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Abstract: Bruising is one of the main problems in the post-harvest grading and processing of
‘Zaozhong 6’ loquats, reducing the economic value of loquats, and even food quality and safety
problems are caused by it. Therefore, one of the main tasks in the post-harvest processing of loquats
is to detect whether loquats are bruised, as well as the degree of bruising of loquats, to reduce the
loss by proper treatment. An appropriate dimensionality reduction method can be used to reduce
the redundancy of variables and improve the detection speed. The multispectral analysis method
(MAM) has the advantage of accurate, rapid, and nondestructive detection, which was proposed to
identify the different bruising degrees of loquats in this study. Firstly, the visible and near-infrared
region (Vis–NIR, 400–1000 nm), the visible region (Vis, 400–780 nm), and the near-infrared region
(NIR, 781–1000 nm) were analyzed using principal component analysis (PCA) to obtain the spectral
regions and PC vectors, which could be used to effectively distinguish bruised loquats from normal
loquats. Then, based on the selected second PC (PC2) score images, a morphological segmentation
method (MSM) was proposed to distinguish bruised loquats from normal loquats. Furthermore, the
weight coefficients of corresponding wavelength points of different degrees of bruising of loquats
were analyzed, and the local extreme points and both sides of the interval were selected as the
characteristic wavelength points for multi-spectral image processing. A gray level co-occurrence
matrix (GLCM) was used to extract texture features and gray information from two-band ratio images
K782/999. Finally, the MAM was proposed to detect the degree of bruising of loquats, which included
the spectral data of three characteristic wavelength points in the NIR region coupled with texture
features of the two-band ratio images, and the classification accuracy was 91.3%. This study shows
that the MAM can be used as an effective dimensionality reduction method. The method not only
improves the effect of prediction but also simplifies the process of prediction and ensures the accuracy
of classification. The MSM can be used for rapid detection of normal and bruised fruits, and the
MAM can be used to classify the degree of bruising of bruised fruits. Consequently, the processed
methods are effective and can be used for the rapid and nondestructive detection of the degree of
bruising of fruit.

Keywords: loquats; band radio image; gray level co-occurrence matrix; multispectral analysis
method; morphological segmentation method

1. Introduction

Bruising is one of the most important factors affecting the quality and price of fruit,
and most consumers associate the absence of bruises on the surface of fruit with good
quality. The bruised areas of fruit are more susceptible to decay, which infects normal fruits
during storage and transportation [1], causing great economic losses. Due to enzyme or
chemical oxidation of phenolic compounds, it takes several hours for bruised tissues to
turn dark and brown [2], increasing transportation costs. Loquat was originally produced
in China [3], is an economic fruit with both medicinal and food uses, and it has extremely
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high economic value [4]. Therefore, one of the main tasks of post-harvest processing of
loquats is to detect whether loquats are bruised and the degree of bruising of loquats to
reduce the loss by proper treatment. Selecting loquats based on their degree of bruising in
advance can save storage and transportation costs. Lightly bruised loquats can be used
to make loquat juice and loquat paste. If the loquat bruising is moderate, the damaged
part will be removed, and the rest will be used to make canned loquat for preservation.
Seriously bruised loquats are directly handled to save storage costs.

Currently, bruised loquats are often identified manually by the operators, who evaluate
the surface bruise of fruit through naked eye observation and comparison with market
quality standards [5]. The detection results of operators are affected by personal habits, light
intensity, and subjective psychological factors, resulting in low efficiency, poor classification,
and a high risk of human error in the sorting process. Therefore, they are not suitable for
online fruit sorting in large quantities [6]. Hence, a new method is needed to detect the
degree of bruising of loquats that has high precision, is fast, and is nondestructive.

In recent years, computer vision technology has been widely used in fruit surface
detection [7], including mangoes [8], olives [9], oranges [10], and palm fruit [11]. These
results indicate that the computer vision method combined with relevant algorithms can
be used to effectively identify the surface damage in fruit. However, fruit is different in
size, hardness, maturity, impact angle, and other parameters, resulting in different areas of
bruised regions being generated when the same impact force is applied to the surface of
fruit. For bruised fruit, there is only a slight change in the bruised area, and it cannot be
classified by color characteristics. Therefore, it is difficult for the computer vision system to
recognize lightly bruised fruit. The single color feature cannot effectively segment images,
limiting the classification accuracy.

Hyperspectral imaging is an emerging technology, which combines traditional image
and spectral technology. It is widely used in agricultural product detection [12]. Therefore,
hyperspectral imaging technology may provide a means to identify and detect spectral
and spatial anomalies of agricultural products. In previous studies, hyperspectral imaging
has been widely used to identify specific damage in fruit, including decay lesions in
citrus fruit [13], external insect infestations on jujube fruit [14], latent bruised damage in
apples [15], early chilling injury in green bell peppers [16], and early decay in tomatoes [17].
Yuan et al. [18] used the interval variable iterative space contraction method (iVISSA) to
reduce the dimensionality of the original spectral data; the PLS-DA model was established,
and the detection accuracy of early bruises in jujubes was 100%. Sun et al. [19] used the
successive projections algorithm (SPA) to reduce the dimension of the original spectral
data, and the PLS-DA model was established to detect decayed honey peaches, with a
classification accuracy of 98.75%. Cen et al. [20] used the sequential forward selection
(SFS) method to reduce the dimensionality of the original spectral data; the SVM model
was established to detect the chilling injury of cucumber, with a classification accuracy
of 100%. Although hyperspectral imaging technology has a high detection accuracy, the
measurement technology still needs a lot of time, so it is not suitable for online detection of
agricultural fruit.

At present, principal component analysis (PCA) is used to reduce the dimensionality
of hyperspectral data and to identify the several characteristic wavelength points that can
be used for multispectral detection. Li et al. [21] presented the multispectral detection
method, which was used to detect skin defects of ‘Pinggu’ peaches based on the Vis–NIR
spectral region (400–1000 nm) hyperspectral data, and the PCA and two-band radio images
were used to classify nine types of skin defects, with a correct classification rate of 96.6%.
Zhang et al. [22] used PCA to reduce the dimensionality of the Vis–NIR region spectrum to
obtain five characteristic wavelengths (540, 623, 675, 805, and 975 nm), which were used to
detect defects in decayed citrus, with an accuracy of 97.73%. Xiong et al. [23] used PCA
and GLCM to obtain the 7-dimension features of the PC3 image to classify different types
of litchis, with a correct classification rate of 95%. The above study transformed hundreds
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of spectral data in the whole band of fruit into several wavelength points, or a specific PC
image for analysis, which greatly saved detection time.

This study provides a multispectral analysis method for accurate identification of the
degree of bruising of loquats. The purposes of this study are as follows:

(1) To explore the feasibility of detecting the degree of bruising of loquats by multispectral
techniques in the hyperspectral NIR region.

(2) To confirm that the PC images in the hyperspectral NIR region can effectively distin-
guish bruised loquats from normal loquats.

(3) To determine if the spectral data of three characteristic wavelength points in the
hyperspectral NIR region coupled with texture features and gray information of the
two-band ratio images method can be used to effectively detect the degree of bruising
of loquats.

2. Material and Methods
2.1. Loquat Samples

A total of 231 ‘Zaozhong 6’ loquats was purchased from a local ‘Shufeng’ orchard
(Putian, China) in March 2022. To avoid the influence of other irrelevant factors, all the
loquats selected for the experiment were similar in size (major axis diameter was about
80 mm and minor axis diameter was about 50 mm) and weight (about 70 g). Considering
the collision of adjacent loquat areas to falls during harvesting, the fall height range of
loquats was set at 0–40 cm. Adjusting the height to 0, 10, 20, 30, and 40 cm, five groups of
samples were prepared by a ball hitting the equator of the loquat, as shown in Figure 1,
which were labeled as sound (44), bruised grade I (50), bruised grade II (50), bruised grade
III (47), and bruised grade IV (40) loquats, as shown in Figure 2. All samples were stored at
room temperature of 24 °C for further processing.

2.2. Hyperspectral Image Acquisition System

As shown in Figure 3, the whole system (Gaia Sorter, Zolix, Beijing, China) consisted
of an industrial camera (Hamamatsu C8484-05G, Hamamatsu, Japan), an imaging spec-
trograph (ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland), an illumination system
with four 20 W halogen area lamps (DECOSTAR51, MR16, OSRAM, Munich, Germany),
an electrically controlled displacement platform, and a desk computer. The size of each of
the acquired hyperspectral images was 960 × 488 pixels, and the bands were 176 at 3.4 nm
intervals within the region of 397.5–1014 nm. Therefore, the acquired hyperspectral data
were three-dimensional data (x, y, λ), where (x, y) is the pixel coordinates, and (λ) is the
wavelength. Furthermore, the hyperspectral data were processed by ENVI 4.5 (Research
System Inc., Boulder, CO, USA) and the image processing toolbox of MATLAB 2021a (The
MathWorks Inc., Natick, MA, USA).
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Figure 3. Hyperspectral imaging system.

The hyperspectral system had to be preheated for 30 min before data collection to
eliminate the influence of baseline drift and avoid errors in the image acquisition process.
The parameters of the hyperspectral imaging system were adjusted by SpecView (Dualix
Spectral Imaging, Wuxi, China), and the camera exposure time was set to 6 ms. The
displacement stage advance speed of displacement stage advance was set to 1 cm·s−1. The
displacement stage retreat speed was set to 2.5 cm·s−1 to save the sample acquisition time.
Each loquat was scanned twice for data collection.

Due to the interference of dark current in the CCD camera, and the uneven distribution
of light source intensity under each band, some bands with weaker light intensity contained
more noise [24], so the acquired loquat hyperspectral images needed to be corrected by
black and white reference image [25]. The relative reflectance was calculated by Formula (1):

Rxy(λ) =
Txy(λ)− Td(λ)

Tw(λ)− Td(λ)
(1)

where Rxy(λ), Txy(λ), Td(λ), and Tw(λ) are the corrected hyperspectral image, the acquired
original hyperspectral image, and the dark and white reference images, respectively.

2.3. Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical method that transforms
the original high-dimensional data into linearly uncorrelated low-dimensional feature
variables through an orthogonal transformation, and the transformed variables are called
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principal components (PCs). PCA is a linear algorithm; thus, it cannot be used to explain
complex polynomial relationships between features. In general, the original data can be
replaced by the first n PCs when the cumulative variance contribution of the current n PCs
is sufficiently large.

In this paper, PCA was used to reduce the dimensionality of the corrected hyper-
spectral data of the loquats, and the several characteristic wavelengths discriminating
the degree of bruising of loquat were selected by the weight coefficients. These principal
component (PC) images were sorted according to the decreasing degree of contribution,
and the first PC (PC1) scores image accounted for the most significant contribution rate.

The PCA was applied to perform the hyperspectral data of loquats in Vis (425–780 nm),
NIR (781–1000 nm), and Vis–NIR (425–1000 nm), respectively. By visually comparing and
analyzing the obtained PC images, the optimal spectral ranges for effectively segmenting
the bruised and normal regions were determined. Before applying PCA, a binary mask
generated by RGB images was created to produce an image containing only fruits, which
was used to avoid interference from the background and improve recognition efficiency.
Then, all specific PC images were visually evaluated to find the image that had the most
significant contrast between the bruised area and the normal area.

2.4. Two-Band Radio Image

Each PC image was the linear sum of the original image of each wavelength multi-
plied by the corresponding weighting coefficients. Therefore, several local extreme points
and wavelength points on both sides of the interval were selected as the characteristic
wavelengths based on the weighting coefficients curve of the corresponding specific PC
image. Subsequently, PCA was performed on the multispectral image composed of selected
characteristic wavelength point images again, and the PC image with strong contrast was
selected for further processing. In addition, several published studies have also shown
that the band ratio images can be used to effectively enhance the contrast between bruised
and normal areas, and a more uniform response on the surface of fruit can be produced
by it [26]. Therefore, the band ratio image was used to develop the degree of bruising
detection algorithm of bruised loquats in this study. The two-band ratio image is calculated
by Formula (2):

Ka/b =
Ja

Jb
(2)

where Ja and Jb are the a and b wavelength original hyperspectral image, respectively, and
Ka/b is the two-band radio image.

2.5. Morphological Segmentation Method

The morphological segmentation method is proposed based on morphological pro-
cessing, which includes morphological filtering and morphological gradient operation [27].
Erosion, dilation, opening, and closing operations are the basis of morphological filtering,
and these operations can be used to remove weak noises, and reduce the effect of strong
noises. The morphological opening operation can eliminate the light features. The closing
operation can eliminate the dark features. Morphological gradient operation can enhance
the contrast between a bruised area and a normal area, simplify the image boundary, and
make the image smoother. However, the morphological gradient operation also enhances
the noise in the image, which is eliminated by the morphological opening and closing
operation, resulting in a simplified image with basic boundaries for further processing.
A flowchart of the MSM is shown in Figure 4; the PC2 image of the NIR region was ac-
quired after PCA was extracted, and the background information was removed by the
binarization template of the original RGB image. Then, the ‘bwareaopen’ function was
used to remove the noise in the image, and the opening and closing operations were used
to eliminate the overly bright and dark feature points in the image. Finally, the morphology
gradient operation and edge extraction algorithm were used to obtain the edge boundary
of the sample.
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2.6. Gray Level Co-Occurrence Matrix

Haralick et al. [28] proposed the statistical method of GLCM, which is a broad texture
analysis method based on the premise that the spatial distribution relationship between
pixels in an image contains the image texture information. Due to the large amount of
data in GLCM, they are generally not directly used as texture features, but some statistics
constructed based on them are used as texture classification features. In this study, the
energy, entropy, contrast, correlation information, and inverse different moment features
of each pixel point in four directions were extracted based on ‘Haralick’ features for
subsequent processing [29].

2.7. Least Squares Support Vector Machine

The least squares support vector machine (LS-SVM) is a kernel function learning
machine that follows the principle of structural risk minimization. It is an improvement of
the SVM as the inequality constraint of SVM is replaced by an equation constraint. The
sum of squared errors is used as the loss function, and the quadratic programming problem
is transformed into a system of linear equations problem, which was used to improve the
speed and convergence accuracy of the model.

2.8. Multispectral Analysis Method

The flowchart of the MAM based on the spectra of three characteristic wavelength
points combined with the two-band radio image K782/999 is shown in Figure 5. Firstly,
the original corrected hyperspectral in the NIR region was applied by PCA. Then, the
MSM was used to segment the PC2 image with the most obvious bruised region, and only
the segmentation results of the bruised area were retained. Furthermore, the number of
non-zero pixels in the segmentation result was calculated. If it was zero, it was marked as a
normal sample. If it was a non-zero value, it was marked as a bruised sample for subsequent
processing. The weight curve of the PC2 image was analyzed, and the characteristic
wavelength points (782 nm, 944.3 nm, 999.3 nm) were selected to obtain the two-band ratio
images. Finally, the MAM based on the two-band ratio image K782/999 combined with the
three characteristic wavelengths was used for subsequent classification of bruised loquats.
As shown in Figure 5, the contrast between the bruised area and the normal area of the
sample in the corresponding grayscale images of 782 nm, 944.3 nm, and 999.3 nm was far
inferior to that of the PC2 image and band ratio image K782/999. At the same time, their
illumination intensity had a heavy influence, which made the brightness of the images
higher than the actual brightness, and the deviation to the segmentation of the bruised area
in loquats was acquired. Although the PC2 image weakened the influence of light intensity,
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it still brought deviation. Therefore, the band ratio image was used to build a multispectral
system in this study.
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3. Results and Discussion
3.1. Spectra of ROIs in Samples

Because every pixel in a hyperspectral image contains spectral information, the char-
acteristic spectrum is extracted from a rectangular region of interest (ROI) containing
about 100 pixels, which can reduce the error of spectral information difference between
different pixels. The averages of reflectance of five degrees of bruising in the region of
397–1100 nm are shown in Figure 6, including bruised grade I, bruised grade II, bruised
grade III, bruised grade IV, and sound loquat. As shown in Figure 5, the spectrum outside
the range of 425–1000 nm had a significantly low SNR, which may have been caused by the
dark current and low quantum efficiency of the CCD detector. Therefore, the images in the
wavelength range of 425–1000 nm were used to subsequent analysis. All the spectra had
similar characteristics and curve shapes, and the values of ROI reflectance were different
for different degrees of bruising of loquats.

3.2. PCA in Vis–NIR Region

PCA is an effective means to reduce the dimensionality of hyperspectral data, and it
can be used to enhance the contrast of ROIs and remove noise. PCA was performed on
hyperspectral reflectance images of different degrees of bruising of samples in the Vis–NIR
region, and the first three PC images were obtained, as shown in Figure 7. The subsequent
PC images had too much noise, drowning the real information of loquats, and were not
meaningful for bruised loquat detection, so they were not suitable for segmenting the
bruised region in loquats. To make a more obvious contrast, the RGB images of loquats
were placed in the first line and compared with RGB images. It could be seen in some
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PC images that the characteristics of the bruised region were more obvious. The PC1
image provided the average gray value information of the loquat over the entire spectral
region and did not provide unique features of the bruised region in loquats. Therefore, the
PC1 image is not suitable for detecting bruised loquats. However, it was also difficult to
find a PC image that could be used to detect all degrees of bruising of loquats. Further
studies showed a clear contrast between some bruised and normal regions in some specific
PC images, which were manually marked using a solid blue line, as shown in Figure 7.
Hence, these PC images could be used to distinguish specific degrees of bruising. The PC2
images could be used to detect bruised grade IV loquat. The PC3 images could be used to
determine bruised grade I and II and sound loquats.
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Figure 7. RGB and the PC images (PC1–PC3) in the Vis–NIR region for (A) bruised grade I, (B) bruised
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between the bruised and normal region in the PC image).

3.3. PCA in the Vis Region

Generally, whether loquat is bruised or not can be directly judged by the naked eye,
so it is easier to recognize in the Vis region, because the grayscale changes between bruised
and normal regions are mainly affected by the spectra from this region. Therefore, the
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spectral data of the Vis region (Vis, 425–780 nm) was performed by PCA, and the generated
PC images are shown in Figure 8. The first line of Figure 8 represents the RGB images of
each bruised degree of loquats; the PC1 image could only reflect the grayscale information
of the original samples. The sample information in PC2 and PC3 images was drowned by
noise, and only sound loquats could be distinguished by the PC3 images. Therefore, the PC
images in the Vis region cannot be used to effectively segment the bruised area of loquats
based on visual evaluation and human eye identification.
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3.4. PCA in the NIR Region

As shown in Figure 9, the results of the NIR region by PCA were better than the results
of the Vis–NIR and Vis regions. The first line of Figure 9 shown the RGB images of different
degrees of bruising of loquat; the PC1 images could only reflect the grayscale information
of the original samples. The information in the PC3 image was drowned by noise, so they
were not suitable for the segmentation of the bruised region of loquats. The PC2 images
had the most obvious contrast in the bruised region of loquats, so they could be used
to distinguish the degree of bruising of loquats. Although the PC2 images reflected the
bruised information of loquats, the interference of light intensity information was brought
by it, which needed to be eliminated in the subsequent processing. Gowen et al. [30] used
PC2 images to detect bruised regions on mushroom surfaces; this study is consistent with
Gowen’s conclusion.
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Figure 9. RGB and the PC images (PC1–PC3) in the NIR region for (A) bruised grade I, (B) bruised
grade II, (C) bruised grade III, (D) bruised grade IV, and (E) sound. (Solid blue line: a clear contrast
between the bruised and normal region in the PC image).

3.5. Morphological Segmentation Method

To improve the detection efficiency of the multispectral system, the MSM was used
to identify normal loquats, and the bruised region of loquats was used for subsequent
processing. Firstly, the original corrected hyperspectral data in the NIR region was applied
by PCA. Then, the MSM was used to segment the PC2 images with the most obvious
bruised area of loquats, and only the segmentation results of bruised area were retained,
as shown in Figure 10. Furthermore, the number of non-zero pixels in the segmentation
result was calculated. If it was zero, it was marked as a normal sample. If it was a non-zero
value, it was marked as a bruised sample for subsequent processing. As a comparison, the
Otsu method was used to segment the PC2 images. The traditional Otsu method cannot
completely segment the bruised region of fruit [31]. Compared with the results of the
MSM proposed in this paper, the results of the Otsu are shown in Figure 10A. The Otsu
method resulted in under-segmentation for bruised grade I and could only segment part of
the bruised area of loquats. As shown in the Otsu in Figure 10D, the loquat with bruised
grade IV was over-segmented, and the area outside the bruised area was segmented. The
segmentation results for bruised grade II, bruised grade III, and normal loquats were good
by the Otsu method. In fact, the loquats were different in size, hardness, maturity, impact
angle, and other parameters, resulting in different areas of bruised regions being generated
when the same impact force was applied to the surface of loquats. Therefore, it was difficult
to classify different degrees of bruising of loquats by the number of pixels in the region.
Hence, the MSM was used to discriminate between normal and bruised loquats, and it was
not used for the degree of bruising of loquat classification.
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Figure 10. Segmentation results based on the PC2 images by using the MSM and Otsu for (A) bruised
grade I, (B) bruised grade II, (C) bruised grade III, (D) bruised grade IV, and (E) sound. (MSM:
morphological segmentation method, BMSM: boundary extraction based on MSM, BOtsu: boundary
extraction based on Otsu).

3.6. PCA in the Multispectral Image

Weight coefficients at local peaks and valleys can be regarded as characteristic points,
and the corresponding wavelength images were considered key wavelength images for
classification [21]. In previous studies, the data of Vis and Vis–NIR regions could not
classify the collision degree of fruit, so we only analyzed the data from the NIR region.
Due to the individual differences of fruit, different fruit have different characteristic wave-
lengths [21,24]. The weight coefficients of different degrees of bruising of loquats are
shown in Figure 11. There were clearly more difference at 782 nm, 944.3 nm, and 999.3 nm
in the NIR region. The specific PC images corresponding to these important bands had
obvious characteristics, so 782 nm, 944.3 nm, and 999.3 nm were selected as characteristic
wavelengths (multispectral image) for further analysis.

In previous studies, the MSM was used to perfectly distinguish normal loquats from
bruised loquats. In this study, we only discussed the bruised grade classification of bruised
loquats. Based on the above analysis results, it was difficult to use the specific PC image by
PCA in the Vis–NIR and Vis regions to detect all degrees of bruising of loquats. The PC2
images obtained by PCA in the NIR region could be used to detect all degrees of bruising of
loquats. However, 65 wavelength points were still used for PCA in the NIR region, which
took a lot of time in practical application. It was still a challenge to develop a multispectral
system for the online detection of loquats. Therefore, the multispectral images of 782 nm,
944.3 nm, and 999.3 nm from the NIR region were used, and they were performed by PCA
for further analysis; the results are shown in Figure 12.
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Figure 12. RGB and the PC images (PC1–PC3) in multispectral images from the NIR region for
(A) bruised grade I, (B) bruised grade II, (C) bruised grade III, and (D) bruised grade IV.

Compared with the results in Figure 9, the contrast of the PC2 images of the bruised
area of loquats was basically unchanged. However, the contrast of PC3 images between
bruised and normal regions was better. The PC3 images could be used to accurately identify
the root of loquats, and the influence of light was eliminated by it. However, it still had too
much noise and could not be directly segmented, which requires further analysis.

3.7. Band Ratio Image

Further analysis of the NIR region weight curve was conducted, as shown in Figure 11.
The weight coefficient values of the three characteristic wavelengths (782 nm, 944.3 nm, and
999.3 nm) had absolute differences. Therefore, better results may be obtained by analyzing
the two-band ratio image [21,24]. The two-band ratio images (K782/944, K782/999, K944/999)
with degree of bruising of loquats are shown in Figure 13. The contrasts of the two-band
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ratio images of K782/944 and K782/999 between the bruised areas and normal areas were
clear. Compared with the PC images shown in Figure 10, the two-band ratio images had a
more uniform response on the sample surface, eliminating the influence of light. However,
the band ratio image K944/999 brought more noise in the background, and the contrast
between bruised and normal regions was not as good as the band ratio image K782/999.
Therefore, the two-band radio image K782/999 was the final target image. The multispectral
analysis method was developed to classify four degree of bruising of loquats by using
its average grayscale, texture features, and the spectra of three characteristic wavelength
points (782 nm, 944.3 nm, and 999.3 nm).
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Figure 13. RGB and the two-band radio images (K782/944, K782/999, K944/999) in the multispectral
image from the NIR region for (A) bruised grade I, (B) bruised grade II, (C) bruised grade III, and
(D) bruised grade IV.

3.8. Classification of Bruised Loquats

In this study, the MAM was evaluated by 187 independent bruised loquats, and the
LS-SVM algorithm was used to verify the performance of various band selection methods.
The results of classification are shown in Table 1. Four degrees of bruising of loquats with
bruised grades I (50), II (50), III (47), and IV (40) were studied. The samples were divided
into modeling and prediction sets by the Kennard–Stone method with a ratio of 3:1 [32].
In this study, different band selection methods were used to reduce the dimensionality
of the original spectral data to improve the detection speed. The number of spectra by
genetic algorithm (GA) [33], uninformative variable elimination (UVE) [34], successive
projections algorithm (SPA) [35], competitive adaptive reweighted sampling (CARS) [36],
and the multispectral analysis method (MAM) were 8, 9, 10, 16, and 3, respectively, as
shown in Figure 14. Compared with the number of characteristic spectra selected by these
scholars [33–36], the MAM proposed in this paper used the least number of spectra.
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Table 1. Classification results of characteristic wavelengths based on the LS-SVM model.

Method Number

Accuracy (%)

RBF LIN

S-LS-SVM S-T-LS-SVM S-LS-SVM S-T-LS-SVM

Raw 172 89.13 91.30 89.13 89.13
GA 8 86.96 86.96 80.43 80.43

UVE 9 82.61 86.96 80.43 80.43
SPA 10 82.61 89.13 80.43 82.61

CARS 16 84.78 89.13 84.78 84.78
MAM 3 91.30 80.43

RBF: radial basis function; LIN: LIN kernel function; S-LS-SVM: LS-SVM model based on spectra; S-T-LS-SVM:
LS-SVM model based on spectra combining texture features.

Foods 2022, 11, x FOR PEER REVIEW 14 of 17 
 

 

the original spectral data to improve the detection speed. The number of spectra by ge-

netic algorithm (GA) [33], uninformative variable elimination (UVE) [34], successive pro-

jections algorithm (SPA) [35], competitive adaptive reweighted sampling (CARS) [36], and 

the multispectral analysis method (MAM) were 8, 9, 10, 16, and 3, respectively, as shown 

in Figure 14. Compared with the number of characteristic spectra selected by these schol-

ars [33–36], the MAM proposed in this paper used the least number of spectra. 

 

Figure 14. The locations of the reflectance spectra characteristic wavelengths were selected by (A) 

GA, (B) UVE, (C) SPA, (D) CARS, and (E) MAM. (MAM: multispectral analysis method). 

Based on the differences of kernel function, and band selection methods, the LS-SVM 

models were established based on spectra (S-LS-SVM), and spectra combined with texture 

features (S-T-LS-SVM). The kernel functions included the radial basis function (RBF), and 

linear kernel function (Lin) [37]. As shown in Table 1, the overall accuracy of the LS-SVM 

model based on RBF (RBF-LS-SVM) was better than the LS-SVM model based on the LIN 

kernel function (LIN-LS-SVM). The accuracy of the S-T-LS-SVM model was better than 

the S-LS-SVM model for all band selection methods. 

In the RBF-S-T-LS-SVM model, the classification accuracy of Raw, GA, UVE, SPA, 

CARS, and MAM processed data were 91.30%, 86.96%, 86.96%, 89.13%, 89.13%, and 

91.30%, respectively. Although the Raw-RBF-S-T-LS-SVM model had the same accuracy 

as MAM-RBF-S-T-LS-SVM, only three spectral features were used in the MAM, which 

greatly saved detection time. Therefore, the performance of the MAM model was better. 

Li et al. [38] used the LS-SVM algorithm to classify the bruising time of peaches. Although 

his research showed that the accuracy rate for bruised 36 h of peaches was 100%, it used 

176 spectra, which would consume a lot of time in practical application. The above results 

indicate that the MAM proposed in this study can achieve the highest accuracy with the 

minimum number of spectra. It provides a possibility for rapid online detection of agri-

cultural products. 

  

Figure 14. The locations of the reflectance spectra characteristic wavelengths were selected by (A) GA,
(B) UVE, (C) SPA, (D) CARS, and (E) MAM. (MAM: multispectral analysis method).

Based on the differences of kernel function, and band selection methods, the LS-SVM
models were established based on spectra (S-LS-SVM), and spectra combined with texture
features (S-T-LS-SVM). The kernel functions included the radial basis function (RBF), and
linear kernel function (Lin) [37]. As shown in Table 1, the overall accuracy of the LS-SVM
model based on RBF (RBF-LS-SVM) was better than the LS-SVM model based on the LIN
kernel function (LIN-LS-SVM). The accuracy of the S-T-LS-SVM model was better than the
S-LS-SVM model for all band selection methods.

In the RBF-S-T-LS-SVM model, the classification accuracy of Raw, GA, UVE, SPA,
CARS, and MAM processed data were 91.30%, 86.96%, 86.96%, 89.13%, 89.13%, and
91.30%, respectively. Although the Raw-RBF-S-T-LS-SVM model had the same accuracy
as MAM-RBF-S-T-LS-SVM, only three spectral features were used in the MAM, which
greatly saved detection time. Therefore, the performance of the MAM model was better.
Li et al. [38] used the LS-SVM algorithm to classify the bruising time of peaches. Although
his research showed that the accuracy rate for bruised 36 h of peaches was 100%, it used
176 spectra, which would consume a lot of time in practical application. The above results
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indicate that the MAM proposed in this study can achieve the highest accuracy with
the minimum number of spectra. It provides a possibility for rapid online detection of
agricultural products.

Further analysis of the classification results of the MAM-RBF-LS-SVM model showed
that the bruised grade I and IV loquats could be 100% recognized. The misjudged samples
mainly came from the bruised grade II loquats and the bruised grade III loquats, as shown
in Figure 15. It can be seen from Figure 15 that in the group of bruised grade II of loquats,
75% of the samples were identified, 8.3% of the samples were misclassified as bruised grade
I, and 16.7% of the samples were misclassified as bruised grade III.
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In the group of bruised grade III loquats, 91.7% of the samples were identified, and
8.3% of the samples were misclassified as bruised grade II. Observing and analyzing
the misjudgment samples, we found that the loquats were different in hardness, shape,
and maturity, so the damage of the bruised grade II samples was close to that of the
bruised grade I or III samples, resulting in misjudgment. Based on the above analysis,
the classification model can be optimized by improving the discriminant accuracy of the
bruised grade II group.

4. Conclusions

In this study, the hyperspectral data of Vis–NIR (425–1000 nm), Vis (425–780 nm), and
NIR (781–1000 nm) regions were used to evaluate the classification performance of the
bruised and normal loquats, and the NIR region was the best. The MSM was proposed to
classify the bruised loquat and normal loquat, which could improve the speed of detection
and facilitate the transportation of normal loquats. Finally, the MAM was proposed to
effectively discriminate four degrees of bruising of loquats, with an overall accuracy of
91.30%. These results indicate that the proposed methodology based on hyperspectral
imaging is a promising tool to assess the quality of loquat fruits. The MSM can be used for
the rapid detection of normal and bruised fruits, and the MAM can be used to classify the
degree of bruising of bruised fruits, significantly reducing the online detection time. The
new methods proposed in this study can be used to realize the rapid, non-destructive, and
high precision online detection of fruit.
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