum transami-

nase activity more than twice the upper limit of normal; (4)

an elevated serum creatinine concentration; (5) an acute

major cardiovascular event in the previous 6 months; (6)

acute illnesses and current evidence of acute or chronic

inflammatory or infective diseases; and (7) mental illness

rendering the subjects unable to understand the nature,

scope, and possible consequences of the study. All subjects

gave written informed consent after the purpose of the

study was explained to them. The local board of the Hos-

pital and the Ethics Committee approved the protocol.
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Anthropometric measurements

The BMI was calculated as weight (in kilograms) divided

by height (in meters) squared. The subjects’ waist was

measured with a soft tape midway between the lowest rib

and the iliac crest. The hip circumference was measured at

the widest part of the gluteus region and the waist-to-hip

ratio (WHR) calculated.

Blood pressure was measured in the supine position on

the right arm after a 10-min rest; a standard sphygmoma-

nometer of appropriate cuff size was used, and the first and

fifth phases were recorded. Values used in the analysis are

the average of three readings taken at 5-min intervals.

Patients were requested to withhold alcohol and caffeine

for at least 12 h prior to the insulin-sensitivity test.

Analytical determinations

Serum glucose levels were measured in duplicate by the

glucose oxidase method with a Beckman Glucose Analyzer 2

(Brea, CA). The coefficient of variation (CV) was 1.9 %.

Serum insulin levels were measured in duplicate by mono-

clonal immunoradiometric assay (IRMA; Medgenix Diag-

nostics, Fleunes, Belgium). The lowest limit of detection was

4.0 mU/l. The intra-assay CV was 5.2 % at a concentration of

10 mU/l and 3.4 % at 130 mU/l. The inter-assay CVs were

6.9 and 4.5 % at 14 and 89 mU/l, respectively. Frequently

sampled intravenous glucose tolerance test with minimal

model analysis was performed as previously described [30].

Total serum cholesterol was measured through the reac-

tion of cholesterol esterase/oxidase/peroxidase, using a BM/

Hitachi 747. HDL cholesterol was quantified after precipi-

tation with polyethylene glycol at room temperature. Total

serum triglycerides were measured through the reaction of

glycerol-phosphate-oxidase and peroxidase. Insulin sensi-

tivity was measured using the frequently sampled intrave-

nous glucose tolerance test with minimal model analysis, as

previously described [31].

DNA/RNA Denaturant Gradient Gel Electrophoresis

(DGGE)

Total DNA/RNA were extracted from snap-frozen cecum

contents using the TriPure reagent according to manufac-

turer’s protocol, modified by adding a bead (B 106 lm

diameter)-beating step (6,500 rpm, 3 9 30 s). Then, 200 ng

of DNA was amplified by PCR using a Taq Polymerase

(Sigma Aldrich, St. Louis, MO) and 300 nM DGGE-specific

16S rRNA universal primers (forward primer 50-CGC CCG

GGG CGC GCC CCG GGC GGG GCG GGG GCA CGG

GGG GAC TCC TAC GGG AGG CAG CAG T-30; reverse

primer 50-GTA TTA CCG CGG CTG CTG GCA C-30),
carrying (forward primer only) a GC-enriched region (GC-

clamp), generating 233-bp amplicons. The size of the latter

was verified by 2 % agarose gel electrophoresis. Then,

80 ng of amplicons was loaded onto 8 % acrylamide gel

with a 35–55 % (w/v) urea-denaturant gradient. The gels

were run overnight in TAE 1 9 , at 60� C. The following

Table 2 Anthropometrical and

biochemical variables of

subjects in the study

Insulin-sensitive subjects Insulin-resistant subjects P value

N 7 women/1 man 7 women/1 man

Age (years) 46.28 ± 12.64 43.12 ± 8.79 0.5

BMI (kg/m2) 55.8 ± 6.2 54.42 ± 5.2 0.6

WHR 0.87 ± 0.06 0.85 ± 0.08 0.6

SBP (mmHg) 141 6 ± 21.7 141 ± 15.9 0.9

DBP (mmHg) 87.1 ± 7.4 80 ± 7.9 0.15

Total cholesterol (mg/dl) 214.6 ± 40.8 208.7 ± 19.79 0.7

HDL cholesterol (mg/dl) 46.6 ± 9.7 50.42 ± 14.5 0.5

LDL cholesterol (mg/dl) 137.9 ± 23.4 126.6 ± 19.2 0.3

Fasting triglycerides (mg/dl) 94.12 ± 27.6 176.5 ± 82.2 0.02

Free fatty acids (mmol/l) 0.35 ± 0.16 0.59 ± 0.10 0.005

Insulin (mg/dl) 15.6 ± 4.1 53.9 ± 8.1 \0.0001

Glucose (mg/dl) 95.87 ± 9.6 122.37 ± 23.4 0.01

HOMA-IR 3.7 ± 1.04 16.2 ± 3.9 \0.0001

GGT (U/l) 93.14 ± 97.2 76.1 ± 81.08 0.7

GOT (U/l) 32.2 ± 34.02 26.7 ± 12.2 0.6

GPT (U/l) 73 28 ± 82 9 54.37 ± 15.2 0.5

Uric acid (mg/dl) 6.01 ± 1.1 6.17 ± 1.4 0.8

Adiponectin (ug/ml) 11.87 ± 4.02 7.2 ± 2.3 0.02

Leptin (ng/ml) 147.8 ± 105.1 136.6 ± 56.3 0.7
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day, the gels were stained for 30 min in TAE 1X-SYBR safe

DNA gel staining and scanned with a Typhoon 9400

instrument (Amersham Biosciences). The band profile was

analyzed by the PermutMatrixEN software version 1.9.3.0

[32]. One microgram of total RNA was retrotranscripted

for 2 h at 37 �C using the High-Capacity cDNA Reverse

Transcription Kit (Applied Biosystems, Villebon-sur-

Yvette, France). Ten nanograms of cDNA were amplified

using both sense and antisense primers at a concentration of

300 nM.

DGGE band analysis and Venn’s diagram

DGGE bands were identified and analyzed by using the

software ImageQuantTL (GE Healthcare Life Sciences).

Manual lane creation option was used to draw samples

lane. Then, Edit single lane option was used to adjust lane

width. Background subtraction was used to denoise

intensity values. Finally, automatic detection was applied

to identify bands. Venn diagram was constructed based on

Oliveros JC website (http://bioinfogp.cnb.csic.es/tools/

venny/index.html). No threshold was applied for band

intensity, since the background was already subtracted in

Venn’s diagrams. Therefore, all bands were analyzed for

both DNA (Fig. 2a) and RNA (Fig. 4a).

Association analysis between DNA bands

and insulin resistance

The analysis of the association between DNA bands obtained

by DGGE and clinical covariates describing individual

characteristics has been performed using multiple statistical

techniques whose results have been integrated in order to

highlight different relations obtained from diverse approa-

ches. The reason for using this integrative approach is on the

one hand because of the small number of individuals (sug-

gesting lack of power) and on the other hand because of the

ill-conditioning derived from the number of zeros (suggesting

that some approaches may be weaker than usual). Combining

different methods allows a more robust approach. Associa-

tions appearing in most analyses can be more reliably trusted

while those appearing only once can be considered as

‘‘potential’’ relations.

Two types of statistical methods were used to detect

bands that could be associated with difference between

insulin resistance and insulin sensitivity. By one side, this

relation was analyzed through variable HOMA_IR that is

clearly associated with this difference. Letting HOMA_IR

and insulin sensitivity be the response variables, the relation

was modeled through different approaches: quantitative

trait analysis to establish correlation between this variable

and each band’s values separately, and different regres-

sion methods such as Ordinary Least Squares, Principal

Components Regression, and Partial Least Squares to find a

set of explanatory variables (band) for HOMA_IR. By the

other side, multivariate analyses such as Canonical Corre-

spondence Analyses were used to find a set of variables best

correlated with the difference between IR and IS accounting

for more variables than HOMA_IR.

All analyses were performed using all variables excep-

ted for Quantitative Trait Analysis that was performed on a

one-to-one basis and OLS for which a preselection based

on significance was done.

A brief description of the statistical methods applied

follows below:

• Quantitative Trait Analysis (‘‘QTA’’ [33]) consists of

computing Spearman correlation coefficient between

band values and quantitative covariates such as

HOMA_IR. Significance is obtained by random per-

mutation testing.

• Linear regression (‘‘OLS’’, [34]) has been performed

taking HOMA_IR and insulin sensitivity as the dependent

variables and bands showing a significant difference

between IR and IS patients as explanatory variables.

Stepwise regression was used to retain a set of most

explanatory bands in the model. The variables were

filtered for OLS to have as many variables as individuals.

• Principal Components Regression (‘‘PCR’’, [34]) was

done by first performing a Principal Components Anal-

ysis on all bands, which yield a new set of independent

‘‘eigen-bands’’, then performing a linear regression,

including stepwise variable selection and finally reverting

the model to the original scale yielding a coefficient for

each band which was used to select bands positively or

negatively associated with the response variable.

• Partial least squares (‘‘PLS’’, [35]) can be seen as a

technique related to Principal Components Regression

but which fits a linear regression model by projecting

the predicted variables and the observable variables to a

new space where the relation between the variables can

be better visualized.

• Canonical Correlation Analysis (‘‘CCA’’, [36]) is a

multivariate method to find correlation between sets of

variables. It was performed between a subset of bands

obtained by clustering and selecting one canonical

representative per cluster and a subset of quantitative

clinical variables. An extra regularization step was

applied to account for the problem of having more

bands than individuals.

• Canonical Correspondence Analysis (‘‘CANOCO’’, [37])

is a method developed in Ecology that builds on

Correspondence analysis, a multivariate method applica-

ble to analyze cross-tables such as those formed by bands

and patients to allow the incorporation of extra explan-

atory variables in the analysis (here clinical variables).
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