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Abstract

Background: Chagas disease kills approximately 45 thousand people annually and affects 10 million people in Latin America
and the southern United States. The parasite that causes the disease, Trypanosoma cruzi, can be transmitted by insects of
the family Reduviidae, subfamily Triatominae. Any study that attempts to evaluate risk for Chagas disease must focus on the
ecology and biogeography of these vectors. Expected distributional shifts of vector species due to climate change are likely
to alter spatial patterns of risk of Chagas disease, presumably through northward expansion of high risk areas in North
America.

Methodology/Principal Findings: We forecast the future (2050) distributions in North America of Triatoma gerstaeckeri and
T. sanguisuga, two of the most common triatomine species and important vectors of Trypanosoma cruzi in the southern
United States. Our aim was to analyze how climate change might affect the future shift of Chagas disease in North America
using a maximum entropy algorithm to predict changes in suitable habitat based on vector occurrence points and
predictive environmental variables. Projections based on three different general circulation models (CCCMA, CSIRO, and
HADCM3) and two IPCC scenarios (A2 and B2) were analyzed. Twenty models were developed for each case and evaluated
via cross-validation. The final model averages result from all twenty of these models. All models had AUC .0.90, which
indicates that the models are robust. Our results predict a potential northern shift in the distribution of T. gerstaeckeri and a
northern and southern distributional shift of T. sanguisuga from its current range due to climate change.

Conclusions/Significance: The results of this study provide baseline information for monitoring the northward shift of
potential risk from Chagas disease in the face of climate change.
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Introduction

Climate change has been implicated in shifts of the geographic

distribution of many species[1], enabling some taxa to increase

their distributions into northern latitudes [1,2]. Thus, changes in

climate can potentially alter the spatial range of vector-borne

diseases through shifts in geographical distributions of their vectors

[3,4,5]. Despite some positive developments such as better access

to clean drinking water, lower exposure to insect vectors, and

higher-quality housing, the projected changes in climate over the

next decades may exacerbate infectious disease incidence even in

developed regions such as North America [6]. Habitat changes,

alterations in water storage and irrigation habits, pollution,

development of insecticide and drug resistance, globalization,

tourism and travel are additional factors that may help to

aggravate this threat [4].

The southern United States is highly vulnerable to outbreaks of

vector-borne diseases due to many factors, including poor housing

conditions, suboptimal drainage, lack of electricity in some areas,

the presence of feral dogs, and human migration [7,8,9].

Moreover, that some southern states, such as Texas, share a

legacy of neglected tropical diseases (NTDs [9]) with Mexico,

increases the urgency of the development and deployment of

active surveillance programs necessary for optimal management
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and control of vector-borne diseases including Chagas disease

[7,9] and leishmaniasis [5].

Chagas disease is a zoonosis caused by Trypanosoma cruzi, a

flagellated protozoan parasite. Trypanosoma cruzi is transferred from

mammalian reservoirs (e.g., Neotoma woodrats) to humans through

a triatomine vector [7]. These vectors are insects from the family

Reduviidae, sub-family Triatominae [7,10]. Trypanosoma cruzi is

most characteristically transmitted by infected feces of triatomines

entering the human bloodstream. However, it can also be

transmitted through blood transfusion, organ transplants and

ingestion of infected food; congenital parasite transmission has also

been demonstrated [7]. After contamination with the parasite,

Chagas disease develops from an acute phase (period during which

the parasites can be found easily in the blood) followed by an

asymptomatic period of varying length; this stage is called the

indeterminate phase. During the indeterminate phase, the

parasites disappear from the blood. A chronic phase can be

followed after 5 to 40 years, and ,30% of infected people develop

the disease [11,12].

Chagas disease kills approximately 45,000 people annually [13]

and affects 10 million people in several countries of Latin America

[14]. In the United States around 300,000 individuals could be

infected with T. cruzi, causing a considerable disease burden [15].

Several factors might influence the geographical distribution of

Trypanosoma cruzi vectors and reservoirs (e.g., historical presence,

the existence of barriers and dispersal capabilities), but anthropo-

genic factors play a fundamental role in the spread of the disease

(e.g., through habitat changes, globalization, and travel [4]). The

geographical distribution of Chagas disease has increased beyond

regions of endemic occurrence during the last half-century and is

now considered a worldwide problem [10].

Species distribution models (SDMs) based on machine-learning

algorithms and Geographic Information Systems (GIS) platforms

have been used to predict areas of potential distribution of

Trypanosoma cruzi vectors [7,16,17,18,19]. These analyses typically

show that climatic factors significantly influence the potential

geographic distributions of vector (and reservoir) species. Addi-

tionally, temperature may have a particularly strong influence on

the behavior of triatomine species [20,21]. For instance, temper-

atures exceeding 30uC combined with low humidity,cause insects

toincrease their feeding rate to avoid dehydration. In addition, in

domestic life cycles, when indoor temperatures increase, the

insects may develop shorter life cycles and higher population

densities [20]. High temperatures can also speed up the

development of T. cruzi in vectors [22].

In this paper, we forecast the future (2050) distribution in North

America of Triatoma gerstaeckeri and T. sanguisuga, two of the most

commonly found triatomine species and important vectors in the

southern United States [7]. Triatoma gerstaeckeri is one of the most

widely distributed Triatoma species in Texas [7], occurring mainly

in the southern areas of the state. It is also found in New Mexico

Author Summary

Chagas disease kills thousands of people annually.
Triatomine insects (family Reduviidae, sub-family Triatomi-
nae), can be potential vectors of the parasite (Trypanosoma
cruzi) that causes the disease. There are often no
symptoms until cardiac and digestive system dysfunction
(possibly including heart failure) after 10 to 30 years of
infection. Climate change can shift the distribution of
triatomine insects, favoring the spread of the disease to
non-original areas. We used distributional information on
the most commonly found triatomine species and the
most important vectors of Trypanosoma cruzi in South
Texas and North Mexico (T. gerstaeckeri and T. sanguisuga),
and explanatory climatic variables to forecast the potential
distribution of the insects in the year 2050. We used two
different scenarios of climate change and three different
general circulation models. Our results showed that the
triatomine species studied will likely shift their distribution
northwards in the future. There is thus a need to monitor
areas that are not currently endemic for Chagas disease
but may potentially be affected in the future due to
climate change.

Table 1. Bioclimatic variables used to model present and
future distribution of Triatoma gerstaeckeri and T. sanguisuga.

Variable Explanation

BIO1 Annual Mean Temperature

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))

BIO3 Isothermality (P2/P7) (* 100)

BIO4 Temperature Seasonality (standard deviation *100)

BIO5 Max Temperature of Warmest Month

BIO6 Min Temperature of Coldest Month

BIO7 Temperature Annual Range (P5–P6)

BIO12 Annual Precipitation

BIO13 Precipitation of Wettest Month

BIO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality (Coefficient of Variation)

BIO16 Precipitation of Wettest Quarter

BIO17 Precipitation of Driest Quarter

BIO18 Precipitation of Warmest Quarter

BIO19 Precipitation of Coldest Quarter

Temperature is measured in uC. Precipitation is measured in mm.
doi:10.1371/journal.pntd.0002818.t001

Table 2. Area Under the Curve (AUC) values after MaxEnt.

Mean St. Dev Maximum Minimum

Triatoma gerstaeckeri Training 0.9857 0.0015 0.9880 0.9826

Test 0.9738 0.0279 0.9970 0.8935

T. sanguisuga Training 0.9680 0.0026 0.9748 0.9648

Test 0.9323 0.0982 1.00 0.6912

doi:10.1371/journal.pntd.0002818.t002
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and in northeast Mexico [7]. Triatoma gerstaeckeri is more frequently

found in economically poorly-developed areas; though it is

naturally found in sylvan environments, it is able to disperse to

human dwellings [23]. Triatoma sanguisuga can be found in several

environments similar to T. gerstaeckeri, including domestic sur-

roundings [24]. Triatoma sanguisuga has been found in several states

across United States including Alabama, Arizona, Florida,

Georgia, Kansas, Kentucky, Louisiana, Maryland, Mississippi,

Missouri, New Jersey, New Mexico, North Carolina, Ohio,

Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas,

and Virginia [24]. The species has also been found near the

Canadian border in Illinois and Indiana [20]. We used geographic

information (longitude/latitude distributional data) (Tables S1 and

S2) and explanatory climatic variables (temperature, precipitation,

etc., Table 1) to produce Species Distribution Models (SDMs)

using a maximum entropy algorithm. Current SDMs were

projected to 2050 using three different Global General Circulation

models (the Canadian Centre for Climate Modelling and Analysis

(CCCMA), the Commonwealth Scientific and Industrial Research

Organization (CSIRO) and the Hadley Centre for Climate

Change (HADCM3). We used two scenarios A2A and B2A from

the International Panel on Climate Change [1]. Our aim was to

analyze how climate change might affect the future spread of

Chagas disease in North America.

Materials and Methods

Geographic data
For modeling purposes, geographic data (i.e., longitude and

latitude) were gathered from data bases from museum collections,

voluntary collectors, and through field work by members of our

team in South Texas. For the original field work reported here,

insects were collected either from public lands or donated by the

owners of private lands. As a pilot study, field work was conducted

in one sylvatic area, ‘‘La Sal del Rey’’, Texas (26u 319 N and 98u
039 W), on 8 July 2011. We did not collect insects in domestic

areas, we only included the La Sal del Rey locality in the model

construction. To collect the insects, we used suspended dark

ultraviolet light traps with a white background sheet and baited

with carbon dioxide from dry ice. All geographic localities for both

species are reported in Supplemental files (Tables S1 and S2).

Following the methodology of Sarkar et al. [7], only post-1980

records with an estimated error of ,1.0 km were used; these

choices ensured compatibility between the resolution of the

occurrence data and the spatial and temporal resolution of the

environmental layers.

Study area
The study area includes the continental portions of Mexico and

the United States and was delimited in the south by the 14u559S

line of latitude and to the north by the 49u 389N line of latitude,

continued by the lines 266u 979E boundary and 2124u 719W. It

was divided into 14 520 497 cells with an average area of 1.03 km2

(SD = 0.27). This ensured the enclosure of all points used in the

analysis.

Model building and evaluation
Present and projected future potential distributions for the

target species were computed using presence records for the

species (longitude/latitude) and with climatic parameters as

exploratory variables, using a maximum entropy algorithm

incorporated in the Maxent software package [11,25]. Maxent

predicts probability values (thresholds) from 0 (least suitable) to 1

(most suitable) of habitat suitability over the study area [11,25].

We used Maxent Version 3.3.3k (http://www.cs.princeton.edu/

,schapire/maxent/) with the default modeling parameters

(convergence threshold = 105, maximum iterations = 500, regu-

larization value b= auto) [26]. Climatic variables were selected

from the 19 WorldClim variables [27] available at WorldClim

database. Following Sarkar et al. [7], four climatic variables were

eliminated from the analysis since these variables have presumed

artifactual discontinuities for Texas (mean temperatures of the

wettest quarter, driest quarter, warmest quarter, and coldest

quarter; Table 1). These climatic variables have a resolution of

approximately 161 km2 (more accurately, 30 arc-seconds).

Twenty models were developed and evaluated via cross-validation

per species. The final model presented is the average of the

replicates. Model results were processed and visualized using

ArcGIS 10.

For the future climate projections we used three GCMs: the

Canadian Centre for Climate Modelling and Analysis (CCCMA),

the Commonwealth Scientific and Industrial Research Organiza-

tion (CSIRO) and the Hadley Centre for Climate Change

(HADCM3). We used two scenarios of climate change, A2A and

B2A, from the International Panel on Climate Change (IPCC

2007). Both scenarios assume a more heterogeneous world and are

oriented toward regionalization. The A2A scenario assumes an

increase in population, economic development, regionally oriented

and per capita economic growth and technological change that is

more fragmented than the scenario B2A. The focus of this

scenario is more economic. On the other hand, the B2A scenario

describes a world in which the emphasis is on local solutions to

economic, social and environmental sustainability. It assumes a

constant increase of population, but at a rate lower than A2A and

intermediate levels of economic development as well. This

scenario is oriented towards environmental protection and social

equity.

Model evaluation
We calculated the Area Under the Curve (AUC) of Receiver

Operating Characteristic plots (ROC); [28] to evaluate the models

by cross-validation of the 20 replicates using the training and test

data as described above. Receiver Operating Characteristic is a

threshold–independent measure that evaluates the sensitivity

(probability that the model produces a positive result in a positive

locality) versus the specificity (probability that the model produces

a negative result in a negative locality) of a model when presented

with new data. A ROC plot is obtained by plotting the sensitivity

on the y–axis versus one minus specificity for all available decision

thresholds on the x–axis. The theoretically perfect result is AUC

= 1, whereas a test performing no better than random yields AUC

Figure 1. Present (A) and future (2050; B–G) potential distribution for Triatoma gerstaeckeri. All models predict a shift in the distribution of
this species towards northern and eastern regions of Mexico and USA. Black color = high suitable habitat vs. white color = no suitable habitat for the
species. General circulation models and climatic scenarios: B = CCCMA-A2A; C = CCCMA-B2A; D = CSIRO-A2A; E = CSIRO-B2A; F = HADCM3_A2A;
G = HADCM3_B2A. Variable with most contribution on the species distribution was Annual Mean Temperature (H), which as per the original data
(www.worldclim.org) was multiplied by 10.
doi:10.1371/journal.pntd.0002818.g001
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= 0.5. The AUC was calculated internally by Maxent. The final

AUC is the average AUC for all maps.

Shifts in suitable habitat in the future
The averaged habitat suitability spatial distributions were

converted into binary maps for further analysis using two

thresholds: a ‘‘minimum training presence threshold’’ and a 0.5

habitat suitability threshold. A ‘‘minimum training presence

threshold’’ is a threshold in which at least one known presence

for the target species was found; therefore it guarantees that all

presences are predicted as suitable [29]. Shifts on suitable habitat

were calculated in km2. Percentage of change in suitable habitat

comparing present and future projections was calculated using the

formula ((future gain - future loss)*100)/present area.

Results

A total of 84 unique geo-referenced localities, i.e., one locality

per cell, were used to develop models of present and future suitable

habitat for Triatoma gerstaeckeri and 24 for T. sanguisuga (Tables S1

and S2). Table 2 shows AUC values. For T. gertaeckeri the averages

AUC were 0.9857 (SD = 0.0015) and 0.9738 (SD = 0.0279) for

training and testing data, respectively; for T. sanguisuga the

corresponding numbers were 0.9680 (SD = 0.0026) and 0.9323

(SD = 0.0982). Figures 1 and 2 show models of present and future

distributions for both species.

Models of future distribution for the suitable habitat of T.

gerstaeckeri show a shift to northern areas in USA, with projected

suitable habitat in Michigan and in New York (Fig 1B-E).

However, distributional shifts northward showed marked differ-

ences in habitat suitability between different climate change

models and scenarios. For example, CCCMA-A2A and CCCMA-

B2A models showed wide regions of unsuitable habitat between

extant distributions and future northward shifts (Fig 1B–C).

Conversely, CSIRO-A2A and CSIRO-ABA models showed

contiguous suitable habitat between extant distribution and future

northward shifts (Fig 1D–E). No shifts were observed between

extant and future distributions with HADCM3_A2A and

HADCM3_B2A models (Fig 1F–G)

Increases in future suitable habitat can be also observed for T.

sanguisuga through the northeast and northwest of the USA. In all

models, north-east shifts showed contiguous habitat suitability.

This was not the case for future northwest shifts, where regions of

unsuitable habitat were observed between extant and future shifts,

except for the CCCMA-A2A model (Fig 2B). In just one model,

CCCMA-A2A, the suitable habitat for this vector extended

to Florida (Fig 2B). For this species, a shift of suitable habitat

to South Texas (Lower Rio Grande Valley) and North Mexico in

the State of Tamaulipas is observed using the HADCM3

model for both A2A and B2A (Fig. 2F–G) scenarios of the

IPCC, while the CCCMA and CSIRO models (Fig. 2B–E)

showing lower suitability habitat compared with the model of

present distribution for this region (South Texas-northern Mexico)

(Fig. 2A)

For both triatomine species, the variable that contributed the

most to the distribution of the species was annual mean

temperature (Figs. 1-H and 2-H). The minimum training presence

threshold value for T. gerstaeckeri was 0.017 and for T. sanguisuga

0.068. For T. gerstaeckeri, the 0.5 threshold predicted loss on

suitable habitat in 2050 compared with the minimum presence

threshold for climatic change scenarios, A2A and B2A, and the

three general circulation models (CCCMA, CSIRO, and

HADCM3) (Table 3). For T. sanguisuga, both thresholds predicted

an expansion of the suitable habitat by 2050 (Table 3).

Discussion

For both species, Triatoma gerstaeckeri and T. sanguisuga, our

SDMs predicted that there may be range shifts as result of climate

change. Species distribution models for T. gerstaeckeri [30] and

other triatomine species of North America [31] have been

developed previously to this paper, but these models were

constructed with a coarser spatial resolution (e.g. .1 km2). The

influence of climatic change has been previously addressed by

other authors with a consideration of three triatomine species (T.

lecticularia, T. protacta, and T. sanguisuga) [30]. However, our analysis

is the first attempt to model future distribution of suitable habitat

for Triatoma gersteckeri and T. sanguisuga performed with the

knowledge that all specimens were professionally identified and

all locations for the species were explicitly reviewed for accuracy in

their geography and method of recording (GPS coordinates with

.1m error) and with a finer spatial resolution (1 km2). In addition,

the cross validation and the low standard deviations in the

model evaluations show no sampling biases attributed to the

Figure 2. Present (A) and future (2050; B–G) potential distribution for Triatoma sanguisuga. All models predict a shift in the distribution of
this species towards northern and eastern regions of Mexico and USA. Black color = high suitable habitat vs. white color = no suitable habitat for the
species. General circulation models and climatic scenarios: B = CCCMA-A2A; C = CCCMA-B2A; D = CSIRO-A2A; E = CSIRO-B2A; F = HADCM3_A2A;
G = HADCM3_B2A. Variable with most contribution on the species distribution was Annual Mean Temperature (H), which as per the original data
(www.worldclim.org) was multiplied by 10.
doi:10.1371/journal.pntd.0002818.g002

Table 3. Percentage of change in suitable habitat for Triotoma gerstaeckeri and T. sanguisuga comparing present and future (year
2050) projections.

Minimum presence threshold Species Present km2 Scenario A2 Scenario B2

CCCMA CSIRO HADLEY CCCMA CSIRO HADLEY

Triatoma gerstaeckeri 1903784 63.21 110.89 7.18 87.43 70.58 117.90

Triatoma sanguisuga 2628902 91.18 56.30 61.17 88.64 52.27 40.72

0.5 threshold

Triatoma gerstaeckeri 185879 294.52 234.37 268.36 255.55 245.91 264.05

Triatoma sanguisuga 369908 45.63 113.85 49.49 120.82 72.84 23.85

doi:10.1371/journal.pntd.0002818.t003
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heterogeneity in the source of data and insect collection protocols.

That is, models were neither strengthened nor weakened by

the inclusion or exclusion of localities chosen based on this

information.

Our results support [32] the conclusion that an increase in

temperature is correlated with a potential increase of Chagas

disease risk, defined as shifts in suitable habitat of T. gerstaeckeri and

T. sanguisuga in the United States. Future distribution models

showed marked differences for both triatomine species with

important consequences for predicting Chagas disease risk.

Overall, future distributions for T. gerstaeckeri showed wide

discontinuous regions of suitable habitat between extant distribu-

tions and north-east shifts in the US. Thus, future north-east shifts

of T. gerstaeckeri will depend heavily on natural abilities of this

triatomine to disperse across wide regions of unsuitable habitat or

to be transported by humans, except for CSIRO-A2A model

showing more contiguous suitable habitat (Fig 1D). Two models,

HADCM3_A2A, and HADCM3_B2A, did not predict northward

shifts of this triatomine to Michigan and New York (Fig 1F–G).

Predicted north-east shifts of T. sanguisuga suggest contiguous

suitable habitat, facilitating potential dispersal of this species to

Michigan and New York (Fig 2A–G). Thus, T. sanguisuga is the

target species most likely to be a threat of spreading Chagas

disease in the north-eastern US, although this species is not

considered an efficient vector for transmitting the parasite to

humans [33]. Conversely, a different Chagas disease risk resulted

for future shifts in northwest US. For both triatomine species,

north-west shifts included wide areas of discontinuous suitable

habitat between extant and future distributions (excluding T.

sanguisuga in the CCCMA-A2A model). Thus, future shifts

necessarily require high dispersal abilities for both triatomine

species to represent a Chagas disease risk in north-west US.

Other similar studies have identified important future shifts in

north-east United States for other vector-borne diseases such as

leishmaniasis [5]. Future distributional shifts of vector species

can help to forecast expected number of human individuals

potentially exposed to infectious diseases under climate change

scenarios.

In addition to climate, several other factors not considered in

this analysis could influence the distribution of the insects both

under present circumstances and future ones. These factors can be

biological (i.e., species interactions: competition, parasitism and

trophic interactions), historical (e.g., barriers and speciation

process), geographic (capabilities of dispersion, accessible regions

for dispersal, evolutionary capacity of species’ populations to adapt

to new conditions), and/or anthropogenic[34,35]. However,

climatic variables (abiotic factors) are frequently used to estimate

species’ distributions [36,37] since climate can limit distributions

directly by affecting growth or survival (e.g., lower and upper

lethal temperatures), and indirectly via interacting species (e.g.,

food sources, pathogens, competitors, or predators). Additionally,

mechanism-based analysis have shown that temperature might

have a strong influence on the behavior of triatomine species

[20,21], increasing their feeding rate when temperature increases

and humidity is low, or by developing shorter life cycles and higher

population densities [20]. High temperatures can also speed up the

development of T. cruzi in vectors [22]. Therefore, as seen in our

results, changes in temperature and precipitation based on the

different climate change scenarios and general circulatory models

can positively influence the spread of triatomine species to non-

original distribution in North America.

Any study that attempts to evaluate the risk for Chagas disease

should focus on the ecology and biogeography of triatomine

vectors and reservoir species (e.g., woodrats), as well as the

incidence of the parasite that causes the disease, Trypanosoma cruzi

[7]. There is currently research to develop a vaccine for Chagas

disease [9], but this is not available yet and drug treatments have

limited efficacy. Chagas disease is controlled by using insecticides

and improvements in housing, but such publicly organized

programs do not exist in the United States, partly due to lack of

information regarding human cases, vector-parasite incidence, and

reservoirs of the disease. Studies that can provide baseline data for

addressing these critical concerns should combine field work,

molecular analysis (e.g., examining blood meals of triatomines)

and ecological modeling techniques to assess the potential for

Chagas disease at a fine-geographic scale (e.g., areas at most risk

for Chagas disease; see [38]) are encouraged. Findings from that

work can be used to advise health program managers in their

efforts to control or prevent transmission of Chagas disease

effectively and provide a cost-effective method of predicting

locations of high transmission risk of this disease, particularly in

light of the economic burden that Chagas disease might represent

(similar or higher than other diseases such as rotavirus, cervical

cancer, or Lyme disease [39]).

Concluding remarks
Although we acknowledge several important shortcomings

discussed below, our study emphasizes one issue that has not

been previously considered: the importance of climate change in

the transmission of T. cruzi.

The transmission of T. cruzi includes several vectors and hosts in

domestic, peri-domestic, and sylvatic cycles. Trypanosoma. cruzi has

three infective forms capable of infecting its host, and currently 6

DTUs (discrete typing units) are recognized in the taxon. These

DTUs establish with mammalian hosts peculiar interactions in

distinct time-space scales. Thus, the transmission of T. cruzi is a

complex system for its non-linearity, unpredictability and also for

being multivariable.

Ideally, the potential distribution of most hosts should be

included in the modeling exercises. We know relatively little about

which mammal species are confirmed hosts of T. cruzi. To include

simply a large list of mammals into the modeling approach without

the certainty of being confirmed hosts of this parasite will add

confusion into our understanding of this crucial biotic interaction.

More studies are needed to produce a comprehensive list of

confirmed hosts for T. cruzi as well as time-space scales for the

operative interactions of hosts, vectors, and parasites. Novel

modeling techniques developed to provide a predictive list of

potential hosts for other emerging diseases, such as leishmaniasis

[40], can be applied for T. cruzi.

Landscape and ecotypic scenarios under climate change are also

needed to refine distribution shifts of species at finer spatial scales.

This information should be associated with data on the salient

features of landscape diversity, roles of extant members of regional

mammalian faunas, local cultural, social and economic diversity,

as well as the land use practices. This information will provide a

more comprehensive understanding of the complexity in the

transmission of T. cruzi.
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