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Abstract 

Objective:  Transcriptome analysis of human whole blood is used to discover biomarkers of diseases and to assess 
phenotypic traits. Here we have collected small volumes of blood in Tempus solution and tested whether different 
storage conditions have an impact on transcriptomic profiling. Fifty µl of blood were collected in 100µl of Tempus 
solutions, freezed at − 20 °C for 1 day and eventually thawed, stored and processed under five different conditions: 
(i) − 20 °C for 1 week; (ii) +4 °C for 1 week; (iii) room temperature for 1 week; (iv) room temperature for 1 day, − 20 °C 
for 1 day, room temperature until testing at day 7, (v) − 20 °C for 1 week, RNA was isolated and stored in GenTegra 
solution. We used 272 immune transcript specific assays to test the expression profiling using qPCR based Fluidigm 
BioMark HD dynamic array.

Results:  RNA yield ranged between 0.17 and 1.39µg. Except for one sample, RIN values were > 7. Using Principal 
Component Analysis, we saw that the storage conditions did not drive sample distribution. The condition that 
showed larger variability was the RT-FR-RT (room temperature–freezing–room temperature), suggesting that freez-
ing–thawing cycles may have a worse effect on data reproducibility than keeping the samples at room temperature.
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Introduction
The genomic revolution of the last decade and the paral-
lel increase of international collaborations have led to an 
unprecedented need for transferring biological samples 
across institutes worldwide. Emerging technologies offer 
the opportunity to transfer samples at room temperature 
with the advantage of reducing the logistic challenges 
associated with sample shipment as well as the carbon 
footprint associated with portable freezers [1].

Projects aiming at biomarker discovery often employ 
transcriptional profiling of whole blood [2–5]. Peripheral 
blood is perhaps the most practical tissue to profile gene 
expression of the human immune system due to its acces-
sibility, allowing large-scale and non-invasive sampling 
[6, 7]. Recently, finger-stick blood collection systems 
have allowed a less invasive and quicker collection of 
peripheral blood that does not necessarily require medi-
cal infrastructures [8–11]. Small volumes of blood are 
more prone to thaw when compared to blood collected 
by venipuncture. Often, samples collected in a given 
place need to be transferred to a second place before pro-
cessing. Blood samples are generally freezed for storage 
or shipment to other institutes. Fluctuations in tempera-
ture have a high impact on sample performance [12] and 
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suboptimal storage conditions may lead to cell damage 
[13–15]. When performing gene expression analyses, 
obtaining high-quality, intact RNA is the most critical 
step. Due to the ex  vivo instability of RNA transcripts 
[16–19], a crucial challenge is rapid sample handling and 
mRNA stabilization [7]. There are commercially available 
tools to assist the investigators in preserving RNA integ-
rity prior to downstream analyses [20].

In this study we have decided to use the Tempus sys-
tem (ThermoFisher Scientific) as its performance has 
been showed to be greater than other systems by previ-
ous investigation [21]. When blood is drawn into Tem-
pus Blood RNA tubes and mixed, the stabilizing reagents 
lyse cells almost immediately. At the same time, cellular 
RNases are inactivated and RNA is selectively precipi-
tated, leaving genomic DNA and proteins in solution. For 
RNA isolation, the Tempus system uses a solid-phase, 
silica-based purification strategy. RNA integrity should 
also be ensured post-RNA isolation. RNA is generally 
stored at − 80  °C. Nevertheless, emerging technologies 
are now offering the opportunity to keep the samples at 
room temperature, such as GenTegra (GenVault, Carls-
bad, CA). GenTegra is an inorganic matrix with oxidation 
protection and antimicrobial activity for storage of iso-
lated RNA at room temperature. It is supplied as trans-
parent coating at the bottom of the GenTegra RNA tube. 
Purified RNA is added to GenTegra tube, dried down and 
eventually recovered with the addition of water.

The aim of this study was (1) to compare different stor-
age conditions on small volumes of blood and to assess 
the effect of GenTegra storage solution with regard to 
quality/quantity of RNA (Fig.  1 displays the experiment 
rationale) and (2) to evaluate whether expression profil-
ing is affected by the different storage conditions.

Main text
Sample collection
Blood samples were collected as previously described 
[10]. Ethical approvals were collected from Sidra 
Institutional Review Board committee (IRB Protocol 
#1707011887). Three samples from an immune compe-
tent subject were collected for each storage condition. 
Samples were processed for downstream qPCR analysis 
in duplicates. Fifty µl of blood were collected in 100 µl 
of Tempus solutions and stored according to the dia-
gram in Fig.  1. Tempus Spin RNA Isolation kit (Ther-
moFisher, Waltham, Massachusetts, USA) was used 
to isolate and purify RNA from blood collected in the 
capillary tubes according to the manufacturer’s instruc-
tions. After extraction, RNA quality and quantity were 
checked on Bioanalyzer (Agilent Technologies, Carls-
bad, California, US). Samples were evaluated accord-
ing to their RIN (RNA integrity number). This score is 
classified on a numbering system from 1 to 10, with 1 
indicating the most degraded RNA and 10 indicating 
the most intact RNA.

We also tested the stability of samples after addition 
of GenTegra RNA solution. Fifty µl of RNA were added 
to the GenTegra RNA coating and mixed well to ensure 
homogeneity. Samples were then dried using a vacuum 
concentrator according to GenTegra RNA standard 
protocol. The dried samples were kept at room tem-
perature for 1 week prior to testing. For RNA recov-
ery, a volume of molecular-grade water equivalent to 
the input volume was added to the dried samples. The 
concentration and integrity of rehydrated RNA were 
checked. RNA was then processed for the downstream 
applications.
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Fluidigm gene expression
Gene expression was performed by parallel quantita-
tive PCR using the high-throughput BioMark HD plat-
form (Fluidigm Co., San Francisco, CA, USA), according 
to the manufacturer’s instructions. Transcripts were 
selected according to previous literature [22]. Eight genes 
were used as housekeeping, namely: DOCK2, EEF1A1, 
FAM105B, FTL, MYL6, MYL12B, RPS10, and RPS25. 
A good quality RNA was also used as internal refer-
ence. Transcript specific assays (DeltaGene Assays) were 
designed and ordered through D3 Assay Design (https​
://d3.fluid​igm.com/accou​nt/login​). Reverse transcrip-
tion was performed on the isolated RNA using Fluidigm 
cDNA synthesis kit (Fluidigm Co., San Francisco, CA, 
USA). The PCR reaction conditions were set following 
the Biomark HD Protocol GE 96 × 96 Fast PCR + Melt 
v2. Each PCR reaction used distilled water instead of 
cDNA as negative control. Melting curves were gener-
ated for each gene. Samples were run in duplicates.

QPCR analysis Ct values (expression values) were 
exported from Fluidigm Real-Time PCR Analysis Soft-
ware as *csv file and processed using Partek Genomic 
Suite version 7.18 (Partek, Chesterfield, Missouri, USA). 
Genes corresponding to each sample with expression 
beyond the detectable range were set as missing values 
for further analysis. Technical replicates of each sample 
were averaged. The geometric mean of the eight house-
keeping genes was subtracted from the Ct values of each 
sample to give a Delta Ct value that corrects for different 
sample amounts. Delta Ct values were transformed to the 
negative Delta Ct values prior to performing Principal 
Component Analysis. ggplot2 library (version 3.5.2) in R 
was used to generate Boxplot for the eight housekeeping 
genes and immune-related genes across different storage 
conditions.

Data analysis
Analysis of variance (ANOVA) was applied to compare 
data from the different storage conditions. Principal com-
ponent analysis (PCA) was applied for visualization when 
relevant. Non-parametric Wilcoxon tests were used to 
evaluate statistical differences between the storage condi-
tions. All statistical tests were two-sided. P-values lower 
than 0.05 were considered statistically significant.

Results
RNA quality and yield
Figure 2a shows the Bioanalyzer profiles of the RNA sam-
ples according to the storage conditions. The Bioanalyzer 
run gave a RIN score > 7 for all the samples except sam-
ple “RT-FR-RT2” (RIN 2.9). RNA yield ranged between 
0.17 and 1.39 µg for the non-GenTegra treated samples 

(Additional file  1: Table  S1). One sample treated with 
GenTegra had a yield of 15 ng. Further studies employing 
a higher number of samples are required to confirm our 
findings. The RNA yield was overall higher in the “RT” 
condition, followed by “RT-FR-RT” condition. However 
no significant difference was found (Fig. 2b). RIN values 
were comparable across the different storage conditions, 
except for one sample of the “RT-FR-RT” condition that 
displayed a RIN value of 2.9 (Fig. 2c). The “Frozen” con-
dition showed the highest mean RIN value, however no 
significant difference was found when assessing RIN val-
ues across conditions, suggesting that the different stor-
age conditions did not have a significant impact on either 
yield or RIN values.

Even if the concentration of one sample treated with 
GenTegra was lower as compared to the other two 
(Fig.  2d), our results demonstrate that overall the RNA 
stored at room temperature with GenTegra technology 
performed equivalently to the other samples tested. The 
workflow for GenTegra was straightforward, involving 
the addition of RNA to the product tubes, drying, stor-
age at room temperature for 1 week and recovery with 
water (the volume was kept equal to the initial volume). 
No additional clean up or purification was required after 
rehydration. The RNA concentration did not differ signif-
icantly after the recovery of RNA (Fig. 2d, Wilcoxon test 
on “Before” vs “After” samples, p-value 1.0). Most impor-
tantly, the GenTegra RNA coating did not appear to inter-
fere with any of the downstream applications, although it 
did affect the A260/A280 and A260/A230 ratio but not 
significantly (Additional file  1: Table  S2). This has also 
been reported in another study aiming at assessing the 
stability of DNA using GenTegra technology [1].

Immune related transcriptional profiling 
across the conditions
We next sought to determine whether any transcriptional 
differences existed between the different storage condi-
tions. We employed Fluidigm-based transcriptome pro-
filing for immune-related genes as previously described 
[22]. We expected to see transcriptional similarity across 
the different conditions. As expected, by plotting Ct val-
ues of the eight housekeeping genes, we found no signifi-
cant differences across the storage conditions, suggesting 
that the different storage conditions did not impact tran-
scriptome profiling (Fig.  3a). Nevertheless, the condi-
tion “RT-FR-RT” showed higher variability across the 
replicates, suggesting that freezing–thawing cycles may 
increase transcriptional variance even in the presence of 
the Tempus stabilizer solution, and should be avoided in 
studies aiming at immune-related transcriptional pro-
filing. In a second step, we performed principal com-
ponent analysis (PCA) on the complete transcriptional 

https://d3.fluidigm.com/account/login
https://d3.fluidigm.com/account/login
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data set visualizing the three-dimensional distribution 
of the samples according to their storage conditions. 
The assignment of the individual samples to the five dif-
ferent storage conditions did not predict clearly their 
distribution in a three-dimensional space although sam-
ples belonging to the same conditions tended to cluster 
together; this suggested that the different storage condi-
tions did not have a different impact on transcriptomic 
profiling (Fig.  3b). We next selected immune-related 
genes and assessed differences in their Ct values across 
the different storage conditions. These genes included: 
IL18, IL23A, STAT1, TLR2 and CCR1. As expected, we 
found no significant differences, suggesting that the dif-
ferent storage conditions did not alter the transcriptomic 
profiles of the selected immune-related genes (Fig.  3c, 
Additional file 1: Table S3).

Discussion
The quality of gene expression data is strictly dependent 
on the integrity and stability of the mRNA [20]. This, in 
turn, is related to the proper optimal storage and pro-
cessing of the samples as well as on downstream tech-
nologies used [16, 23]. Maintaining consistent storage 

conditions is critical for data reproducibility as even 
native specimens of peripheral blood may undergo 
significant changes of gene expression patterns due 
to gene induction, repression and RNA degradation, 
if not properly handled [24]. Suboptimal freezing and 
thawing conditions lead to cell damage by two basic 
mechanisms: (i) the mechanical damage caused by the 
formation of intracellular ice crystals [25, 26], and (ii) 
the osmotic damage due to high intracellular salt con-
centrations as a result of water loss [27]. Preventing cell 
damage mechanisms during sample collection, stor-
age and processing is of paramount importance in any 
experimental setting.

MRNA stabilization is essential for gene expression 
analyses and is required for multicenter clinical and 
research programs.

Here we chose Tempus RNA solution as stabilizing 
reagent as several study have previously shown a greater 
performance of RNA Tempus solution when compared 
to other stabilizing reagents, in terms of RNA quantity 
and quality [28–30]. We tested whether different storage 
conditions had an impact on transcriptomic profiling of 
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small volumes of peripheral blood collected in Tempus 
stabilizer solution.

Previous studies have demonstrated that changes in 
gene expression can be due to various factors, including 
glucose depletion, changes in pH, lactate accumulation, 
hypoxia etc., causing biological stresses [7, 31]. Neverthe-
less, to the best of our knowledge, there are no studies 
assessing the effect of storage conditions on small vol-
ume of peripheral blood collected in Tempus stabilizer 
solution.

No statistical difference was found when compar-
ing RNA yield and RIN values across the different con-
ditions. All samples from the different conditions had a 
RIN value above 7 except for one sample in the “RT-FR-
RT” group that had a RIN value of 2.9. The overall qual-
ity was considered sufficient as standard RIN above 5 was 
set as a cut-off for downstream applications including 
microarray and qPCR [16, 32]. No significant difference 
was found when assessing immune-related transcrip-
tomic profiles across the different storage conditions, 

suggesting Tempus stabilizer as an effective solution to 
ensure sample performance even if handed at different 
storage conditions.

Our experiments demonstrated that the different stor-
age conditions were able to maintain RNA integrity with 
no loss of sample quality in downstream applications 
such as Fluidigm-based gene expression testing. These 
results offer opportunities for collaborative institutions 
to choose the storage conditions for peripheral blood col-
lected in Tempus tubes most suitable to their needs mak-
ing sure to avoid freezing–thawing cycles.

Limitations

•	 The study was conducted on a limited number of 
samples.

•	 The PCR experiments were performed on a selected 
gene panel rather than the transcriptome at the 
global level.
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Additional file 1: Table S1. Yield (ng) of the three replicates of the follow-
ing conditions: RT-FR-RT, RT, Frozen and Fridge. Table S2. Nanodrop A260/
A280 and A260/A230 values before and after the addition of GenTegra 
(Wilcoxon test, A260/A280 p-value: 0.25; A260/A230 p value: 1.00). 
Table S3. Multi-comparison tests across the different storage conditions 
for selected immune-related genes and housekeeping genes.
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ANOVA: Analysis of Variance; PCA: Principal component analysis; qPCR: Quanti-
tative polymerase chain reaction; RIN: RNA integrity number.
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