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The major aim of radiation therapy is to provide curative or palliative treatment to
cancerous malignancies while minimizing damage to healthy tissues. Charged particle
radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability
to achieve highly conformal dose distributions around the tumor volume. For these
treatment modalities, uncertainties in the localization of patient anatomy due to inter-
and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse
range of mitigation strategies have been developed and clinically implemented in various
disease sites to monitor and correct for patient motion, but much work remains. This
review provides an overview of current clinical practices for inter and intra-fractional
motion management in charged particle therapy, including motion control, current
imaging and motion tracking modalities, as well as treatment planning and delivery
techniques. We also cover progress to date on emerging technologies including
particle-based radiography imaging, novel treatment delivery methods such as tumor
tracking and FLASH, and artificial intelligence and discuss their potential impact towards
improving or increasing the challenge of motion mitigation in charged particle therapy.

Keywords: motion management, 4DRT, pencil beam scanning (PBS), particle therapy, proton therapy
INTRODUCTION

The use of charged particles for radiation therapy (RT) represents a valuable treatment paradigm
because their unique dose deposition properties, including maximum dose deposition at the Bragg
peak and rapid distal falloff, allow for dose to be conformed tightly around the tumor while sparing
normal tissues (1–6). However, these advantageous properties present a challenge in the presence of
motion, because the same steep dose gradients which provide the benefit of lower integral dose in
surrounding tissues are vulnerable to even small displacements in the patient geometry. In addition,
because their range is dependent on tissues along the beam path, charged particles traveling through
heterogenous tissues (such as in lung cancer) also suffer from dose deviations due to motion-
induced range uncertainties (7).
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Proton therapy is by far the most widely implemented form
of charged particle therapy, with forty-one proton centers
operating in the US and ninety-nine centers operating
worldwide (8). Initial proton therapy systems were based on
passive scattering, in which a scattered beam is passed through a
range-modulating wheel [to determine the width of the spread-
out Bragg peak (SOBP)] and a custom collimator and
compensator (to laterally shape the beam and match the distal
edge of the SOBP to that of the patient target). However, this
scattering method is limited in its ability to conform dose to the
proximal boundary of the target (9). Over time, a pencil beam
scanning (PBS) method was developed which exhibited
improved dose conformation around the target in comparison
to passive scattering methods; dosimetric benefits of proton PBS
have been verified across a diverse range of disease sites,
including brain, esophageal, oropharyngeal, breast, and liver
cancers (3, 6, 10–14). Proton PBS is performed by scanning a
monoenergetic pencil beam over a grid of positions and
repeating for multiple beam energies to create a SOBP with a
varying span along the lateral direction. Treatments using PBS
delivery utilize intensity modulation of the pencil beam spots and
are optimized using one of two planning techniques. Single field
uniform dose (SFUD) planning refers to a planning technique in
which pencil beam weights are optimized independently for each
field according to the planning objectives, resulting in treatment
plans where each field contributes similar tumor coverage. Multi-
field optimization (MFO) is a planning technique in which the
pencil beam weights of every field are optimized simultaneously.
Of these two planning methods, SFUD is more robust against
motion because it only requires the consistency of anatomy
during the treatment delivery of its own field. MFO requires
the integrity of anatomy during the entire treatment session from
all treatment fields; therefore, the potential impact of motion is
more significant. PBS-based proton therapy is often referred to as
intensity-modulated proton therapy (IMPT), which is created by
simultaneously optimizing the beam intensity and energy for
each spot/delivery unit. The addition to range uncertainties and
sensitivity due to steep dose gradients at the distal end of the
target, proton PBS presents an additional challenge for precise
dose delivery under conditions of motion due to interplay effects
between the scanning beam and intra-fractional motion in the
patient anatomy (5, 15). The interplay of the proton and ion
pencil beam scanning and organ motion has been shown to
impact the target dose coverage in multiple disease sites (16–19).
Recent lung cancer simulation studies found that interplay effects
combined with small spot sizes (~3mm) resulted in a loss of 2-
year local control of up to 18.5% ± 25.2% compared with the
static cases for single fraction delivery; for multi-fractionation
treatment significant loss of local control was observed only for
large motion amplitudes (>30mm) (16). For esophageal cancer, a
recent planning study found PBS proton therapy plans using
posterior beams to be more robust against underdosage (V95%
CTV <97%) in comparison with IMRT, but interplay effects had
an increasingly negative impact on the dose distribution as the
number of simulated fractions was decreased below 10 (17). As
the beam delivery time structures and intensities from various
Frontiers in Oncology | www.frontiersin.org 2
charged particle accelerators such as synchrotron or cyclotron
are different (20), they can result in different interplay
effects (21).

As of 2021, there currently exist twelve operating carbon-ion
treatment centers with five more under construction (8, 22).
Similar to protons, carbon and other heavier ions such as helium
exhibit highly localized dose deposition at the Bragg peak. An
additional advantage of treating with carbon ions (over photons
and protons) is that they exhibit steeper lateral penumbra and
higher linear energy transfer (LET), leading to increased relative
biological effectiveness (RBE) (23). Like protons, carbon ions can
be delivered either via passive scattering or pencil beam
scanning; however, largely due to cost the majority of centers
perform only fixed beam delivery, with only two capable of a full
range of treatment angles through rotating gantry (24). A
challenge of treating with carbon and other heavy ions is that
the increased sharpness of the lateral penumbra in combination
with the Bragg peak results in heightened dose uncertainties in
the presence of motion. In addition, because carbon ions exhibit
a distal tail of dose beyond the Bragg peak due to nuclear
fragmentation, the potential for dose uncertainties distal to the
target volume are of greater concern (24). Additionally, for
carbon and heavier ions, RBE is nonlinear with respect to the
absorbed dose level, particle energy, and atomic number (25),
thus while it is typical to consider a constant RBE for proton
radiotherapy (26), when considering the carbon ion interplay
effects, the changing RBE along the beam path should be taken
into consideration.

Motion management refers to techniques in RT which seek to
mitigate the effects of inter- and intra-fractional motion. Causes
of inter-fractional motion include weight loss, tumor shrinkage,
and organ deformations such as those caused by changes in the
volume of the rectum and bladder (27, 28). Inter-fractional
motion occurs between fractions, typically separated by hours
or days, and thus if correctly identified can be corrected with an
established adaptive planning process. Intra-fractional motion is
the result of respiration and to a lesser extent cardiac motion and
peristalsis. Because intra-fractional motion occurs during
treatment on a timescale of minutes to seconds, it represents a
greater challenge. Imaging and treatment planning modalities
which take into consideration time in addition to the 3-
dimensional space of the patient are commonly referred to as
4D (e.g., 4DCT and 4DRT).

Motion management can generally be categorized into one of
two strategies: 1) prevent or reduce anatomical motion, or 2)
adapt treatment to motion during planning or delivery. The
success of these strategies depends on access to imaging
techniques which allow motion and/or dose deposition to be
faithfully monitored and quantified. While much work has been
done to address challenges in motion related to charged particle
therapy, currently there is limited standardization of treatment
protocols, with many centers developing their own unique
standard of procedures and best practices (29). For example, in
the case of proton therapy for thoracic cases, the Particle Therapy
Co-Operative Group (PTCOG) Thoracic and Lymphoma
Subcommittee has begun the work to define a set of guidelines
March 2022 | Volume 12 | Article 806153
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for best practices, but stress that it is still necessary for
institutions to determine their own protocols, due to variations
in technology across institutions as well as lack of
commercialization for many solutions (9). Recommendations
for control at other treatment sites are scarce.

This review seeks to provide an overview of current clinical
practices for intra- and inter-fractional motion management in
charged particle therapy as well as progress to date on emerging
technologies that have potential to be used for or impact motion
management. The remainder of this review is organized as
follows: Section 2 provides an overview of the current state of
the art in motion management implemented in clinical charged
particle therapy, including motion reduction techniques at the
major anatomical sites, imaging techniques for monitoring intra-
and inter-fractional motion, as well as treatment planning,
delivery, and plan evaluation mitigation strategies; Section 3
discusses promising ongoing research and emerging technologies
in charged particle therapy which will either directly benefit or
necessitate further innovations in motion management.
CLINICAL IMPLEMENTATION: THE
CURRENT STATE OF THE ART

Motion Control Techniques at Simulation
and Delivery
Motion control techniques consist of methods which seek to
reduce patient motion and ensure consistent geometrical
orientation during and between fractions.

Thorax and Upper Abdomen
In the thorax and upper abdomen, respiration is the most
significant cause of intra-fractional anatomical variations. In
thoracic tumors, motion control methods for proton therapy
are recommended when a patient’s target motion amplitude
exceeds a pre-determined threshold (established per institution
based on target location and treatment parameters) (9). Breath-
hold is a standard technique for minimizing respiration-based
movement during treatment delivery to the thorax and
abdomen. Breath-hold involves patients temporarily
suspending respiration at specific, reproducible lung volumes.
Breath-hold techniques can be classified as voluntary, in which
the patient is in control of their breathing (30), or active, in which
the patient’s airflow is temporarily blocked by a valve (31). A
widely used commercial voluntary breath-hold system is the
SDX Respiratory Gating System (DYN’R Medical Systems,
Toulouse, France). The SDX system monitors the inspiration
and expiration volume of a patient in real-time and provides
visual display of the breathing-trace through patient-worn
goggles. This allows the patient to perform consistently
reproducible breath-holds at a specific volume for a specific
duration of time. Typically, for thoracic cases, deep inspiration
breath-hold (DIBH) is preferrable (holding in a deep breath at an
individually determined volume threshold) because this
increases the distance between the tumor and organs at risk.
DIBH proton treatments to Hodgkin lymphoma and left breast
Frontiers in Oncology | www.frontiersin.org 3
cancer have shown significant reduction in lung and heart dose
compared with the photon plans (32–34). High frequency
percussive ventilation (HFPV) is an example of an active
breath hold technique. In HFPV, the patient receives high
frequency pressured pulses of air, causing suppression of
respiratory motion and allowing for longer breath-holds. A
drawback of HFPV is the requirement of anesthesia support,
which may not be always available in radiation oncology. A
recent study has also reported on the use of an enhanced deep
inspiration breath hold (eDIBH), which involves passive,
patient-controlled breath holds aided by preoxygenation,
hyperventilation, and patient coaching to increase breath-hold
times. eDIBH was found to reduce variability in lung volume and
position in comparison with HFPV (35). Not all patients are
candidates for breath-hold techniques. Patients with impaired
respiratory function typical of advanced lung cancer may be
physically unable to tolerate breath holds, while younger patients
may be unable to follow instructions for voluntary breath-hold.
Another limitation of breath-hold based motion management is
it cannot account for inter-fractional anatomical changes, such as
tumor shrinkage and lung density changes which can result in
changes to the water equivalent path length (36).

Abdominal compression (AC) belts are a relatively inexpensive
and easy-to-implement option for minimizing intra-fractional
motion from respiration. For charged particle therapy, thin belts
made of homogenous materials are preferred to ensure that the
belt has a minimal and reproducible impact on the charged
particle range (37). For PBS proton therapy, the use of AC has
been shown to be valuable for reducing moderate to large motion
during treatment of liver tumors (37, 38). Additionally, AC in
combination with layered rescanning and respiratory gating has
been clinically adopted for motion mitigation in carbon ion
therapy (39). A limitation of compression belts is that the
degree of compression applied is limited by individual patient
tolerances, with some patients are unable to tolerate abdominal
compression during treatment. The compression belt typically has
fiducial markers and pressure meter to ensure consistent
positioning of the belt during treatment. Nonetheless, it is
recommended to avoid having particle beam passing through
the device to avoid potential water equivalent thickness (WET)
variations in the setup (38).

Lower Abdomen and Pelvic Regions
For the lower abdomen and pelvic regions, positioning
techniques focus on reducing motion caused by volume
changes in the rectum and bladder. Consistency of the position
of bladder and rectal volume across and during treatment can be
improved through hydration and voiding schedules (40, 41).
Rectal balloons are used to immobilize the prostate and maintain
the rectum at a consistent volume during simulation and
treatment, reducing uncertainties from variable rectal filling
and gas and allowing for smaller target margins and greater
sparing of the rectum during external beam radiotherapy (42).
For charged particle therapy, rectal balloons are inflated with
water instead of air to maintain a consistent water equivalent
pathlength (41); this removal of the rectal air cavity likely reduces
the dosimetric benefit to the anterior rectal wall which is seen
March 2022 | Volume 12 | Article 806153
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with the air-based inflation used in photon therapy (42, 43).
Recently, a rectal biodegradable hydrogel that is implanted
between the prostate gland and the rectum was implemented
in the clinic. For proton radiotherapy, the use of hydrogel
provided improved rectal sparing and decreased late
gastrointestinal toxicity compared with the use of a rectal
balloon, suggesting that motion due to moderate rectal filling
does not require intervention if adequate separation (8-13mm in
this study) between prostate and rectum is achieved (44).

Imaging at Simulation and Delivery
Imaging technologies play a pivotal role in motion management
for radiation therapy, allowing for the contouring of structures
for treatment planning and providing a means to assess and
monitor organ motion, either directly by imaging the motion of
organs or via indirectly by imaging markers placed in tissue, e.g.,
fiducial markers. Computed tomography (CT) images are the
gold-standard modality for treatment planning; however, CT
images acquired during free breathing can suffer from motion
artifacts, leading to uncertainty in the true delineation of
boundaries between tumor, normal tissues, and organs at risk
(45). For this reason, 4D computed tomography (4DCT) images,
in which a series of CT images are acquired during different
phases of the breathing cycle, have become a standard in
treatment planning for thoracic and abdominal regions. One
limitation of 4DCT is that irregularities in patient breathing
during image acquisition leads to inherent uncertainties in how
faithfully the final 4D images represent the patient’s anatomy
during respiration. Patients can also exhibit variations in their
breathing cycle during day-to-day treatment; the intra-fractional
motion patterns from respiration can themselves be subject to
inter-fractional variations. For proton PBS therapy, weekly
offline CT assessment are recommended for patients expected
to experience inter-fractional changes (9). Because not all
commercial treatment planning software supports multi-image
planning, information from the 4DCT can be utilized for
treatment planning by transforming the series of images into a
single “representative” view of the patient, such as average
intensity projection (AIP), maximum intensity projection
(MIP) and mid-ventilation (MidV) (46).

Simulation for proton therapy treatment planning often
involves fusion with tissue function-related positron emission
tomography (PET) and magnetic resonance imaging (MRI) for
target delineation. 4DPET provides information on tumor
motion in addition to the metabolic information about the
tumor structure and has been shown to be a valuable tool for
target delineation in lung cancers (47). 4DMRI provides high
contrast of soft tissues and has shown promise for motion-robust
target delineation in both abdominal and lung cancers (48–50).
A recent study further used 4DMRI and 3DCT to generate
synthetic 4DCT for 4D dose calculation and interplay effect
evaluation in pancreatic cancer (51).

Conventional cone-beam CT (CBCT) was first implemented
for proton therapy for patient setup in 2012 (52). Daily CBCT
adds valuable 3D anatomy information and soft tissue contrast in
patient setup alignment compared to 2D kV imaging. It can also
Frontiers in Oncology | www.frontiersin.org 4
be used to identify inter-fractional tumor regression, weight loss,
organ filling or atelectasis. Efforts have been made to enable
CBCT for online adaptive planning for proton therapy (53–56),
but it suffers from reduced image quality in comparison to CT
due to restricted field of view, lower soft-tissue contrast, and
inequivalent relation between CBCT voxel values and Hounsfield
units. CT-on-Rails has also been investigated as an alternative to
daily CBCT imaging for daily adaptive radiotherapy due to its
ability to provide higher quality images at “near-treatment-
position”, though widespread adaption of CT-on-Rails is
limited due to increased cost and larger footprint (57).
Interested readers can find an in-depth discussion on
radiological image guidance in particle therapy in the recent
review by Landry and Hua (58).

Internal tumor motion during delivery can be monitored
through implanted markers, such as electromagnetic sensors
(59–61) and fiducial markers (62), with externally placed
detectors. A benefit of EM systems or on-board imagers is that
they do not require line-of-site and can thus also capture signal
from internally placed markers. Tang et al. have used
electromagnetic transponders to assess the intra-fractional
prostate motion during PBS SFUD delivery (63). A major
limitation of electromagnetic systems is that they are sensitive
to distortions of the generated electromagnetic signal; a recent
study found EM tracking systems unable to provide clinically
useful measurements during proton therapy in the presence of
gantry motion or when too close to a CT scanner (61). In
addition, caution should be taken in the selection of the
implanted markers for proton therapy to avoid image artifacts
and dose disturbance (64).

Fluoroscopy with implanted markers can produce 2D images
with high spatial and temporal resolution. Researchers at
Hokkaido University in Japan have pioneered the clinical
implementation of a gated proton PBS treatment system that
utilizes fluoroscopy for real time tumor tracking through an
internally placed gold fiducial marker (65–67). Aside from
requiring an invasive placement, a potential risk is that the
fiducial marker could migrate from its original placement
during the course of treatment (68).

Another strategy for assessing tumor motion is to measure
the patient’s surface motion, which can then be used as a
surrogate to infer the position and movement of the internal
target (69). Surface imaging uses cameras/projectors mounted in
the treatment room to capture pseudo-random light patterns
projected on the patient surface to derive the patient surface
change. It is non-ionizing and can monitor a large surface
constantly from a distance; thus in addition correcting for
inter-fractional motion during daily positioning, surface
imaging is an attractive option for monitoring intra-fractional
motion (70). A reported challenge of surface imaging in a clinical
proton setting is that the layout of the therapy room can lead to
restricted field of view or occlusion of the surface cameras at
treatment gantry angle (71). Clinical applications of surface
imaging for daily positioning of breast cancer proton therapy
patients have been reported and found to achieve similar
dosimetric accuracy to daily CBCT (70–72); however it was
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noted that surface imaging alone can be insufficient to detect
internal shifts of breast implants (71). Further surface imaging
studies have noted limited correspondence between measured
surface motion and internal target motion (73–75). Nevertheless,
a recent technological assessment showed that optical tracking
has better potential than electromagnetic tracking of embedded
fiducial markers for use in PBS proton therapy (61).

Treatment Planning and Delivery
Many different strategies exist to account for patient motion
during the treatment planning process or delivery itself.
Mitigation during treatment planning and delivery is
characterized by an approach of working with or around
existing patient motion. These strategies rely on additional
information input from imaging, either during simulation (in
the case of treatment planning) or in real time during
treatment delivery.

Motion-Encompassing Margins
One of the most widely used planning methods to account for
expected patient motion in charged particle therapy is to
delineate an additional margin around the tumor target,
commonly denoted the internal target volume (ITV), which is
defined as the overlay of boundaries for all (or a select subset of)
CTV positions collected during 4DCT (76). While the use of
ITVs alone is not considered adequate for motion management
in PBS proton therapy due to range uncertainties and interplay
effects, ITVs are recommended for use in combination with other
motion mitigation strategies to account for any residual motion
uncertainties (77). For example, for patients being treated with
breath-hold, several breath-hold CT scans are performed during
simulation to create an ITV that encompasses the variability of
the breath-hold position for a particular patient. ITV structures
can also be used in conjunction with compression belts under
conditions of free breathing to account for residual motion. ITVs
can be constructed using different methods based on 4DCT
images, including Max/Min inhale-based, MIP-based, and
MidV-based. In addition, the concept of using density
overrides within and around the ITV has been shown in recent
simulation studies to improve dose coverage when the target
moves through regions of highly variable density (78, 79). Once
an appropriate ITV has been determined, additional population-
based margins reflecting setup and beam-specific range
uncertainties are applied to generate a planning target for each
beam (80).

Repainting
A unique challenge for particle therapy in the face of intra-
fractional motion is the additional dose uncertainty caused by
interplay effects between patient anatomical motion and the
delivery sequence of the scanning beam. A mitigation method
is to use repainting, which refers to a treatment delivery method
applied for PBS by rescanning over the same spot positions
multiple times (using an appropriately lower fraction of monitor
units defined by the total number of repetitions) (81, 82). Studies
on repainting for PBS proton therapy have found that this
method improves dose homogeneity; however, interplay effects
Frontiers in Oncology | www.frontiersin.org 5
were found to be more pronounced for small tumor sizes, motion
greater than 10mm, and small spot sizes (83, 84). Another recent
study demonstrated that interplay effects due to motion could be
further reduced using a novel repainting strategy in which the
repaintings for a given energy layer (and by extension the
repaintings for each spot position) are spread out evenly over
the entire breathing cycle (85). This was accomplished by
designing a flexible delivery schedule in which the number of
times a given spot is repainted as a function of its assigned MU
and the time it takes for the scanned beam to reach the given spot
from its previous position, such that: 1) each spot is repainted as
many times as possible, 2) repaintings for each spot are spread
evenly over the breathing cycle, and 3) the total time to deliver a
given energy layer is constricted to the length of the breathing
cycle. One challenge for the repainting strategy is that it may
encounter the minimum MU requirements because it requires
the delivery of a smaller amount of dose multiple times.
Sometimes it may only be possible to repaint the distal layers
because they usually receive more dose.

Beam Angle Selection and Spot Size
In treatment planning, beam angle selection can help to
minimize dose deviations by selecting beam orientations that
are robust to motion. Proton range is sensitive to tissue
variations along the beam path. Movement can cause tissue
variation uncertainties that lead to dose deposition
uncertainties. Thus, in selecting beam angles for proton
therapy, it is advantageous to avoid large tissue density
gradients in the beam path and to try to keep the beam angle
parallel to the dominant direction of tumor motion (9). It is also
important to avoid beam orientations such that the distal fall-off
region of the proton range proximally borders an OAR, as range
uncertainties could lead to unintended overdosing OAR or
underdosing the CTV. Specific protocols for the selection of
beam angles have been found to vary across facilities, but
nevertheless follow these guidelines discussed above (76).

The pencil beam spot size, defined as the full width at half-
maximum of the beam spot in air, has been identified as an
additional beam parameter that impacts dosimetric deviations in
PBS proton therapy (16, 63, 76). Specifically, larger spot sizes
(~13 mm) have been shown to reduce the interplay effect
compared with smaller spot sizes (~3mm) (16).

Respiratory Gating
Respiratory gating is a dynamic treatment delivery method used
to ensure precise dose deposition in the presence of respiratory
motion. In this technique, the treatment beam is turned on only
when the patient is in a specific phase of their respiratory cycle.
Gating methods can be performed in conjunction with breath-
hold techniques or during free breathing; clinical use for charged
particles has been described for several disease sites, including
the lung, breast, and liver (86–89). Implementation of gating
relies on the ability to accurately monitor patient motion during
treatment delivery and on the ability for patients to perform
reproducible breath holds or reproducible free-breathing cycles.
Motion monitoring for charged particle gating is typically
accomplished via external surface imaging (90). For PBS
March 2022 | Volume 12 | Article 806153
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proton therapy, a gating approach to treatment delivery in
conjunction with real-time fluoroscopy imaging has been
implemented and shown via simulation studies to be capable
of significantly reducing mean liver dose while providing better
target coverage in comparison with a free-breathing approach
(66, 91). A limitation of beam gating for PBS-based therapies is
that they can still suffer from interplay effects due to residual
motion during the selected gating window; recent simulation
studies suggest this can be mitigated through the use of laterally
and longitudinally overlapping pencil beams or phase-controlled
rescanning (92, 93). Another reported challenge to the clinical
use of gating for PBS is balancing the gating window width with
the duty cycle (ratio of beam-on time to overall treatment time).
While a narrower window width provides improved motion
mitigation, it can also lead to unacceptably long treatment times.
A recent simulation study for PBS-based gated therapy of liver
tumors found duty cycle dropped by as low as 10% when a small
window width (3mm) was used for a gating-only approach (94).
Gating in combination with repainting has been shown to be
more efficient in motion mitigation than repainting alone (94,
95). Another challenge of implementing gating for proton
therapy is that proton systems are subject to latency in beam
control, meaning once a gating signal is detected from the
patient, the treatment machine requires a delay to turn-on or
turn-off the beam. This delay can sometimes be too long (150-
200 ms in a 3-4 s breathing cycle) to perform reliable cycle-to-
cycle beam delivery. For this reason, respiratory gating in particle
therapy is usually performed in conjunction with breath-hold
techniques, which provide a longer treatment window such that
the beam’s gate-lag time is insignificant.

4D and Robust Optimization
In radiation therapy, robust optimization (RO) can be used
during the treatment planning process to design plans which
are robust to the uncertainties associated with treatment delivery,
including setup errors and patient motion. Traditionally for
photons, such uncertainties in treatment planning have been
accounted for by using an expanded margin around the CTV,
called the planning target volume (PTV). In proton therapy, the
additional presence of range uncertainties and, in the case of
PBS, uncertainties from the interplay effect render the use of
traditional margin-based solutions insufficient.

3DRO refers to a class of robust optimization techniques
which account for patient setup and range uncertainties during
treatment plan optimization. Implementations of 3DRO include
probabilistic treatment planning, scenario-wise mini-max RO,
and voxel-wise worst-case RO. In probabilistic optimization,
setup and range uncertainty scenarios are randomly sampled
from an assumed probability distribution to produce a large set
of potential dose distributions (96, 97). This method is
computationally expensive and requires prior knowledge of the
probability distributions of the treatment conditions. Scenario-
wise mini-max and voxel-wise worst-case RO evade these
challenges by performing plan optimization based on either a
smaller set of worst-case scenarios or a single worst-possible dose
distribution (98–100). 4DRO can be considered an extension of
3DRO in that it also considers intra-fractional variations caused
Frontiers in Oncology | www.frontiersin.org 6
by organ motion such as respiration. Recent simulation studies
have shown promising benefits of 4DRO for scanning proton
therapy, including improved target coverage and improved
robustness against interplay effects (100–102). In a study by Ge
et al. comparing the performance between 3DRO and an in-
house 4DRO system on a set of 10 lung cancer patients treated
with IMPT, the 4DRO system was found to outperform both
3DRO and traditional PTV-based optimization methods in
terms of dose homogeneity, CTV target coverage, and dose
robustness considering setup uncertainties and patient motion
(100). Another recent study published by Mastella et al. looked at
the incorporation of gating with 4DRO for 20 lung cancer
patients found that this 4DRO optimized gating approach
resulted in significant reduction to lung dose while
maintaining target coverage (102).

Studies have been performed for carbon ion 4D dose
reconstruction and optimization. Reconstruction of the
delivered 4D RBE dose needs to consider the tumor motion
and temporal structure of the beam delivery (103). Eley et al.
(104) worked on a 4D optimization approach for scanned beam
tracking to reduce the dose to organs near the moving target.
Graeff et al. (105) proposed a 4D optimization scheme that
divides the target into sectors and to each of the sector with a
delivers dedicated raster field corresponding to individual
motion phases. Expanded carbon ion 4D-IMPT including the
robust non-linear RBE-weighted optimization was also included
(106, 107). For clinical application, it is essential to consider both
the 4D treatment planning systems and 4D treatment control
systems (108). 4DRO is currently commercially available
through the RayStation treatment planning system (RaySearch
Laboratories, Stockholm, Sweden) (109).

Plan Evaluation
Due to the interplay effect in proton PBS delivery, special
considerations should be taken in evaluating PBS proton plans
to ensure that the intended dose distribution can be delivered
faithfully under conditions of anatomical motion. The guidelines
provided by the Particle Therapy Co-Operative Group (PTCOG)
Thoracic and Lymphoma Subcommittee recommended the use
of a 4D phantom to evaluate motion interplay effects and the
effectiveness of planned motion mitigation techniques, though at
this time such a protocol is admittedly out of reach for most
centers due to the expense of 4D phantoms (9), which have only
recently become commercially available. In the same publication,
the importance of continuous plan evaluation (through regular
repeat 4DCT scans) to assess the need for plan adaption is also
emphasized. Meijers et al. reported on a 4D dose reconstruction
method which utilizes weekly repeated 4DCT scans in
combination with treatment log files and breathing pattern
records from each fraction (110, 111). This dose reconstruction
method can be used to calculate dose accumulation on a per-
fraction basis, allowing the clinical team to monitor motion-
based dose degradation over the course of treatment and to help
to trigger adaption when necessary. Recent studies have also
reported on the implementation of tools designed for evaluation
of PBS proton plans for moving targets. For example, Riberio
et al. reported on the development and application of a plan
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evaluation tool, 4D robust evaluation method (4DREM), which
considers both setup errors as well as respiratory motion and the
interplay effects (112), while Korevaar et al. developed a scenario-
based plan evaluation method which allows for comparison
between photon and proton plans (113). In another hand, fast
4D dose calculation with GPU-accelerated dose-engines enable
potential clinical use and can be integrated into the optimization
process (114–116). Another consideration for 4D dose
calculation is that the temporal resolution used can impact the
calculated final accumulated dose distribution, a recent
simulation study found that the use of finer temporal
resolutions for 4D dose calculations can help to reduce the
over-estimation of interplay effects for hypo-fractionated
treatments (19).
FUTURE TECHNOLOGIES

Advanced Imaging Techniques
A major directive in motion management is to develop methods
that allow for high quality in vivo observation of internal
anatomic structures during treatment fractions. 4D-CBCT has
been recognized as a promising emerging technology in
identifying intra-fractional motion at the time of treatment and
has been investigated for photon therapy (117, 118). This
technology potentially reduces the motion artifacts associated
with 3D-CBCT and can be used for tumor motion verification
when comparing with the planning 4DCT (119). Currently, there
is a trade-off between image acquisition time and image quality,
making it challenging for fast and reliable adaptive tumor target
delineation and motion analysis with 4D-CBCT. Research
investigations of image processing methods to improve 4D-
CBCT image quality with reduced scan times are underway
(120–123), and the commercial development of a dual-imaging
proton treatment system with 4D-CBCT capability has been
announced by Hitachi, with approval of the Japan ’s
Pharmaceuticals and Medical Device Agency (PMDA) granted
in 2020 (124).

Other imaging approaches provide promising alternatives for
in vivo monitoring of anatomical changes and assessment of
range uncertainties. One such developing imaging method for
charged particle therapy is ion-based radiography, such as
proton radiography (PR). PR involves measuring the residual
energy of high energy protons after they have passed through the
patient to construct a 2D image where each pixel represents the
WET of the patient along the beam path at that position. PR has
been proposed as a tool for quality control through in vivo
proton range verification, as an aid for pre-treatment patient
positioning, and even as a means to guide online plan
adaptations (125, 126). The characterization of the WET
accuracy, noise, and spatial resolution of a commercially
developed prototype for clinical PR were reported (127, 128).
Another PR system which measures individual proton depth-
dose curves via a multi-layer ionization chamber was introduced
and used to measure range uncertainties in proton pencil beams
in a 4D porcine lung model; the findings supported the use of 3%
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range uncertainties for robust treatment planning in thoracic
regions (129, 130). Proton-based fluoroscopy has also been
proposed, and was investigated for range verification and
monitoring of inter- and intra-fractional motion in lung
tumors in a recent simulation study (131). Helium and carbon
ion-based radiography systems have also been investigated in
simulation and experimental studies, with carbon ions achieving
the highest image quality at the cost of increased dose (132–134).
A benefit of ion-based radiography is that it requires less dose in
comparison with conventional x-ray radiography due to low
fluence requirements and the Bragg peak not contributing to
patient dose. A limitation of ion-based radiography is that
particles must be able to fully penetrate the patient to acquire
an image. Current clinical therapy systems can achieve a
penetration depth of ~30cm, which may be insufficient for
large patients for certain beam directions.

MRI-guided radiotherapy is an exciting imaging strategy for
in vivo motion management during treatment because in
addition to being non-ionizing, it provides excellent soft tissue
contrast, high temporal resolution, and is capable of functional
imaging (135, 136). While it has already been implemented for
photon radiotherapy via the MR-linac, the application to
charged particles is currently challenged by the need to
mitigate the deflection of the treatment beam by the beamline
magnetic field. Modelling on MR-integrated proton therapy for
liver cancer has shown clear dosimetric benefits as well as
significant reduction in normal tissue complication probability
in comparison with other imaging modalities, including offline
MR-guided proton therapy and MR-linac (137). Recent studies
have made progress in quantifying the impact of the magnetic
field on detectors for proton dosimetry and demonstrating the
technical feasibility of low-field MR guidance on phantoms in a
static research beam line (138, 139). Additional studies have
investigated methods for calculating stopping power ratios from
MRI to generate an MRI-based “synthetic” CT image for
treatment planning and range verification (140). The first
clinical MRI-proton system is scheduled to be built in 2022 at
the OncoRay – National Center for Radiation Research in
Oncology in Dresden, Germany (141).

Motion changes the ion beam path and alters the beam range.
In vivo ion beam range can be potentially monitored by
secondary particles generated during nuclear reactions of the
ion beams with tissue (142). One set of the nuclear processes
generates position emitters which annihilates into 511 keV
photon pairs. Several in-beam PET designs were proposed to
detect the proton range (143, 144). Its potential to assess the
proton and carbon ion beam ranges was studied (145, 146).
However, the limited PET spatial resolution and the biological
washout of the nuclear activation confounds the analysis of the
range from the PET images. Nonetheless, reconstructed time-
resolved activities indicates its potential for online range
verification during treatment (147).

Prompt gamma (PG) imaging is a technology that allows for in
vivo proton range verification (on a spot-by-spot basis) during
treatment delivery through themeasurement of gamma rays created
from nuclear interactions with protons passing through tissue.
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The in vivo human applications of prompt gamma with passive
scattering and PBS proton beams were reported (148, 149). One
challenge of implementing PG imaging is that the number of
photons needed to create a reliable signal (~108) exceeds the
number of photons generated in most pencil beams for RT
treatment. Potential solutions to this challenge include re-
optimizing the treatment plan such that several of the pencil
beams are boosted to reach this counting threshold, or
aggregating the statistics from multiple neighbour pencil beams
(at the cost of reduced resolution) (150). A recent simulation study
by Tian et al. demonstrated under conditions of inter-fractional
motion that a selective spot boosting method achieved tight
<0.8 mm PG-dose correlation. This study further supports its
proposed use for proton range monitoring (151).

Detection of the secondary charged particle emission in light-
ions such as carbon ion beams was also proposed for beam range
monitoring purposes (152); the capability of using charged
secondary emission profiles to track ion beam range, spot
position, and internal motion has been demonstrated in recent
simulation studies (153, 154). It is realized by back-tracking and
reconstructing the profile of the secondary emissions (155).
The use of charged particles to detect lateral pencil beam
position to a resolution of millimeters was reported recently in
anthropomorphic head and neck phantom using a carbon ion
beam (156). The INnovative Solutions for In-beam Dosimetry in
hadronthErapy (INSIDE) collaboration has recently reported on
the clinical trial for a carbon ion beam-range monitor and
demonstrated the potential of this system to detect inter-
fractional beam range variations which could be used to trigger
re-simulation and adaptive replanning (157).

Another emerging technology for in vivo range verification is
protoacoustics. Protoacoustics works by measuring the
thermoacoustic pressure waves generated by the energy
deposition of therapeutic protons in tissue. Like prompt gamma,
protoacoustics is an attractive option for range verification in that it
is derives its signal from the treatment beam itself, essentially
utilizing free information from the patient’s internal anatomy
without the need for additional dose. In addition, a protoacoustic
system can be implemented at low cost compared with other
methods (158). Currently, the primary challenge in implementing
protoacoustics as a mainstream technology is to develop methods
for rapid and accurate translation of the acoustic pressure signal in
heterogenous tissues into meaningful information about proton
range, which is an active area of research (159, 160). Further work
has also been done to characterize the dependencies of the
protoacoustic signal on the proton pulse shape (161).

Novel Delivery Methods
Tumor tracking or “beam tracking” in radiotherapy refers to a
delivery method in which the tumor position is actively tracked,
and the treatment beam is modified in real-time to correct for
intra-fractional motion. It has been described by previous
reviews as one of the most promising but also the most
technically challenging motion mitigation strategy for charged
particles (162–164). Although tumor tracking has been achieved
in the clinic for photon therapy, clinical implementation has yet
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to be realized for scanned ion beams due to additional technical
challenges presented by charged particle treatment regimes.
Unlike photon therapy in which tumor tracking can be
achieved in the beam’s eye view, tumor tracking with scanned
ion beams requires 3D information as well as the ion beam
delivery system’s ability to change beam energy rapidly.
Specifically, both the beam position and beam energy need to
be rapidly modified to account for changes in the location of the
tumor as well as the changes in the beam range caused by
variations in depth and/or tissue composition in the beam path.
Simulation studies have evaluated the robustness of tumor
tracking systems for both carbon ion and proton scanned
beams (165, 166). Ultrasound-guided tracking systems have
also been explored (167, 168). Efforts have also been made to
explore a motion-synchronized dose delivery system for ion
therapy which carries the benefits of tumor tracking without
the difficulties of implementation (169). In their study, Lis et al.
created a 3D treatment plan on each of the 4D breathing phases.
With anatomic motion monitoring, dynamic switching between
plan libraries for tracking dose delivery was realized through an
adaptive layer of software and hardware interfaces. Preliminary
tests revealed acceptable dosimetric performance and safety
characteristics. The system has the potential to deliver
conformal, motion-compensated doses to the moving target.

Various novel beam setups have been proposed to aid in
charged particle motion management. The use of a dual carbon-
helium ion beam was proposed for carbon ion treatment with
helium-guided imaging for range verification (170, 171). The
rationale is that for a given energy, helium ions exhibit a range
about three times that of carbon ions. This, in conjunction with
the fact that both ions have approximately the same charge/mass
ratio, means that both ions could be accelerated together in a
synchrotron and delivered simultaneously, with the carbon
depositing dose in the patient and the helium passing through
the patient to a detector to provide online range estimation.
Simulation studies using mixed beams have demonstrated the
ability to detect range changes as small as 1 mm and detect
changes in simulated rotations and bowel gas movement in
anthropomorphic phantoms (172). Another novel beam
delivery method is the use of radioactive ion treatment beams
such as 11C and 15O, which could be utilized for improved PET
imaging to achieve more accurate online range verification (173).
Finally, patient orientation with respect to the ion beam can also
be considered for reducing motion. Patient setup using an
upright treatment posture has also been shown to reduce
thoracic motion while increasing lung volume, and has been
suggested as a potential motion mitigation strategy for lung
cancer patients who cannot tolerate DIBH (174). A limitation of
upright radiotherapy treatment posture is that for patient
simulation it necessitates using a vertical CT to ensure accurate
localization of anatomy between simulation and treatment;
currently upright treatment of charged ion beams is limited to
only a few centers (175).

Just as the evolution of proton therapy from passive scattering
to scanned beam delivery presented new challenges in handling
patient motion, future advancements in charged particle
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treatment delivery will necessitate new innovations to ensure
patient safety in the face of motion. One promising emerging
radiation technology is FLASH radiation therapy. Defined as
radiation therapy delivered in ultra-high dose rates (>40Gy/s),
FLASH RT has been shown for in vivo animal models to achieve
less toxicity for normal tissues while providing the same degree
of tumor control (176–179). Multiple platforms (180) including
proton clinical machines (181, 182) were able to generate FLASH
beams, but biological and technological challenges remain to
realize clinical FLASH delivery. Further work on understanding
the FLASH mechanisms, as well as optimal treatment dose, dose
rates, and fractionation scheme needs to be established (183–
185). Shortened treatment delivery times resulting from FLASH
dose rates would potentially alleviate concerns about intra-
fraction motion, but this also means that any unaccounted-for
setup uncertainties and motion will likely lead to the dose being
delivered to a completely unexpected location with no
opportunity to be mitigated. Thus, the FLASH treatment
paradigm necessitates a revisit on current clinical motion
management practice and the exploration on the limits to
ensure safe and accurate dose delivery when considering the
“snap” of motion during ultra-fast dose deliveries.

Arc therapy is an emerging technology in proton therapy in
which the gantry is rotated continuously through a pre-selected
arc during treatment delivery. ARC therapy for photons
(VMAT) is a standard clinical tool with several different
commercial systems available (186). In 2021, the commercial
proton therapy vendor IBA announced a global DynamicARC
consortium, signaling a shared commitment between industry
and select clinical centers towards translating proton arc therapy
into a commercially available system in the near future (187).
While proton ARC therapy has yet to be adopted into standard
clinical practice as of yet, its application has been investigated
and shown promise in reducing treatment delivery times,
improving dose conformality, and reducing dose to OARs in
multiple treatment sites (188–190). Planning study was also
performed for carbon-ion beams to show normal tissue
sparing and mitigation on the hypoxia-related tumor
radioresistance (191). Robustness against range uncertainties
using proton ARC therapy was demonstrated (192, 193).
However, a potential drawback of proton ARC therapy is that
it results in increased low dose/low LET dose to normal tissues,
which could increase the risk of secondary cancers (194).
Different treatment delivery scheme and dose distribution in
ARC therapy from traditional PBS delivery will need further
studies to assess potential interplay between patient motion and
the rotating treatment beam.

Artificial Intelligence
Artificial intelligence (AI) refers to technologies or machines
which can perform tasks/calculations with human-like skill and
cognition. Machine learning (ML) is a subcategory of AI relating
to computer algorithms which can “learn” to perform a task
without being explicitly programmed to do so. Machine learning,
and in particular deep learning (DL), has found tremendous
success in the past decade in many diverse fields, ranging from
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finance to automotive technologies, and to medicine (195).
DL (also called deep machine learning) is a specific class of
ML algorithms which is capable of learning higher-order abstract
representations or “features” from raw input data, as opposed to
classical ML algorithms which learn patterns from user defined
(“handcrafted”) features (196). There is no known theoretical
basis for the required structure of an algorithm to achieve DL; in
practice however, artificial neural networks, which by design
perform a nonlinear mapping from input data to the desired
output space, have achieved the best success to date. In radiation
oncology, machine learning and deep learning have seen
exponential growth in applications and are poised to
revolutionize the field (197).

Deep learning applications have been investigated for inter-
fractional motion management in charged particle therapy. Van
der Heyden et al. presented a single detector, multi-energy
proton radiography system which relied on artificial
intelligence to filter out proton scatter (198). In addition,
multiple studies have been reported which utilize deep learning
as a tool to facilitate accurate proton dose calculation from daily
CBCT images (121, 199–201). Elmahdy et al. also reported on a
convolutional neural network (CNN)-based model for robust,
automatic contour propagation in prostate cancer for online
adaptive proton therapy (202).

Relating to intra-fractional motion management, many
studies have been published which apply deep machine
learning towards challenges of real-time target tracking for
both charged particles as well as photons. For example, Hirai
et al. introduced a CNN-based model for marker-less real-time
tumor tracking which was tested retrospectively on lung and
liver cancer patients who received fluoroscopic imaging during
carbon ion therapy (203). Mylonas et al. reported on the use of
another CNN-based architecture for real-time tracking of
arbitrarily shaped fiducial markers in fluoroscopy images (204).
The motivation behind this study was to allow for fiducial
marker segmentation without the need for prior maker-
characterization, sparing the patient of additional imaging
dose. Zhao et al. proposed a deep learning-based method for
pancreatic tumor localization without the use of fiducial markers
(205). Kim et al. introduced a CNN-based deep learning model
for predict future motion of proton therapy patients based on
facial expressions (206). In another promising study, Lin et al.
describe a “super-learner” model which combined traditional
neural networks with decision tree-based ML algorithms to
predict the range of patient thoracic motion during proton
therapy based on initial diagnostic CT and EMR data (207).

A substantial roadblock to implementing deep learning
models in the clinical workflow stems from issues relating to
model interpretability. Specifically, the inherent complexity of
deep learning algorithms makes it difficult to understand how the
models think (hence why DL models are often referred to as
“black boxes”) (208). Though capable of high accuracy
predictions, DL models are still sensitive to unintended bias in
the training data. The ability to understand and interpret the
results of clinical models is critical for ensuring patient safety and
quality of care in the event that such models fail (209). To this
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end, the task of developing interpretable machine learning
models without sacrificing model performance is an active
research topic (210–212). One approach in handling the ethical
question of what role a non-human entity should be trusted to
play in clinical decision making is to require algorithms to follow
a “human in the loop” framework. In a human-in-the-loop
framework, clinicians remain fully integrated in the decision
making process by allowing for human-computer interactions by
which clinicians provide feedback/information to aid in model
development, and the resulting models in turn provide
accountable, interpretable decision support to the clinician (208).
SUMMARY

In this review, we provided an overview of the current clinical
treatment methods for motion management in charged particle
therapy as well as future emerging technologies and
methodologies. As the use of charged particle therapy becomes
more widespread and new treatment delivery modalities arise,
further work will be necessary to ensure robust and accurate dose
delivery. For the case of inter-fractional motion, further progress
is also necessary to develop adaptive planning protocols which
are triggered for clinically significant anatomical changes and can
Frontiers in Oncology | www.frontiersin.org 10
be implemented within the time and resource constraints of a
clinical setting. Another important task in this field is to continue
the development of imaging and tracking systems which allow
for accurate localization of the tumor and internal anatomy
delivery at the treatment couch prior to delivery and in real time.
One limitation of most studies on motion mitigation methods is
that dosimetry is used the primary evaluation metric. Future
studies which can connect motion mitigation methods to clinical
outcomes would aid in accelerating standardization of care.
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