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Abstract

Motivation: When gene duplication occurs, one of the copies may become free of selective pres-

sure and evolve at an accelerated pace. This has important consequences on the prediction of

orthology relationships, since two orthologous genes separated by divergence after duplication

may differ in both sequence and function. In this work, we make the distinction between the

primary orthologs, which have not been affected by accelerated mutation rates on their evolution-

ary path, and the secondary orthologs, which have. Similarity-based prediction methods will tend

to miss secondary orthologs, whereas phylogeny-based methods cannot separate primary and

secondary orthologs. However, both types of orthology have applications in important areas such

as gene function prediction and phylogenetic reconstruction, motivating the need for methods that

can distinguish the two types.

Results: We formalize the notion of divergence after duplication and provide a theoretical basis for the

inference of primary and secondary orthologs. We then put these ideas to practice with the Hybrid

Prediction of Paralogs and Orthologs (HyPPO) framework, which combines ideas from both similarity

and phylogeny approaches. We apply our method to simulated and empirical datasets and show that

we achieve superior accuracy in predicting primary orthologs, secondary orthologs and paralogs.

Availability and implementation: HyPPO is a modular framework with a core developed in Python

and is provided with a variety of Cþþmodules. The source code is available at https://github.com/

manuellafond/HyPPO.

Contact: mlafond2@uOttawa.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During the course of evolution, speciation and duplication create

pairs of homologous genes, which can be classified into two cate-

gories. Two genes are orthologs if they descend from an ancestral

gene that has undergone speciation and paralogs if they result from

duplication. Distinguishing orthologs from paralogs is of consider-

able importance in biology, owing to their functional and evolu-

tionary implications (Gabaldón and Koonin, 2013; Koonin, 2005).

Notably, the well-known ‘orthologs conjecture’ states that ortho-

logs tend to perform similar functions, in contrast with paralogs,

which tend to diverge in their functional role. The reasoning

underlying this conjecture is that when a gene creates a copy in

the same genome, then this genome has two genes that are able to

perform the same function. Hence, one of these copies may

become free of selective pressure, resulting in a higher rate of

mutations and facilitating a possible change in functionality. We

refer the reader to (Altenhoff et al., 2012; Chen and Zhang, 2012;

Nehrt et al., 2011; Studer and Robinson-Rechavi, 2009; Thomas

et al., 2012) for some recent developments on this conjecture.

The two traditional methods to predict orthology relations are

similarity- and phylogeny-based (see Altenhoff and Dessimoz, 2012;

Kristensen et al., 2011 for a survey). Similarity-based methods aim to

partition the set of genes into ‘groups’ of orthologs under the assump-

tion that genes that share similar sequences are orthologous. The pre-

cise notion of a group depends on the particular method used, since in

some cases, these groups include multiple genes from the same species

(e.g. recent paralogs). For instance in OrthoMCL (Li et al., 2003),

Markov clustering is used to identify groups of orthologs and close

paralogs. A similar idea is implemented in Proteinortho using spectral

clustering techniques (Lechner et al., 2011). The OMA software is

somewhat more stringent and aims to find cliques of pairwise ortholo-

gous genes (Roth et al., 2008). This was extended in later versions

with the addition of the GETHOGS algorithm (Altenhoff et al., 2013;

Train et al., 2017). The program is able to potentially find all
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orthologous gene pairs by grouping genes into hierarchical ortholo-

gous groups (HOGs), which are the orthologs that belong to a set of

species within a given taxonomic range. Some other similarity-based

grouping methods and databases include COG (Tatusov et al., 2003),

EggNOG (Powell et al., 2012), InParanoid (O’Brien et al., 2004) and

OrthoFinder (Emms and Kelly, 2015). The OMG approach (Zheng

et al., 2011) identifies sets of pairwise orthogonal genes from a hom-

ology graph inferred from synteny.

On the other hand, phylogeny-based methods do not attempt in

the first instance to group genes together but rather aim to identify

orthologs by inferring the lowest common ancestor (lca) relation-

ships between genes directly. This can be done by inferring a gene

tree and identifying its speciation and duplication events using

reconciliation with a species tree (Stolzer et al., 2012; Ullah et al.,

2015). This approach is however sensitive to errors in the gene tree

and the species tree. Methods of this type include notably LOFT

(Van der Heijden et al., 2007) and COCO-CL (Jothi et al., 2006).

Recently, a number of methods exploit a fundamental property of

orthology graphs, in which vertices are genes and edges depict

orthology: a graph G is a valid orthology graph if and only if it is

P4-free (Dondi et al., 2017a; Dondi et al., 2017b; Hernandez-

Rosales et al., 2012; Hellmuth et al., 2013; Hellmuth et al., 2015;

Jones et al., 2016; Lafond and El-Mabrouk, 2014; Lafond et al.,

2016), i.e. G has no path on four vertices without a shortcut. The es-

sential reason underlying this characterization is that P4-free graphs

have a special tree representation called a co-tree, which turns out to

be interpretable as a gene tree that depicts all the lca relationships

prescribed by G. These methods usually construct an approximate

putative orthology graph and perform a minimum number of modi-

fications on the graph so that it becomes P4-free.

The output from similarity- and phylogeny-based methods can be

different, as some orthologies may be irrelevant from the perspective

of grouping genes with similar functions, but will be inferred by

phylogenetic methods. Consider the example of Figure 1. The node x

represents an ancestral duplication event in which neofunctionaliza-

tion hypothetically occurred, where one copy (here the left child of x)

retains its original functionality, whereas the other copy (the right

child of x) diverges and starts accumulating mutations at a higher

rate. As a result of this event, the a and b genes remain similar, as no

major divergence event separates the two. However, a and c will have

differentiated significantly, even though the two genes are ortholo-

gous (since their lca is a speciation). Consequently, similarity-based

methods are unlikely to mark a and c as orthologs, as the two genes

do not share sequence similarity. From the point of view of functional

annotation, this is not problematic, since the a, c orthology pair essen-

tially behave as paralogs and may differ in function.

This raises the question as to which type of inference is the most

relevant: should we focus on the groups of similar orthologs, or do we

need all the orthologs? Ideally, both types of orthologies should be

predicted, since similarity groups are useful for function-related appli-

cations (Doyle et al., 2010), while the complete set of pairwise relations

is useful for phylogenetic reconstructions (Hellmuth et al., 2015).

Of course, post-duplication phenomena other than neofunction-

alization as described above can arise. For instance, bifunctionaliza-

tion occurs when both copies preserve the parental function without

diverging, and subfunctionalization occurs when the functions of

the common ancestor are partitioned among the descending paral-

ogs (Zhang, 2003), in which case it is possible for both copies to

undergo a new rate of mutations. Nevertheless, the phenomenon of

a single copy undergoing functional change has been reported to

occur frequently (Cardoso-Moreira et al., 2016; Jordan et al., 2004;

Lynch and Conery, 2000; Woods et al., 2013; Soria et al., 2014), as

duplication models other than neofunctionalization, for instance,

adaptive radiation or modified duplication, also predict this type of

divergence after duplication. We redirect the reader to (Innan and

Kondrashov, 2010; Table 1) for more details.

In this work, we are interested in how the task of predicting

orthology is affected when divergence after duplication does occur.

We propose an orthology prediction framework that makes the dis-

tinction between the primary orthologs, the orthologous gene pairs

that have not been separated by an event of duplication followed by

an increased rate of mutation, and the secondary orthologs, which

consist of the pairs of orthologs that have had at least one such event

along their evolutionary path. For example in Figure 1, {a, b} are pri-

mary orthologs, whereas {a, c} are secondary orthologs. Note that

the relevance of making this distinction was also discussed by

Swenson and El-Mabrouk (2012), where the primary orthologs are

called isoorthologs. Also observe that this categorization is different

from the co-orthology relationship, which is usually defined with

respect to a given node of a gene tree. We formalize this notion of

primary orthology and show that they must form cliques in the

orthology graph, thereby providing a formal justification of the clus-

tering steps often performed by orthology prediction methods.

Our algorithmic framework is a hybrid approach that makes use

of both similarity clustering and phylogenetic reconstruction. More

specifically, we use exact graph partitioning techniques to find the

primary orthologs, construct a species tree from the orthology clus-

ters found and use this species tree to obtain the secondary ortho-

logs. The method also puts to practical use the theory of P4-free

orthology graphs developed recently. The framework, which we call

Hybrid Prediction of Paralogs and Orthologs (HyPPO), is imple-

mented as a fully modular pipeline in which each task can have its

own independent implementation.

We evaluate HyPPO on both simulated and real empirical

datasets. We compare our method with OrthoMCL and OMA-

GETHOGS—to the best of our knowledge, the latter is the only

other program that can distinguish primary and secondary ortho-

logs. We show that HyPPO achieves superior accuracy in the set of

predicted pairwise relations and is better at finding the primary

orthology clusters. Table 1 presents a summary of our results.

a b c

b a c

b a c

Orthology graph

Similarity graph

x

Fig. 1. An example of gene tree for the gene family {a, b, c}, along with the

underlying orthology and similarity graphs. The root of the tree is a speci-

ation, the square is a duplication, and the wiggly edge represents an event of

divergence after duplication. The gene pairs ab and ac are orthologs.

However, a and c will not appear as ‘similar’, as there was a significant diver-

gence event on their evolutionary path

Table 1. Average accuracy, precision, recall and cluster scores,

taken over the set of all simulated gene trees (see the Results sec-

tion for the definitions)

Accuracy Precision Recall Cluster score

HyPPO 0.940 0.911 0.875 0.915

HyPPO þ Species tree 0.949 0.924 0.905 0.915

OMA-GETHOGS 0.877 0.940 0.699 0.831

OrthoMCL 0.812 0.845 0.496 0.690
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2 Materials and methods

In this section, we first introduce the preliminary notions necessary

for the understanding of this paper. We then formalize the notion of

divergence after duplication in gene trees and its consequences on

distinguishing primary and secondary orthologs. We then present

the main algorithmic components of the HyPPO framework. Note

that due to space constraints, most of the proofs are relegated to the

Supplementary Material.

2.1 Preliminary notions
In this paper, every tree T is assumed to be rooted and binary, i.e.

each internal node has two children, and each node v has a unique

parent p(v), with the exception of the root, denoted r(T), which has

no parent. The set of vertices of T is denoted by V(T) and its set of

leaves by L(T). A node u of T is an ancestor of a node v if u is on the

path from v to r(T). Then v is a descendant of u, in which case we

write v�u. If v 6¼ u, we write v<u. If none of v�u nor u� v holds,

then u and v are incomparable, and we write u � v. The least

common ancestor of a set of leaves X � LðTÞ, denoted lcaTðXÞ, is

the node u of T that is the ancestor of every node in X, and that

is the most distant from the root. For convenience, we may write

lcaTða;bÞ instead of lcaTðfa; bgÞ. For a graph G, a clique is a set of

vertices of G in which each pair shares an edge. A Pk is a path on k

vertices with no chord.

A gene family C is a set of genes related by homology. A gene

tree for C is a tree T in which LðTÞ ¼ C. Likewise, if R is a set of

species, a species tree for R is a tree S satisfying LðSÞ ¼ R. Each gene

g 2 C belongs to a species denoted rðgÞ. If X � C is a set of genes,

then we write rðXÞ ¼ frðgÞ : g 2 Xg.
A DS-tree ðT; ‘Þ is a pair in which T is a gene tree, and ‘ : VðTÞn

LðTÞ ! fD; Sg is a function labeling internal nodes by either D or S,

respectively standing for duplication and speciation. We will often

omit mentioning ‘ explicitly and say that T is a DS-tree with the

understanding that its internal nodes are labeled by ‘. Given a

species tree S, we map each node of T to a node of S with the

lca-mapping s : VðTÞ ! VðSÞ defined as follows: if g 2 LðTÞ,
then sðgÞ ¼ rðgÞ, and otherwise sðgÞ ¼ lcaSðfrðlÞ : l 2 LðTÞ and

l � ggÞ. By a slight abuse of notation, if C � C, we denote

sðCÞ ¼ lcaSðrðCÞÞ. Note that s depends on the species tree S. In case

of ambiguity, we may write s(g, S) or s(C, S) to denote the lca-

mapping with respect to S. An example of lca-mapping is presented

in Figure 3.

We use the definition of Fitch (2000) for orthology and paralogy.

Definition 1. With respect to a DS-tree T, two genes a and b are

orthologs if ‘ðlcaTða; bÞÞ ¼ S, and paralogs if ‘ðlcaTða;bÞÞ ¼ D.

An orthology graph G ¼ ðV;EÞ is a graph in which V is a set of

genes and uv 2 E if and only if u and v are orthologs. An orthology

cluster C is a set of genes that are pairwise orthologous. In particu-

lar, C may contain at most one gene from any given species.

2.2 Orthology and divergence after duplication
As mentioned in the Section 1, duplication may introduce divergence

when one of the child copies is redundant. In this section, our goal is

to investigate the implications of this phenomenon on the structure

of orthology relations. That is, if divergence after duplication

occurs, what are the orthologs that are expected to be recovered

using similarity-based methods? Or using phylogeny-based meth-

ods? We present the tools that we will use to devise methods tailored

for this type of evolution. As we will demonstrate in the Section 3,

the methodology developed here can also be used in case that diver-

gence after duplication does not always occur, or even when if it

does not happen at all.

We formalize divergence after duplication as follows. Let T be a

DS-tree. Suppose that for each D node v of T, v has one child v1 that

evolved at a normal rate and another child v2 that underwent an

accelerated pace of evolutionary changes. We will say that the vv2

edge is a divergent duplication edge. Now, we will assume that if,

for two leaves g1 and g2 of L(T), there is a divergent duplication

edge on the path between g1 and g2, then g1 and g2 will be consid-

ered ‘not similar’. Conversely, we will assume that if there is no such

edge on the path between g1 and g2, then no unexpected differenti-

ation between g1 and g2 will be observed, and thus g1 and g2 will be

considered ‘similar’.

Note that here, we have not defined ‘similarity’ in a quantita-

tive manner. For our purposes, we prefer to leave this notion ab-

stract, and we will assume that divergence after duplication leaves

behind some traces that can be used to detect similarity versus

non-similarity (for instance, one could compare the sequence of a

gene to all its homologs in a given species). This is because our

goal is to evaluate the consequences of divergence in the orthology

inference process, and not necessarily to detect such divergence.

We thus prefer to keep the notion of similarity as general as pos-

sible. We do note however that in the future, further investigation

will be needed to establish concrete methods to recognize

similarity.

We now introduce divergence after duplication (DAD)-trees.

Definition 2. A DAD-tree T for C is a DS-tree for C in which each

D node v has exactly one child v0 such that the edge vv0 is marked as

divergent, and the other edges of T are marked as non-divergent.

Two genes g1; g2 2 LðTÞ are called similar if there is no divergent

edge on the path between g1 and g2 in T. Otherwise, g1 and g2 are

called non-similar.

It then becomes quite easy to characterize similarity graphs,

using the above notion of ‘similarity’.

Proposition 3. Let G be the graph in which VðGÞ ¼ C, and two

genes share an edge if and only if they are similar with respect to a

DAD-tree T. Then each connected component of G is a clique.

Therefore, unlike orthology, this notion of similarity is a transi-

tive relation. Proposition 3 then tells us precisely what we should ex-

pect from similarity graphs when divergence after duplication

always occurs: we should obtain cliques of genes. Moreover, the

genes in these cliques are pairwise orthologous, as two paralogous

genes cannot appear as ‘similar’ under the above definition. Hence,

the primary orthologs resulting from a DAD-tree form the cliques in

the similarity graph. For this reason, we may sometimes call orthol-

ogy clusters the cliques of primary orthologs. This motivates the first

essential step of our orthology prediction framework, which is to

transform the similarity graph into a cluster graph. However, this

will only identify a subset of all orthologies, as there may be inter-

cluster orthologies.

One idea might be to infer orthology between the ‘closest’ inter-

cluster genes. However, this may introduce invalid relations or

inconsistencies. Here, as by Hellmuth et al., (2015) and Lafond

et al. (2016), we take the viewpoint that for a set of relations to be

correct, there must be an evolutionary scenario that could have

given rise to the observed relations. In other words, there should

exist a DS-tree that displays the inferred orthologies, and the speci-

ation nodes on this DS-tree should agree with the species history.
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This notion of agreement with a species tree is defined as in (Jones

et al., 2016; Lafond and El-Mabrouk, 2014).

Definition 4. Let T be a DS-tree and S be a species tree. Moreover,

let v 2 VðTÞnLðTÞ be an S node of T, and let v1 and v2 be its chil-

dren. Then we say that v is S-consistent if sðvÞ 6¼ sðv1Þ and

sðvÞ 6¼ sðv2Þ.

Furthermore, we say that T is S-consistent if each of its S nodes

is S-consistent.

In the context of our work, the tree T is usually unknown, and

only the orthology graph G is known. We use the existence/

non-existence of a tree T corresponding to the relations in G to val-

idate the orthology graph.

Definition 5. An orthology graph G is S-consistent if there exists a

DS-tree T such that the two following conditions hold:

1. ab 2 EðGÞ if and only if a and b are orthologs in T;

2. T is S-consistent.

The property of S-consistency has been investigated in depth in

the recent years and admits a convenient graph-theoretical charac-

terization. First, we need to define a triplet. Let T be a tree, and let

x; y; z 2 LðTÞ be three distinct leaves. We say that T contains the

triplet xyjz if lcaTðx; yÞ < lcaTðx; zÞ ¼ lcaTðy; zÞ.

THEOREM 6. An orthology graph G is S-consistent if and only if

the two following conditions hold (Lafond and El-Mabrouk (2014):

1. G is P4-free, i.e. has no path on four vertices without a chord;

2. for every x; y; z 2 VðGÞ such that rðxÞ; rðyÞ and rðzÞ are

distinct and such that xy; yz 2 EðGÞ but xz 62 EðGÞ, we have

that rðxÞrðzÞjrðyÞ is a triplet of S.

Therefore, S-consistent graphs can be characterized by the ab-

sence of P4’s and a set of forbidden P3’s given by the structure of the

species tree. Given the set of primary orthology clusters, our goal is

to infer the inter-cluster orthologs in a way that the resulting rela-

tions could be generated from a DAD-tree in a S-consistent manner.

2.3 The HyPPO orthology framework
We may now describe the main ingredients of our orthology infer-

ence framework. The flow of the pipeline is illustrated in Figure 2.

Starting only from the DNA or amino acid sequences of a given set

of genes (or proteins), our ultimate goal is to identify the cliques of

primary orthologs, and the orthology relations between these cli-

ques. Recall that this framework is modular, and that an implemen-

tation can be provided for each step individually. We first provide

an outline of the tasks that each step must perform and then proceed

with the algorithmic details of how steps 2–4 were realized in the de-

fault implementation of our framework.

Step 1. We start by building a tentative similarity graph, in which

two genes share an edge if they are ‘similar’. The pairwise similarity

scores between the genes are typically used for this step. For in-

stance, the graph may contain an edge xy iff the BLAST score be-

tween x and y is above a certain threshold. The edges can also be

weighted by this score.

Step 2. As stated in Proposition 3, we expect the above similarity

graph to contain only cliques. In practice, this might of course

not always be the case and so in this step, we partition the graph

into cliques of pairwise orthologous genes, which are assumed to be

primary orthologs. Note that virtually every similarity-based infer-

ence method performs this task, although it should be observed that

our requirement of pairwise orthology is strict, and no in-paralogs

are allowed in the inferred groups.

Step 3. In order to obtain the inter-cluster relations in a S-consist-

ent manner, a species tree S is needed. If known, this step can be

omitted, but otherwise, a species tree can be inferred from the

orthology clusters. Indeed, as we will show, some phylogenetic sig-

nal can be extracted from these clusters.

Note that in Figure 2, step 3 points back to step 2. This is be-

cause the framework allows reinferring the orthology clusters, but

this time with the additional information of the species tree. The

new clusters can then be used to reinfer the species tree, and this pro-

cess can be looped until convergence. Although our framework sup-

ports such a loop, we did not use it in our experimentations and

leave this exploration for future work.

Step 4. In this final step, we assume that the orthology clusters

and the species tree are known, but the orthologous gene pairs con-

taining genes from distinct clusters are missing. Our goal is to re-

cover these inter-cluster relations in a way to ensure S-consistency

while preserving the properties of a DAD-tree. That is, we assume

that in their history, two genes from two distinct clusters are sepa-

rated by a divergent duplication edge, and that the predicted orthol-

ogy relations can be explained by this type of history.

In the rest of this section, we describe how steps 2, 3 and 4 were

implemented in HyPPO.

2.3.1 Prediction of orthology clusters

As partitioning a graph into cliques is a difficult algorithmic prob-

lem, most of the orthology prediction methods that perform cluster-

ing use a heuristic in order to deal with thousands, or even millions,

of genes. In our case, we assume that genes are partitioned into fami-

lies, which do not usually exceed a few hundred genes. In some

Fig. 2. The four essential steps of the HyPPO pipeline. First, a similarity graph is constructed from the gene sequences. This graph is refined into orthology clus-

ters, which are cliques of primary orthologs. These clusters are used to infer a species tree, which is then used to find the secondary orthologs (which we also

call inter-cluster orthologs)
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cases, this makes it possible to use exact algorithms instead of heu-

ristics. In fact, we provide two implementations for gene clustering:

an exact method and a greedy heuristic. The exact method can be

used on gene families with a reasonable number of genes (up to 200)

and the heuristic for the other families.

The exact algorithm solves the cluster editing problem, which

asks for the minimum number of edges to add or delete in a given

graph so that every connected component of the resulting graph is a

clique. We used the BBH graph, in which vertices are genes and

edges are bidirectional best hits (BBH), where two genes x, y form a

BBH if y is the gene of rðyÞ of maximum score with x, and vice-

versa. The cluster editing problem is well-studied, and there are mul-

tiple methods that can find an optimal solution in an acceptable

amount of time, including integer linear programming (ILP) formu-

lations (Böcker et al., 2011; Hartung and Hoos, 2015) and fixed-

parameter algorithms (Böcker et al., 2009). We used the ILP method

(see Böcker et al. 2011 for details), ensuring that genes a and b from

the same species would never belong to the same cluster by making

the cost of adding the ab edge infinite.

The greedy heuristic proceeds in an agglomerative fashion using

the pairwise scores. This can be seen as an adaptation of UPGMA

with the restriction that clusters with a common species can

never be joined. More precisely, at the start, we treat each individual

gene as a cluster. Then, we merge the two clusters C1 and C2 if rðC1

Þ \ rðC2Þ ¼1 and if they maximize maxa2C1 ;b2C2
scoreða;bÞ (i.e. C1

and C2 have the two closest genes among all possible pairs of clus-

ters). The algorithm stops when no more clusters can be merged.

Note that we also tested other join criteria, for instance, joining the

two clusters that minimize the average distance as in UPGMA, but

the above algorithm yielded the best results.

2.3.2 Inference of a species tree from orthology clusters

We now show how orthology clusters may guide the construction

of a species tree. In order to avoid confusion between species

and clusters, we shall denote species with a hat symbol, e.g. bC is a

species. Consider the example provided in Figure 3. Here, the set

of species rðC1Þ appearing in cluster C1 forms a subset of the spe-

cies rðC2Þ from cluster C2. This suggests that C1 was given birth

somewhere during the evolution of the C2 cluster. Moreover, the

duplication that gave rise to C1 should have occurred in a species

that existed at least as far back in time as the lca of rðC1Þ in the

true species tree S. This means that in the true gene tree for

C1 [ C2, the duplication node d must satisfy sðdÞ � sðC1Þ (where

here s is with respect to the true species tree S). We argue that this

suggests that the true species tree S contains the clade f bA; bB; bCg,
meaning that some node u of S has exactly bA; bB and bC as its des-

cendant leaves.

To justify this claim, observe that some species trees may re-

quire losses to explain the clusters, in a way that is analogous to

gene tree and species tree reconciliation (see Doyon et al. 2011 for

more details on this topic). Consider the two species tree S1 and

S2 from Figure 3. If S1 is the true species tree and d is the duplica-

tion node that gave birth to the C1 cluster, then

sðd; S1Þ � sðC1; S1Þ ¼ x, as argued in the previous paragraph. T1 is

an example of an S1-consistent DAD-tree that satisfies this condi-

tion. If S2 is the true species tree, then T1 does not meet this re-

quirement anymore. The tree T2 does satisfy

sðd; S2Þ � sðC1; S2Þ ¼ y0. However, sðC1; S2Þ has bA; bB; bC; bD and bE
as its descendants, but bD and bE do not appear in C1. This can be

explained by a gene loss prior to the ancestor of bD and bE, result-

ing in a loss in the f bD; bEg clade. The tree T1 does not require a

loss to be explained, and therefore its corresponding species tree

is preferred. Observe that any species tree that contains the f bA; bB;bCg clade leads to a loss-less history, suggesting that this clade

should be in the species tree.

Of course, the situation gets more difficult when rðC1Þ is not a

subset of rðC2Þ, or when there are more than two clusters. Below,

we formalize the problem of reconstructing a species tree from for

an arbitrary set of clusters while minimizing losses.

Let C be an orthology cluster. For convenience, we will make no

distinction between C and its set of species rðCÞ, as this has no bear-

ing on the inference procedure. For a species tree S and x 2 VðSÞ, the

clade of x is defined as cladeðxÞ ¼ fl 2 LðSÞ : l is a descendant of xg.
The set of clades of S is cladesðSÞ ¼ fcladeðxÞ : x 2 VðSÞg. For a given

cluster C, let SC be the subtree of S rooted at lcaSðCÞ. The number

of losses of C with respect to S, denoted lSðCÞ, is defined as the

minimum number of clades to remove from cladesðSCÞ so that the

union of the remaining clades is exactly C. Another way to view lSðCÞ
is as follows. Call a non-root node v of SC maximal C-free if

cladeðvÞ \ C ¼1 but cladeðpðvÞÞ \ C 6¼1. Then lSðCÞ is the num-

ber of maximal C-free nodes in SC. As an example, the reader can ver-

ify in Figure 3 that lS2
ðC1Þ ¼ 1 and lS2

ðC2Þ ¼ 0. We may now

formally define our species tree reconstruction problem.

The species tree using clusters (STUC) problem:

Given: a set of orthology clusters C ¼ fC1; . . . ;Ckg.
Find: a species tree S that minimizes

Pk
i¼1 lSðCiÞ.

Denote by OPTðC Þ the minimum number of losses of a species

tree for the STUC instance C . Note that C might not be sufficient

to determine the complete species tree exactly, as in Figure 3 where

any species tree containing the f bA; bB; bCg clade is optimal.

However, the more clusters there are, the more precisely S can be

inferred.

We do not know whether the STUC problem is NP-hard, al-

though we suspect that is it. Nevertheless, we borrow ideas from

(Mirarab et al., 2014) in order to limit the space of possible species

trees to those containing a predefined set of splits. For X � R, a split

{A, B} for X is a partition of X into two non-empty subsets. We say

that S contains the split {A, B} if there is a node v with children v1,

v2 such that A ¼ cladeðv1Þ and B ¼ cladeðv2Þ. Suppose that we are

given a set of allowable splits A ¼ fAi;Bigr
i¼1, where for each i, Ai

and Bi are disjoint subsets of R. Then we may ask for a species tree S

that solves the STUC problem under the condition that every split

Fig. 3. Two orthology clusters C1 and C2, and two putative species trees S1

and S2. The genes are named according to their species, e.g. rða1Þ ¼ bA. Each

internal node u of T1 (respectively, T2) is labeled by its lca-mapping sðu;S1Þ
(resp. sðu;S2Þ). The tree T1 is the DAD-tree that could have given rise to C1

and C2 if S1 was the true species tree, assuming that C1 was born during the

history of the C2 genes. T2 is the DAD-tree for C1 and C2 under the assumption

that S2 is the true species tree. In the case of T2, a loss in the clade fbD ; bE g is

required to explain the birth of the C1 cluster at a time prior to

lcaS2
ðrðC1ÞÞ ¼ y 0
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contained in S appears in A. In the Supplementary Material, we

show that this restricted version can be solved in polynomial time by

dynamic programming, and then we discuss how a reasonable set A

can be constructed.

THEOREM 7. The STUC problem with species trees restricted to

the allowable splits A can be solved in time OðjAj2jC jjRjÞ.

2.3.3 Inference of inter-cluster orthology relations

In this final step, we assume that the orthology clusters C and the

species tree S are known, but the orthologous gene pairs containing

genes from distinct clusters are missing. Our goal is to recover these

inter-cluster relations in a way to ensure S-consistency while preserv-

ing the properties of evolution under divergence after duplication.

Note that unlike the last section, here we do not confound a cluster

C and its set of species rðCÞ.
Consider the orthology clusters C1 and C2 in Figure 3. As we

have argued in the previous section, the ancestral gene of C1 was

born off a duplication node d satisfying sðdÞ � sðC1Þ. One implica-

tion of this is that if rðg2Þ < sðC1Þ, where g2 2 C2, then it is not be

possible for a gene of C1 to be orthologous to g2. As an example,

take the gene a2 2 C2 in Figure 3 and assume that S1 and T1 are the

true species tree and gene tree, respectively. We have rða2Þ < sðC1Þ,
and so a2 is orthologous with no gene of C1. However, this is not

true for d2 2 C2, for example, because d2 is a secondary ortholog

with all of C1. This is because rðd2Þ� sðC1Þ.
In our implementation, when inferring inter-cluster relations be-

tween C1 and C2, we simply make as many pairs of genes ortholo-

gous whilst preserving S-consistency. As earlier, we also require that

if rðg1Þ < sðC2Þ, then g1 is paralogous to all the genes in C2 (and

vice-versa). This results in Algorithm 1. This works as described

above in the case of k¼2 clusters. For larger k, we merge the clus-

ters iteratively in a greedy manner.

More specifically, we first pick the cluster C for which s(C) is the

the lowest in the species tree, breaking ties arbitrarily. We then ask:

what other cluster Cj could have spawned the C cluster? We call Cj

the favorite cluster of C and assume that we are given a function fav

ðC;C Þ that finds the favorite cluster of C among a set of clusters C .

We then merge C with Cj by making all possible orthologies - name-

ly, we make cj 2 Cj orthologous to every gene of C iff rðcjÞ� sðCÞ.
Afterwards, Cj is redefined as Cj [ C, C is emptied and we proceed

with the next cluster. We show that Algorithm 1 preserves S-consist-

ency as desired.

THEOREM 8. The orthology graph obtained from Algorithm 1 is

S-consistent.

In our implementation, we used the following simple fav func-

tion: for each x 2 C, find the gene y 2 CnC of maximum score. Then

x votes for the cluster that contains y. The favorite cluster of C is

then the one with the highest number of votes. Only the members of

the genes initially in C, as given in the input, are allowed to vote.

3 Results

We compare the default implementation of the HyPPO pipeline

with two other orthology prediction methods: OMA-GETHOGS

and OrthoMCL. To our knowledge, OMA-GETHOGS is the

method that is the most similar to ours, as it outputs both the 1-to-1

orthology groups, and the pairwise orthology relations. The groups

can be interpreted as the primary orthologs. As for OrthoMCL, it is

a similarity-based clustering method that focuses on grouping ortho-

logs, and so it is not expected to find all the secondary orthologs.

Nevertheless, we include it for the sake of comparison, as

OrthoMCL is one of the most popular orthology prediction tools.

HyPPO was tested under two settings: one in which the species tree

is unknown, and the other in which the true simulated species tree is

provided. OMA-GETHOGS was provided the true species tree in all

experiments. (The program does not require a species tree as input,

but OMA-GETHOGS produced an error message when not given

one—for reasons that are yet to be determined. Nevertheless, better

results are expected when the true species tree is known.)

We performed our experiments on both simulated and real em-

pirical datasets. In the simulated datasets, the true orthologs and the

primary orthologs are known. This is not true for the real datasets.

As in the study by Altenhoff et al. (2013), we used a set of gold

standard, manually curated, gene trees from the SwissTree database

(Wapinski et al., 2007). These trees are annotated with duplication

and speciation events, and so the underlying orthology/paralogy

relations can be considered as ‘gold standard’ relations. We did not,

however, include the analysis of the primary vs secondary orthologs,

as those are not determined in the real datasets. Note that in both

simulated and real datasets, the genes were already separated into

homologous families. All the programs were executed on the sepa-

rated gene families, thereby avoiding predictions between non-

homologous genes. For HyPPO, the sequences were aligned with

MAFFT (Katoh et al., 2002), and the similarity values for the first

step were obtained from the pairwise identity percentages computed

from these alignments (number of identical base pairs divided by the

length of the longest sequence, not counting gaps).

3.1 Performance metrics
In our experiments, we address two questions: is the set of all pair-

wise relations predicted correct? And, can the method distinguish

the primary orthologs from the secondary orthologs? For the pair-

wise relations, we used precision, recall and accuracy as our per-

formance metrics. The precision Prec and recall Rec values are

calculated from the orthology relations as follows: Prec ¼ TP
TPþFP and

Rec ¼ TP
TPþFN. Here, TP means True Positive (the number of relations

correctly predicted as orthology), FP means False Positive (a paral-

ogy relation incorrectly predicted as orthology) and FN means False

Negative (an orthology relation left undetermined or predicted as

paralogy). As for accuracy, it consists in the total number of rela-

tions predicted correctly (including both orthologs and paralogs)

divided by
n
2

� �
, the total number of relations. (Note that

Algorithm 1 Algorithm to infer inter-cluster orthologs.

1: procedure inferInterClusters(G; S;C ¼ fC1; . . . ;Ckg; fav) G

is the initial orthology graph, S is the species tree, C is the

set of clusters, and fav is a function that finds favorites.

We assume that in G, two vertices share an edge iff they

belong to the same cluster. The output is an orthology

graph obtained from G.

2: while C has at least two non-empty clusters do

3: Let C 2 C such that sðCÞ � sðCiÞ or sðCÞ�sðCiÞ
holds for every Ci 2 C

4: Let Cj ¼ favðC;C Þ.
5: for gj 2 Cj such that rðgjÞ�sðCÞ do

6: Add an edge in G between gj and every

vertex in C.

7: Cj  Cj [ C and C 1
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Ortho-MCL does not predict paralogs, aside from the recent ones.

In our computation of accuracy, we interpreted as paralogy the set

relations not predicted as orthology—otherwise, leaving these rela-

tions as undetermined made the accuracy too low for comparison.)

In the simulated datasets containing divergent duplication edges,

we also evaluated the ability to recover the primary orthologs. The

metric we used is the cluster score defined as follows: let P1 and P2

be two partitions of a given set of elements. Here, P1 would be the

predicted primary orthologs, and P2 the ‘true’ simulated primary

orthologs. Take a graph in which the vertices are P1 [ P2 (i.e. one

vertex for each subset), add an edge X1X2 between each pair

X1 2 P1;X2 2 P2 and weigh this edge by jX1 \X2j. Then the cluster

score between P1 and P2 is the value of a maximum matching in this

graph, divided by the number of genes. Hence the cluster score is 1

iff P1 and P2 are equal. The idea behind this score is that this value

yields the proportion of elements from P1 that must be moved from

one set to another in order to obtain P2 (if the score is c, then a frac-

tion of 1� c elements from P1 need to be moved).

3.2 Simulated datasets
For our simulations, we used SimPhy (Mallo et al., 2016) to gener-

ate a set of species trees along with a set of gene trees evolving with-

in these species trees. As SimPhy incorporates speciation and

duplication events in its simulations, the true sets of orthologs and

paralogs are known. We generated 40 species trees and 400 gene

trees—10 gene families for each species tree. The number of species

in each species tree was chosen uniformly at random between 30

and 50. The gene trees were subject to the events of speciation, du-

plication and losses. We then used the INDELiBLE (Fletcher and

Yang, 2009) module provided with SimPhy to simulate the evolu-

tion of gene sequences on each gene tree. The nucleotide evolution-

ary model was selected at random for each gene family, each

evolving under a general-time reversible (GTR) model with rates

sampled from a six-dimensional Dirichlet distribution. The only in-

put to the programs was the set of extant gene sequences and, de-

pending on the method, the true simulated species tree.

In order to evaluate the impact of the rates of duplications, losses

and substitutions, we used four sets of parameters for the simula-

tions, yielding four datasets named as follows: Standard, Eventful,

Fast and Slow. Standard uses default parameters, Eventful has an

increased rate of duplications and losses, Fast has high mutation

rates and Slow has low mutation rates. For each dataset, 10 species

trees were generated. In both the Standard and Eventful datasets,

the tree-wide substitution rate was set to 0.000005 (the default value

in SimPhy). In the Default dataset, the duplication and loss rates

were set to 0.0000005 each and to 0.000001 in the Eventful dataset.

Higher duplication rates led to trees with too many genes in the trees

(averaging in the thousands, making our analysis too computation-

ally intensive) while lower values yielded gene trees with too few

paralogs. In the Fast dataset, the duplication/loss rates were set as in

the Standard setting, but the tree-wide substitution rate was

increased to 0.00005, In the Slow dataset, this parameter took value

0.0000005. The Fast dataset led to difficulties in alignments, due to

the presence of many substitutions and very large gaps, whereas the

Slow dataset had a small amount of substitutions, resulting in

sequences with fewer differences.

These simulations do not consider the phenomenon of diver-

gence after duplication. That is, the children of D nodes in the gener-

ated gene trees do not differentiate from each other, and both copies

continue to evolve under the same model. Therefore, we also simu-

lated divergent edges by choosing, for every D node in the simulated

gene trees, one child edge arbitrarily and multiplying its length by

some factor ‘. Thus for each gene tree and each ‘ 2 f1; 2; 8;50g, we

used INDELiBLE to generate a set of extant gene sequences

obtained by multiplying the length each divergent edge by ‘. Each

gene family gave rise to four sets of sequences, resulting in a total of

1600 gene families to analyze. In the cases where ‘ > 1, the primary

orthologs can be deduced from the divergent duplication edges.

The average accuracy, precision, recall and cluster scores, taken

over the 1600 simulated gene families, are presented in Table 1.

Figure 4 shows the average accuracy per gene family, for each data-

set and possible value of ‘. HyPPO outperforms the other methods

on every dataset, even when not given a species tree. Moreover, the

accuracy of HyPPO always improves when the true species tree is

known. We observe that the accuracy of OMA tends to decrease as

‘ is increased, whereas for HyPPO and OrthoMCL, the impact of

changing ‘ seems to vary.

Figure 5 shows the average cluster scores per dataset. Note that

the scores for the trees having multiplication factor ‘ ¼ 1 are not

presented, as in these cases the primary orthologs cannot be deter-

mined with certainty. Here again, we see that HyPPO is better at

identifying the primary orthologs. Observe that knowledge of the

species tree is inconsequential here, as the species tree does not im-

pact the gene clustering step in our pipeline. We also observe that

for all methods, the best cluster scores are achieved at ‘ ¼ 50, which

is expected since this creates a greater separation between the pri-

mary and secondary orthologs.

The comparison of precision and recall is shown in Figure 6 for

‘ ¼ 8. The other values of ‘ yielded similar results. One can see that

OMA typically attains better precision values. This is at the cost of a

much lower recall, as HyPPO outperforms the other methods in this

Fig. 4. Accuracy of the methods for each dataset and each branch multiplication factor ‘ 2 f1; 2; 8; 50g. STD stands for Standard and EV for Eventful
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aspect. Therefore, the orthologs predicted by OMA are truly ortho-

logs slightly more often, but the method tends to miss more of the

orthology relations.

3.3 Empirical datasets
We used eight gene trees from the gold standard SwissTree database.

This included the Popeye domain family (POP), the NOX ’ancestral-

type’ subfamily NADPH oxidases (NOX), the V-type ATPase beta

subunit (VATB), the Serine incorporator family (SERC), the

Sulfatase-modifying factor 1 family (SUMF), the HOX cluster genes

family 9-14 (HOX), the Asterix family (ARX) and the Cited family

(CITE). These gene families were chosen because they belong to

Eukaryotes and, according to the curators, are not suspected to have

undergone horizontal gene transfer.

Figure 7 shows the accuracy of each method for each gene tree.

Contrary to the simulated datasets, HyPPO does not outperform

OMA on every single dataset, as it performs poorly on the VATB

and SERC families. Notably, Ortho-MCL attains almost perfect ac-

curacy on the VATB family (0.96), whereas HyPPO is not much

more than half as accurate (0.59). The reason appears to be that

most gene pairs are orthologous (95.7%), since the duplications are

low in this tree. HyPPO infers multiple orthology clusters joined to-

gether by duplications, resulting in many false paralogs (we predict

47% pairs as orthologous), whereas OrthoMCL puts almost all the

genes into one big orthology cluster, making its predictions more

accurate. A similar phenomenon appears to occur with SERC.

Nevertheless, HyPPO achieves similar or superior accuracy on the

other trees, and so it remains competitive. Observe that as in the

simulations, when HyPPO is given the species tree (provided by

SwissTree), the accuracy increases.

As for precision and recall, the four methods attained similar

values. Once again, OMA offers slightly better precision at the cost

of lower recall. The averages over all eight trees are presented in

Table 2.

4 Discussion

Although the results of HyPPO are promising, there is still room for

improvements. Each step of the pipeline could be implemented in a

more sophisticated manner, and the DAD model around which

HyPPO is built could be more realistic. When a duplication node is

not followed by accelerated mutations, there is no special post-

duplication divergent edge, and it could be argued that the orthology

clusters should contain in-paralogs. In the future, we might thus

consider merging the clusters that are share a high enough degree of

similarity. We have also ignored the effects of convergent evolution,

even though it is possible that two independent divergent duplica-

tion events lead to similar genes. If this occurs, one cannot guarantee

that similar genes are orthologs, and that primary orthologs form

cliques.

On the practical side, we assume that the genes are already parti-

tioned into homologous families, which allow the computation of a

multiple sequence alignement and eases the clustering phase. Future

versions of the framework should be able to predict orthologs

and paralogs from whole proteomes, as OrthoMCL and OMA-

GETHOGS do. However, one could also argue that partitioning

genes into homologous families and predicting orthology are two

different tasks. The aforementioned programs perform both simul-

taneously. A better approach might be to use methods dedicated to

homology clustering and then refine the orthology/paralogy rela-

tions within each family using HyPPO.

Also, the reconstruction of a species tree from the clusters is the

main bottleneck of HyPPO in terms of time. To give a rough idea, in

the worst case, some datasets resulted in a set of about 3000 allow-

able splits, which took our algorithm 4–5 h to solve. This motivates

the need to improve the complexity of the dynamic programming

formulation given in this paper. Also, in the near future, we plan to

evaluate the quality of the predicted species tree. Note however that

our current algorithm may take many arbitrary decisions, and we

must refine this process before performing a careful species tree

analysis. Finally, it will be interesting to include a wider range of

orthology prediction software in a future comparative study and

to establish a procedure to analyze primary orthologs on real

Fig. 5. Cluster scores of the methods for each dataset and each branch multiplication factor ‘ 2 f2; 8; 50g

Fig. 6. Precision versus recall values of each method and each dataset for

‘ ¼ 8. Each method has four corresponding points, one for each dataset, and

are ordered as follows: Standard—Eventful—Fast - Slow. For example the se-

cond point of each path for the analysis of the Eventful dataset
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datasets—for instance, by predicting these orthologs by comparing

the ratio of branch lengths following a duplication.

5 Conclusion

In this work, we have introduced the notion of orthology in the pres-

ence of divergence after duplication and have addressed the problem

that some orthologs may behave as paralogs from a functional point

of view. We therefore propose to make a distinction between the

orthologs that have or have not been separated by a divergent duplica-

tion event. As we have shown, the HyPPO framework is able to dis-

tinguish paralogs, primary orthologs and secondary orthologs with

better accuracy than its competitors. This is true even if divergence

after duplication does not always occur. Our work is far from over

though, as HyPPO offers many opportunities to improve these results

even further. Notably, it remains to evaluate alternative algorithms

for each step in our pipeline, and to identify which ones yield the best

results. Finally, our work raises some interesting questions from a the-

oretical standpoint. The complexity of inferring a species tree from

gene clusters is left open, and it remains to evaluate how many clus-

ters are necessary to reconstruct a high quality species tree.
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Böcker,S. et al. (2011) Exact algorithms for cluster editing: evaluation and

experiments. Algorithmica, 60, 316–334.

Cardoso-Moreira,M. et al. (2016) Evidence for the fixation of gene duplica-

tions by positive selection in drosophila. Genome Res., 26, 787–798.

Chen,X. and Zhang,J. (2012) The ortholog conjecture is untestable by the cur-

rent gene ontology but is supported by rna sequencing data. PLoS Comput.

Biol., 8, e1002784.

Dondi,R. et al. (2017a) Approximating the correction of weighted and

unweighted orthology and paralogy relations. Algorithms Mol. Biol., 12, 4.

Dondi,R. et al. (2017b) Orthology correction for gene tree reconstruction:

Theoretical and experimental results. Proc. Comput. Sci., 108, 1115–1124.

Doyle,M.A. et al. (2010) Drug target prediction and prioritization:

using orthology to predict essentiality in parasite genomes. BMC Genomics,

11, 222.

Doyon,J.-P. et al. (2011) Models, algorithms and programs for phylogeny rec-

onciliation. Brief. Bioinformatics, 12, 392.

Emms,D.M. and Kelly,S. (2015) Orthofinder: solving fundamental biases in

whole genome comparisons dramatically improves orthogroup inference ac-

curacy. Genome Biol., 16, 157.

Fitch,W.M. (2000) Homology: a personal view on some of the problems.

Trends Genet., 16, 227–231.

Fletcher,W. and Yang,Z. (2009) Indelible: a flexible simulator of biological se-

quence evolution. Mol. Biol. Evol., 26, 1879–1888.

Gabaldón,T. and Koonin,E.V. (2013) Functional and evolutionary implica-

tions of gene orthology. Nat. Rev. Genet., 14, 360–366.

Hartung,S. and Hoos,H.H. (2015). Programming by optimisation meets para-

meterised algorithmics: a case study for cluster editing. In International

Conference on Learning and Intelligent Optimization, pp. 43–58. Springer.

Hellmuth,M. et al. (2013) Orthology relations, symbolic ultrametrics, and

cographs. J. Math. Biol., 66, 399–420.

Hellmuth,M. et al. (2015) Phylogenomics with paralogs. Proc. Natl. Acad.

Sci.USA, 112, 2058–2063.

Hernandez-Rosales,M. et al. (2012) From event-labeled gene trees to species

trees. BMC Bioinformatics, 13, S6.

Innan,H. and Kondrashov,F. (2010) The evolution of gene duplications: classi-

fying and distinguishing between models. Nat. Rev. Genet., 11, 97.

Jones,M. et al. (2016) On the consistency of orthology relationships. BMC

Bioinformatics, 17, 416.

Jordan,I.K. et al. (2004) Duplicated genes evolve slower than singletons des-

pite the initial rate increase. BMC Evol. Biol., 4, 1–22.

Jothi,R. et al. (2006) Coco-cl: hierarchical clustering of homology relations

based on evolutionary correlations. Bioinformatics, 22, 779–788.

Katoh,K. et al. (2002) Mafft: a novel method for rapid multiple sequence

alignment based on fast fourier transform. Nucleic Acids Res., 30,

3059–3066.

Koonin,E.V. (2005) Orthologs, paralogs, and evolutionary genomics. Ann.

Rev. Genet., 39, 309–338.

Kristensen,D.M. et al. (2011) Computational methods for gene orthology in-

ference. Brief. Bioinformatics, 12, 379–391.

Lafond,M. et al. (2016) The link between orthology relations and gene trees: a

correction perspective. Algorithms Mol. Biol., 11, 4.

Lafond,M. and El-Mabrouk,N. (2014) Orthology and paralogy constraints:

satisfiability and consistency. BMC Genomics, 15, S12.

Fig. 7. Accuracy of the methods for each tree in our empirical dataset. The last column shows the average accuracy of the methods

Table 2. Average accuracy, precision and recall over the set of eight

trees from SwissTree

Accuracy Precision Recall

HyPPO 0.860 0.941 0.785

HyPPO þ Species Tree 0.905 0.945 0.881

OMA-GETHOGS 0.837 0.950 0.711

OrthoMCL 0.800 0.859 0.680

i374 M.Lafond et al.



Lechner,M. et al. (2011) Proteinortho: detection of (co-) orthologs in

large-scale analysis. BMC Bioinformatics, 12, 124.

Li,L. et al. (2003) Orthomcl: identification of ortholog groups for eukaryotic

genomes. Genome Res., 13, 2178–2189.

Lynch,M. and Conery,J.S. (2000) The evolutionary fate and consequences of

duplicate genes. Science, 290, 1151–1155.

Mallo,D. et al. (2016) Simphy: phylogenomic simulation of gene, locus, and

species trees. Syst. Biol., 65, 334–344.

Mirarab,S. et al. (2014) Astral: genome-scale coalescent-based species tree

estimation. Bioinformatics, 30, i541–i548.

Nehrt,N.L. et al. (2011) Testing the ortholog conjecture with comparative

functional genomic data from mammals. PLoS Comput. Biol., 7, e1002073.

O’Brien,K.P. et al. (2004) Inparanoid: a comprehensive database of eukaryotic

orthologs. Nucleic Acids Res., 33, D476.

Powell,S. et al. (2012) eggnog v3. 0: orthologous groups covering 1133 organ-

isms at 41 different taxonomic ranges. Nucleic Acids Res., 40, D284.

Roth,A.C. et al. (2008) Algorithm of oma for large-scale orthology inference.

BMC Bioinformatics, 9, 518.

Soria,P.S. et al. (2014) Functional divergence for every paralog. Mol. Biol.

Evol., 31, 984–992.

Stolzer,M. et al. (2012) Inferring duplications, losses, transfers and incomplete

lineage sorting with nonbinary species trees. Bioinformatics, 28, i409–i415.

Studer,R.A. and Robinson-Rechavi,M. (2009) How confident can we be that

orthologs are similar, but paralogs differ? Trends Genet., 25, 210–216.

Swenson,K.M. and El-Mabrouk,N. (2012) Gene trees and species trees: irre-

concilable differences. BMC Bioinformatics, 13, S15.

Tatusov,R.L. et al. (2003) The cog database: an updated version includes

eukaryotes. BMC Bioinformatics, 4, 41.

Thomas,P.D. et al. (2012) On the use of gene ontology annotations to assess

functional similarity among orthologs and paralogs: a short report. PLoS

Comput. Biol., 8, e1002386.

Train,C.-M. et al. (2017) Orthologous matrix (oma) algorithm 2.0: more ro-

bust to asymmetric evolutionary rates and more scalable hierarchical orthol-

ogous group inference. Bioinformatics, 33, i75–i82.

Ullah,I. et al. (2015) Integrating sequence evolution into probabilistic orthol-

ogy analysis. Syst. Biol., 64, 969–982.

Van der Heijden,R.T. et al. (2007) Orthology prediction at scalable resolution

by phylogenetic tree analysis. BMC Bioinformatics, 8, 83.

Wapinski,I. et al. (2007) Automatic genome-wide reconstruction of phylogen-

etic gene trees. Bioinformatics, 23, i549–i558.

Woods,S. et al. (2013) Duplication and retention biases of essential and

non-essential genes revealed by systematic knockdown analyses. PLoS

Genet., 9, e1003330.

Zhang,J. (2003) Evolution by gene duplication: an update. Trends Ecol. Evol.,

18, 292–298.

Zheng,C. et al. (2011) Omg! orthologs in multiple genomes–competing

graph-theoretical formulations. In International Workshop on Algorithms

in Bioinformatics. Springer, pp. 364–375.

Accurate prediction of orthologs in the presence of divergence after duplication i375


