
Published online 3 December 2015 Nucleic Acids Research, 2016, Vol. 44, No. 6 e53
doi: 10.1093/nar/gkv1335

Prioritizing and selecting likely novel miRNAs from
NGS data
Christina Backes1, Benjamin Meder2, Martin Hart3, Nicole Ludwig3, Petra Leidinger3,
Britta Vogel2, Valentina Galata1, Patrick Roth4, Jennifer Menegatti5, Friedrich Grässer5,
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ABSTRACT

Small non-coding RNAs play a key role in many phys-
iological and pathological processes. Since 2004,
miRNA sequences have been catalogued in miR-
Base, which is currently in its 21st version. We inves-
tigated sequence and structural features of miRNAs
annotated in the miRBase and compared them be-
tween different versions of this reference database.
We have identified that the two most recent releases
(v20 and v21) are influenced by next-generation se-
quencing based miRNA predictions and show signif-
icant deviation from miRNAs discovered prior to the
high-throughput profiling period. From the analysis
of miRBase, we derived a set of key characteristics
to predict new miRNAs and applied the implemented
algorithm to evaluate novel blood-borne miRNA can-
didates. We carried out 705 individual whole miRNA
sequencings of blood cells and collected a total of 9.7
billion reads. Using miRDeep2 we initially predicted
1452 potentially novel miRNAs. After excluding false
positives, 518 candidates remained. These novel
candidates were ranked according to their distance
to the features in the early miRBase versions allow-
ing for an easier selection of a subset of putative miR-
NAs for validation. Selected candidates were suc-
cessfully validated by qRT-PCR and northern blot-
ting. In addition, we implemented a web-server for
ranking potential miRNA candidates, which is avail-
able at: www.ccb.uni-saarland.de/novomirank.

INTRODUCTION

Initially discovered over 20 years ago in 1993 in Caenorhab-
ditis elegans (1), small non-coding RNAs such as miR-
NAs have become a highly researched field. Among the first
known miRNAs were members of the let-7 family, regulat-
ing genes important for the development such as lin-14, lin-
28, lin-41 or daf-12. The respective small RNAs were well
conserved between various organisms. Since that time, re-
search groups around the globe have reported tens of thou-
sands of miRNAs in far more than 100 organisms. Early
studies identified miRNAs using labour-intensive cloning
methods, which predominantly identified abundant ‘high’
confidence miRNAs that were validated in substantial parts
by northern blot analysis. Since miRNAs are expressed on
a large dynamic range of several orders of magnitudes and
show tissue and cell type specific patterns, the traditional
genetic techniques may have only revealed a portion of all
miRNAs (2). These traditional experimental technologies
have been augmented both by novel high-throughput tech-
nologies such as next-generation sequencing (NGS) and by
computational approaches for the ab initio prediction of
novel miRNAs.

Amongst the ab initio prediction tools, MirScan (3) and
MiRSeeker (4) have gained biggest attention. These predic-
tor methods rely mostly on free energy in combination with
other sequence features such as GC content. Later, more
sophisticated approaches such as random forests and sup-
port vector machines have been applied to discover miR-
NAs from genomes. Still one potential limitation remained
with these approaches: the definition of negative reference
sets that consisted mostly of randomly chosen stem loop se-
quences derived from the target genome. With advancing
NGS technologies, computational tools for the discovery
of small non-coding RNAs have been developed. Among
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the most popular ones are miRanalyzer (5), MIReNA (6)
and miRDeep (7,8). In the past years, hundreds of miRNA
studies have been carried out using NGS, as indicated by al-
most 900 hits on PubMed searching for ‘miRNA and next
generation sequencing’. Likewise, over 2000 miRNA NGS
samples have already been added to the gene expression om-
nibus (9), one of the most frequently used data repositories
for high-throughput nucleic acid analysis.

The central resource for miRNAs is miRBase (10), which
at the time of this analysis is in its 21st version. With each
succeeding version, the number of novel miRNAs has been
continuously increasing, as Table 1 demonstrates for human
miRNA precursors with two annotated mature miRNAs. In
total, 1881 human miRNA precursors have been annotated,
the majority of them with two mature forms, the 3′ and 5′
miRNAs. Still, the final number of miRNAs in the human
genome may be significantly more than what is currently
known.

Most recently, Londin et al. (11) published in a very com-
prehensive NGS data analysis study 3494 novel miRNA
precursor candidates and 3707 novel mature miRNAs, dou-
bling the content of the miRBase. It is obvious that ex-
perimental validation of respective data sets remains a ma-
jor challenge, especially since high-throughput approaches
as NGS potentially contain besides the true positive also
false positive candidates. While in the early versions (v1–4)
of miRBase 54 miRNAs were experimentally validated by
northern blot (28.9% of all 187 new miRNAs in v1–4), from
version 17 onwards just two miRNAs were validated respec-
tively (0.001% of all 1378 new miRNAs in v17–21). Thus,
it is likely that the current set of miRNAs deposited in the
miRBase as reference database may also contain false posi-
tive candidates, potentially leading to an over-estimation of
the total number of miRNAs.

In this study, we categorize the 21 miRBase releases into
six categories (sets I-VI, Table 1) and subsequently iden-
tify scoring features for ‘typical’ miRNA precursors us-
ing biostatistics. For the prediction of novel miRNA pre-
cursors, we use a data set consisting of 705 miRNA NGS
profiles derived from blood of patients with various dis-
eases and healthy controls and apply the popular miRD-
eep2 algorithm. The predicted novel miRNA precursors
are then ranked according to their similarity to the pre-
viously defined ‘typical’ precursor features. To facilitate
the ranking of novel miRNA precursors, we implemented
a web-service called novo-miRank (www.ccb.uni-saarland.
de/novomirank), allowing researchers in the field to prior-
itize and rank their predicted novel miRNA precursors in
comparison to selected miRBase versions for experimental
validation.

MATERIALS AND METHODS

Sequence features

From each miRNA precursor sequence and the two ma-
ture miRNAs, we calculated the following 24 features: the
minimum free energy of the precursor, the 3p- and the 5p-
miRNA using RNAfold (12) (3 features), the percentage of
bases A, C, U, G in the precursor, 3p- and 5p-miRNA (12
features), the precursor length, length of 3p and 5p mature
forms (3 features), the loop length (1 feature), the distance

to the next precursor in the genome in base pairs (computed
from the genomic start positions of the precursors), and the
number of precursors within windows of different genomic
ranges (5 kb, 10 kb, 50 kb and 106 kb; 5 features). The win-
dows were computed symmetrically around the middle of
a precursor, and we counted also precursors that did not
lie completely in the window, but overlapped with it. Since
miRBase provides stem-loop sequences, we trimmed these
sequences to obtain precursor sequences that start and end
with the 5p/3p miRNAs, respectively. An overview of these
features for all miRBase precursors/miRNAs is available in
Supplementary Table S1.

Samples

We included all miRNA samples that have been measured
in our studies from PAXGene blood tubes using Illumina
Next-Generation sequencing. The set of patients includes
besides healthy controls also Alzheimer’s Disease patients
(13), Multiple Sclerosis patients ((14) and manuscript with
new data submitted) and consecutive patients collected in
a Chest Pain Unit (manuscript in preparation). All samples
in this study have been evaluated in a blinded manner. Lo-
cal ethics committees approved the study and patients gave
written informed consent.

Prediction of novel miRNAs

To predict novel miRNAs from the NGS sequencing reads
we applied the miRDeep algorithm as integrated in the
miRDeep2 pipeline using the default program parame-
ters (8) as described previously (13). Briefly, we performed
a 3′ adapter trimming with the FASTX toolkit (http://
hannonlab.cshl.edu/fastx toolkit/) on the raw fastq files and
discarded reads <18 nucleotides. The trimming process re-
duced the total 9.7 billion reads to 9.2 billion reads. After
that we summarized unique reads per sample to make the
down-stream analysis faster. We ran the miRDeep predic-
tion algorithm on each sample separately. From each sam-
ple’s miRDeep2 output we selected novel miRNAs that had
a signal-to-noise ratio of ≥10 according to miRDeep2. In
order to avoid multiple miRNA predictions from different
samples that are just shifted by few bases, we merged over-
lapping precursors. If both miRNAs of a precursor shared
an overlap of at least 11 bases, we took one of the over-
lapping precursors as representative for the novel predicted
precursors at this location. Quantification was done with
the quantifier script belonging to the miRDeep2 pipeline,
which uses bowtie (15) as mapping tool. In total, 8.4 billion
reads could be mapped to miRBase, 197 million reads were
mapped to the 1452 potential new precursors. For the gen-
eration of base count plots we used the mapping output of
miRDeep2 (arf files) and collected the number of overlap-
ping reads for each nucleotide of the respective precursor.
Normalization was done for each sample separately by di-
viding the actual count by the total read count of the sample
and then by multiplying by 107. For the plot, the individual
normalized counts per sample and nucleotide position were
summarized for all samples per position.

http://www.ccb.uni-saarland.de/novomirank
http://hannonlab.cshl.edu/fastx_toolkit/
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Table 1. Overview of the numbers of human precursors with two annotated miRNAs and their first occurrence in miRBase

miRBase version Number new precursors Set Numbers in set

1 88 I 185
2 50
3 34
4 13
5 12 II 96
6 3
7 81
8 52 III 125
9 8
10 35
11 30
12 8 IV 106
13 0
14 7
15 47
16 44
17 141 V 218
18 49
19 28
20 200 VI 202
21 2

Matching to known RNA resources

As first step to exclude potential false positive miRNAs,
we mapped the proposed novel miRNAs from the miRD-
eep algorithm back to other human non-coding RNA re-
sources using BLAST (v 2.2.24) (16). The set of databases
contains miRBase v21, snoRNA-LBME-db (17), ncRNAs
from Ensembl ‘Homo sapiens.GRCh37.67.ncrna.fa’ (18),
and NONCODE (v3.0) (19). We excluded sequences that
aligned with > 90% of their length (allowing 1 mismatch)
to any of the above non-coding RNA sequences.

Biostatistical analysis

To estimate whether a specific miRBase version or set of
miRBase versions deviates in one of the 24 features signif-
icantly from others, we carried out analysis of variance for
each feature separately. All findings with FDR corrected
significance values below 0.05 were considered significant.
Since the considered features are on different scales, we ap-
plied for each feature a transformation to unit variance and
centred them to zero, corresponding to z-scores. The stan-
dardized data have then been used for multivariate analy-
sis including clustering or Principal Component Analysis
(PCA). To cluster the miRBase versions, we applied com-
plete linkage hierarchical clustering on the 24 scaled fea-
tures. To limit the influence of single features we addition-
ally cut the z-scores at an absolute threshold of 3. The PCA
was carried out to produce a low dimensional representa-
tion of the miRBase versions. To calculate a distance of
a miRNA precursor from a set of precursors, we first cal-
culated the mean and standard deviation of each feature
for the set of miRNAs. Then, we computed the z-scores
for all features and the precursor, showing how many stan-
dard deviations this precursor is above or below the mean of
the precursor set. To reduce the influence of single features,
again absolute z-score values have been cut at 3. For all fea-
tures, the average absolute value of the z-score has been cal-
culated. All statistical calculations have been carried out in

the freely available statistical programming environment R
(version 3.0.2).

Web-service implementation

To make our analysis available to other researchers in the
field, we implemented a web-service, where researchers can
test one or more novel precursors for deviations from one
or a set of miRBase versions. For the single precursor
analysis, we need the sequences of the precursor and both
miRNAs as well as the genomic location of the precur-
sor. For the batch analysis, the user can upload a GFF
file (GFF3 format), containing the annotations for the pre-
cursors and miRNAs that should be tested. The genomic
coordinates must be given with respect to the GRCh38
genome assembly. Example files and a tutorial explaining
the usage of the web-service are available online. The out-
put of our tool shows a histogram of the computed aver-
aged z-scores of the features of the chosen miRBase ver-
sion(s) as reference distribution and the distribution of the
computed z-scores of the user uploaded precursors. Addi-
tionally, the computed z-scores are displayed in a sortable
and filterable table. The computed features and z-scores are
also available for download as tab-separated text-file. Our
web-service is freely available at: www.ccb.uni-saarland.de/
novomirank. The implementation uses the python web-
framework Django 1.8, as well as some additional python
packages like numpy, scipy and rpy2.

Validation of novel miRNAs with qRT-PCR

To validate the expression of novel miRNAs in blood sam-
ples, we selected 15 high ranked novel miRNAs and per-
formed quantitative real-time PCR. In detail, we pooled
RNA isolated from PAXgene blood tubes of 15 patients
with Alzheimer´s disease and 15 patients with Multiple
Sclerosis into three RNA pools. Of each pool, 200 ng to-
tal RNA was reverse transcribed in 10 �l total volume con-
taining 2 �l HighSpec buffer, 1 �l Nucleic Mix and 1 �l RT

http://www.ccb.uni-saarland.de/novomirank
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(components of miScript II RT kit, Qiagen, Hilden, Ger-
many). Real-time PCR was conducted in 20 �l total vol-
ume using 1 �l of 1:10 diluted RT reaction, 10 �l Quanti-
Tect SYBR Green Master Mix, 2 �l Universal Primer, 2 �l
specific Primer Assay and 5 �l RNase-free water (Qiagen,
Hilden, Germany). Negative controls included a no tem-
plate control for reverse transcription (NTRT), a RT reac-
tion without enzyme (RT-) and a no template PCR control
for each specific primer (NTC). All reactions were set up
in duplicates. Specific amplification of novel miRNAs was
satisfactorily demonstrated by a qRT-PCR product with (i)
a melting temperature of 75◦C ± 1.5C◦; (ii) a mean raw Ct
value of the product in the three pools of <35 and (iii) an
assay dependent product length of 80–90bp as evidenced on
an DNA 1000 Bioanalyzer chip (Agilent Technologies) and
conventional 3% agarose gels. To verify specificity of qPCR
amplification, PCR products were Sanger sequenced. In de-
tail, PCR products were purified using PCR purification kit
(Machery Nagel), A-tailed and subcloned into pGEM-T-
easy vector according to manufacturer’s recommendations
(Promega). After transformation into E.coli DH5α, three
clones for each novel miRNA were Sanger sequenced.

Validation of novel miRNAs with northern blots

Cloning. For cloning of the pSG5-novel-miR-1005 ex-
pression plasmid, nucleotides 100841490–100841859 from
Chromosome 11 were amplified from genomic DNA us-
ing specific primers (Forward:5′GTAGTCCTGAAACG
AGGGAG3′; Reverse: 5′GAGAGTCTGTGGCTTTTG
AGG3′) by PCR and ligated via BglII and BamHI restric-
tion sites into the pSG5 vector (Stratagene, La Jolla, USA).

Cell lines, tissue culture and transfection. Human 293T
cells were purchased from the German Collection of Mi-
croorganisms and Cell Cultures (DSMZ, Braunschweig,
Germany). The cells were cultured as described else-
where (20). For ectopic miRNA expression, 2.4 × 106

293T cells per 100 mm dish were seeded in 8 ml of
DMEM culture medium containing 10% FCS and 1%
Penicillin/Streptomycin. After 24 h the 293T cells were
transfected either with 8 �g pSG5-vector or 8�g pSG5-
miR-expression plasmid according to the manufacturer’s
protocol using PolyFect transfection reagent (Qiagen,
Hilden, Germany).

RNA extraction and northern blotting. After 48 hours
the total RNA from pSG5 or pSG5-novel-miR-1005
transfected 293T cells respectively was isolated using
QIAzol lysis reagent (Qiagen, Hilden, Germany) according
to the manufacturer’s manual. Northern blotting and
stripping of the nylon membrane Hybond N (Amersham)
for further hybridization with the miR-20a-5p-probes
was performed as described previously (20). The ra-
dioactive miRNA probes for the detection of the novel
and the high confident miRNAs were synthesized and
radioactive labelled using the miRVana Probe Construc-
tion Kit (Ambion). The novel-miRNAs miR-1005–5p,
miR-1005–3p and the highly confident miR-20a-5p were
detected with the following radioactive miRNA-probes:
AGAGGCUGAAUUCCCAGUGAGUCCUGUCUC

(novel-miR-1005–5p), AUUCGCUGGGAAUU
CAGCCUCUCCUGUCUC (novel-miR-1005–3p),
UAAAGUGCUUAUAGUGCAGGUAGCCUGUCUC
(miR-20a-5p).

RESULTS AND DISCUSSION

We defined a set of 24 sequence and structural features for
all known miRNA precursors from miRBase version 1 to
21. These contain the minimum free energy, base composi-
tion, miRNA length and many others (the full list is avail-
able in the Methods section). Since the set of features par-
tially considers the 3p and 5p miRNAs stemming from one
precursor, we only included precursors with two annotated
forms in our analysis. Each precursor has also been assigned
with the first miRBase version its accession number has
been mentioned in the miRBase, which means that each pre-
cursor is only taken into account for the miRBase version
it was first listed and not for later versions. Since the first
versions of the miRBase contain predominantly the stem
loop sequences, i.e. the product of the processed pri-miRNA
by DICER, and the later versions the actual precursor se-
quences that are trimmed at the 5′ and 3′ end of the two ma-
ture miRNAs, we would potentially observe a bias towards
shorter precursor sequences with increasing miRBase ver-
sions. To account for this effect, we performed all analyses
on the actual precursor sequences and trimmed all miRBase
sequences accordingly.

First, we considered changes of the features for each miR-
Base version separately. Since in some cases, however, just
few novel precursors have been added, we grouped the ver-
sions in six batches: (I) version 1–4, (II) version 5–7, (III)
version 8–11, (IV) version 12–16, (V) version 17–19 and (VI)
version 20–21. An overview of these six sets and the number
of precursors they contain is given in Table 1.

ANOVA testing suggested that all of the 24 features sig-
nificantly vary dependent on the miRBase versions (FDR
adjusted P-value below 0.05––all P-values with median per
feature and miRBase version are provided in Supplemen-
tary Table S2). Considering the base composition, we no-
ticed an increase of Guanine (G) (Figure 1A) and Cytosine
(C) and a decrease of Adenine (A) and Uracil (U) in the
precursor sequence from the first miRBase versions (1–4)
of 24%, 21%, 25%, and 30% to 30%, 30%, 17%, and 23%
in the last miRBase versions (20–21), respectively. Corre-
spondingly, we observed this increase in percentage of Gua-
nine for the 5p-miRNA (23% to 48%) and for Cytosine in
the 3p-miRNA (23% to 43%) (Figure 1B and C), as well as
a decrease of Uracil in the 5p-miRNA (32% to 17%) and
of Adenine in the 3p-miRNA (24% to 13%). Despite this
shift to a higher G/C content, which should have a stabi-
lizing effect, the minimum free energy for the precursor is
only slightly lower when comparing versions 1–4 and 20–
21 (Figure 1D). The minimum free energy of the precursor
is an important feature that may directly influence the sec-
ondary structure. The minimum free energy increased from
version 1–4 (-24.7 kj/mol), 5–7 (−24.8 kj/mol), 8–11 (−26.1
kj/mol), 12–16 (−29 kj/mol) to −30.45 kj/mol in versions
17–19 and decreased again to −26.35 kj/mol in versions 20–
21. Besides these sequence and structural features, we also
observed some differences in the chromosomal clustering of
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Figure 1. For different features, the distribution across different miRBase versions is presented as Box-Whisker plots. The novel miRNAs discovered in
our study are included in grey. The miRBase version sets are numbered according to Table 1.

precursors. While in versions 5–7 we found a maximum me-
dian value of 9.5 precursors in a 50 kb window around the
precursors in the set, we detected a median value of 0 for the
remaining later versions (adjusted P-value of 8.5*10−69).
Using the 24 described features, we propose a method for
prioritizing predicted precursors/miRNAs to facilitate fur-
ther experimental validation.

In several case-control studies, we carried out NGS from
blood of altogether 705 individuals. For each individual
a separate sequencing library preparation followed by se-
quencing on Illumina HiSeq has been carried out. Alto-
gether, we generated a total of 9.7 billion miRNA reads for
the 705 samples (≈13.5 million reads per sample). By apply-
ing miRDeep2, we generated a set of 1452 potentially novel
miRNA precursors. After mapping them back in a first
step to different RNA resources as described in the Meth-
ods section, aiming to exclude initial false positive candi-
dates, still 518 miRNA precursor candidates remained. For
these, we calculated the same features as described above
and included them also in the Box-Whiskers in Figure 1A–
D (grey boxes at the right edge). As these data show, the
novel miRNA precursors match well to the later miRBase
versions 17–19 or 20–21 while only a small portion seems
to be close to the miRNA precursors in early versions (1–4,

5–7) of the miRBase. The latter may be the most promis-
ing novel miRNAs, minimizing a potential NGS bias. To
show the similarity of precursors to each other with respect
to the 24 features, we carried out a hierarchical clustering.
As Supplementary Figure S1 demonstrates, the early ver-
sions represented in orange tend to cluster strongly together,
closest to them are the middle versions shown in blue and
the green and grey miRNAs from version 20–21 as well as
the novel miRNAs scatter around. The same behaviour can
be observed in a principal component analysis, presented in
Figure 2. Here, each dot corresponds to a 2D representation
of the 24 features for each miRNA precursor. The colour-
ing of the dots again represents the miRBase batch, analo-
gously to the colouring in the cluster analysis. While the red
/ orange and blue dots are central, especially the green and
grey plots accumulate at the edges of the plot.

A key challenge for differentiating between true and false
positive miRNA precursor candidates is the availability of a
reasonable positive set (i.e. actually validated miRNAs) and
negative set (i.e. sequences that are not miRNAs). While
at least the early miRBase versions represent such a posi-
tive set, creating a correct negative set represents a major
challenge, since miRNA genes are distributed throughout
the whole genome (21). We thus implemented an approach,
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Figure 2. Principal Component Analysis. The early miRBase versions in
red (sets I + II, see also Table 1) fit well to each other and show a central
cluster. The middle versions of the miRBase in blue (III + IV) still fit nicely
to these initial miRNA precursors, while the newer versions (V + VI) and
the miRDeep predicted precursors in green and grey scatter at the edge of
the distribution. POV: proportion of variance

which relies just on the distance from the core miRNA pre-
cursors and extracted those precursors that matched the
early versions best in the overall feature pattern. We consid-
ered the early miRBase versions (1–7) as the positive refer-
ence set and calculated for each of the features the z-score.
By using our web-service novo-miRank the reference sets
can be freely determined by other researchers using a graph-
ical user interface. To minimize the influence of single fea-
tures, the maximal absolute z-score was set to 3. The mean
value of the absolute z-scores was then calculated, repre-
senting the distance of the miRNA precursors from an ‘av-
erage’ precursor. Based on the mean and standard devia-
tion in version 1–7, we also calculated distances for the re-
maining miRBase versions and the novel miRNA precur-
sors. These are shown as histogram plots in Figure 3. Here,
the middle versions (v8-v16) show still a good proximity
to the early versions while the later versions 20–21 and es-
pecially the novel miRNA precursors from our study are
shifted significantly to the right, corresponding to higher
distances from the reference distribution. The shift between
the reference versions 1–7 and the novel miRNA precursors
indicates only a small overlap between both distributions.

Next, we asked whether our scoring and ranking ap-
proach is redundant to the score provided by miRDeep2.
To test this, we correlated both scoring approaches to each
other. The Spearman correlation demonstrated with a rho
value of −0.02 and a significance value of 0.7 that both
scores do not correlate with each other. In addition, we pre-
dicted for all 518 precursors the secondary structure with
RNAfold and manually sorted them into a good and a bad
structure set (see Supplementary Data 1 and 2). We only
added precursors in both sets that seemed likely to be a rea-

Figure 3. Histogram blot of the absolute value of average z-scores from
early versions of miRBase. With increasing version the distance from the
initial miRNA precursors increases significantly.

sonable precursor or not. This way, we had at the end 34
precursors in the bad structure set, and 60 in the good struc-
ture set. We extracted for both sets the original miRDeep2
scores, as well as our z-score measure. Since our score is
a distance measure, we would expect that the good struc-
tures have a lower score than the bad structures. On the
other hand, the miRDeep2 score is a transformed proba-
bility that assesses how likely the precursor is a real pre-
cursor, such that we would expect this score to be higher
for the good structures. To test these hypotheses, we com-
puted a Wilcoxon Rank Sum test for the miRDeep scores
of the good set and the bad set, which yielded no significant
difference (two-tailed test). In contrast, our distance score
showed a statistically significant difference between both
sets (P-value < 0.0005, two-tailed; P-value < 0.0002 for
one-tailed test, scores significantly smaller for good struc-
tures).

In Figure 4A and B, we show the secondary structure as
predicted by RNAfold for novel-mir-1570 and -mir-1005,
which represent ‘typical’ precursors according to our score.
On the right side of the figure, we summarized the nor-
malized base counts over all samples for the predicted pre-



PAGE 7 OF 11 Nucleic Acids Research, 2016, Vol. 44, No. 6 e53

Figure 4. Selected examples of secondary structures for miRNA precursors having a good score in our ranked list. Each panel presents one miRNA
precursor along with the 5p- and 3p-miRNA in orange and blue. Additionally, the mature sequences and the overall distance (score) from the reference
distribution (miRBase v1–7) is provided, as well as the summarized normalized base counts (per 10 million reads) over all samples for these precursors are
illustrated.

cursors. The 3p miRNAs are in both cases much higher
expressed than the 5p miRNAs. We picked both precur-
sors and their miRNAs for experimental validation and
obtained specific amplification products using qRT-PCR
for three of these. The fourth miRNA novel-miR-1570–5p
showed no specific product, however this potential miRNA
is only weakly expressed as shown in the base counts plot.
In Figure 5A and B we present the secondary structure and
base counts of two novel precursors, which are very diver-
gent to a ‘typical’ precursor according to our score. Figure
5A shows the lowest scoring precursor (novel-mir-712) con-
sidering the list of 518 potential precursors. The novel-mir-

712 has a much lower minimum free energy (−46.9 kj/mol)
than, e.g. the novel-mir-1570 (−37.7 kj/mol) from Figure
4A, however the predicted structure does not look like a
‘typical’ miRNA precursor. Additionally, the base composi-
tion of the lowest scoring precursor consists almost solely of
Guanine and Cytosine. Another example is shown in Figure
5B. The precursor novel-mir-1027 with length of 104 bases
and a 27 base 5p-miRNA also deviates in the G/C content
from ‘typical’ miRNA precursors and does not build the
characteristic stem loop. In addition, the summarized nor-
malized base counts for this precursor do not show the typ-
ical expression profile of miRNAs as can be observed for
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Figure 5. Selected examples of secondary structures for miRNA precursors having a bad score in our ranked list. Each panel presents one miRNA precursor
along with the 5p- and 3p-miRNA in orange and blue. Additionally, the mature sequences and the overall distance (score) from the reference distribution
(miRBase v1–7) is provided, as well as the summarized normalized base counts (per 10 million reads) over all samples for these precursors are illustrated.
Panel A shows the most divergent miRNA precursor according to our score. Panel B shows the miRNA precursor with overall highest length.

example for novel-mir-1005 in Figure 4B, although we did
not use the read counts as feature for our scoring.

The presented analysis for our 518 putative novel miRNA
precursors in comparison to the miRBase versions 1–7 can
also be run in our online tool novo-miRank, which is avail-
able at: www.ccb.uni-saarland.de/novomirank. We provide
the 518 putative precursors in the batch analysis option as
downloadable example GFF file, as well as the computed
feature table in Supplementary Table S3.

For experimental validation, we picked in total 15 ma-
ture miRNAs from the list of the ranked miRNA precur-
sors (Supplementary Table S3) and performed quantitative
real-time PCR. Specific amplification products additionally
verified by conventional Sanger sequencing were obtained
for 11 novel mature miRNAs (Figure 6A and B, Table 2
and Supplementary Table S4). As validation of correct pro-
cessing of a novel precursor, we expressed novel-mir-1005
in HEK293T cells and performed northern blots to confirm
presence of mature miR-1005–5p and -3p. As seen in Fig-

http://www.ccb.uni-saarland.de/novomirank
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Figure 6. Validation of novel miRNAs by qRT-PCR and northern blots. Panel A shows amplification products of qRT-PCR in three RNA Pools (P1-P3)
on Bioanalyzer DNA 1000 Chip, Panel B on conventional 3% agarose gels. Negative controls included a no template control for reverse transcription
(NTRT), a RT reaction without enzyme (RT-) and a no template PCR control for each specific primer (NTC). As the used qRT-PCR system depends on
poly-adenylation at the 3′ end of mature miRNAs followed by reverse transcription using an oligo-dT primer that includes a universal tag sequence for
the qPCR, amplification products of mature miRNAs are ≈80–95 bps depending on the number of A´s added to the miRNA sequence. The ladder bands
shown represent 50 and 100 bps. For 11 miRNAs specific bands at 80–90 bps could be detected. All PCR products were subcloned into pGEM and Sanger
sequenced (see Supplementary Table S4) to verify specific amplification of novel miRNAs. Panels C and D show northern blots detecting mature miRs-
1005–5p (C) and -3p (D) with sequence specific radio-labelled probes (left side) in HEK293T cells transfected with pSG5 vector with inserted mir-1005
precursor sequence. The right size of the novel mature miRNAs was confirmed by the stripping and rehybridization of both nylon membranes with specific
radio-labelled probes of the high confident miR-20a-5p (right side). Loading control demonstrates equal RNA amounts in all lanes.
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Table 2. Experimentally validated novel miRNAs

Novel miRNA name Sequence Performed experiments

miR-1005–5p AGAGGCUGAAUUCCCAGUGAGU qRT-PCR, Northern blot, Sanger
miR-1005–3p AUUCGCUGGGAAUUCAGCCUCU qRT-PCR, Northern blot, Sanger
miR-1037–5p CAGGGAUCAGAUCUUAUGUUC qRT-PCR, Sanger
miR-1037–3p CUAGCAUAAGACUGAUCCUCC qRT-PCR, Sanger
miR-1002–5p AUCCCCAGGAAAAUGCCUUUU qRT-PCR, Sanger
miR-1002–3p AAAGGCUUUUUCCUUGGGGGUU qRT-PCR, Sanger
miR-2317–3p UAUCCUCCAGUAGACUAGGGAG qRT-PCR, Sanger
miR-375–5p UUAGCCAGAGUUCCUAAAGAAA qRT-PCR, Sanger
miR-1570–3p UAAAUUAUCUGAGCCCCAGGA qRT-PCR, Sanger
miR-1331–5p CCCAAACCUUGUCUGGACAUGG qRT-PCR, Sanger
miR-608–5p AAAGCAAAUGUUGGGUGAACGG qRT-PCR, Sanger

ure 6C and D, mir-1005 precursor has been processed into
both mature forms, demonstrating its functional process-
ing in the DICER complex. To verify the the right size of
the novel miRNAs we stripped both nylon membranes and
hybridized them with specific radioactive labelled probes of
the highly confident miR-20a-5p, which was firstly discov-
ered and also validated by northern blotting by Tuschl et al.
in the year 2001 (22).

CONCLUSION

Our analysis of miRNA properties between different miR-
Base versions shows a substantial influence of all considered
features depending of the version of this reference database.
Generally, we observe a tendency of decreasing similarity
from the initial miRBase versions for almost all consid-
ered features. Especially the increasing usage of complex
high-throughput approaches along with respective in silico
methods makes a certain percentage of false positive miR-
NAs likely. While these results do not imply that even the
miRNAs with very aberrant features are actually no miR-
NAs but false positives, we assume that the likelihood of
true miRNAs among those with similar features are higher.
Therefore, we developed a tool to rank miRNA candidates
from high-throughput NGS experiments to select the most
promising candidates for experimental validation.

Own studies on 705 individual NGS miRNA sequenc-
ings totalling 9.7 billion reads delivered 1452 potentially
novel miRNAs. Given the current number of known miR-
NAs, these candidates obviously contain many false posi-
tives. Already, an initial mapping to various RNA resources
excludes over 900 candidates, leaving 518 potential miR-
NAs. By matching them to the features derived from the
miRBase analysis, we ranked all novel miRNA candidates.
This analysis suggested novel miRNAs that matched well to
the set of miRNAs derived from the initial miRBase. Using
this list, we selected a miRNA for experimental validation
and confirmed the putative as novel miRNA. Additionally,
we observed novel candidates that are likely not processed
biologically. Beyond the features considered in this study,
others such as the degree of homology between organisms,
the number and quality of target genes and others could be
added to further improve the accuracy of predicting novel
miRNAs from NGS data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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