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ABSTRACT

Motivation: So far various bioinformatics and machine learning
techniques applied for identification of sequence and functionally
conserved residues in proteins. Although few computational
methods are available for the prediction of structurally conserved
residues from protein structure, almost all methods require
homologous structural information and structure-based alignments,
which still prove to be a bottleneck in protein structure comparison
studies. In this work, we developed a neural network approach
for identification of structurally important residues from a single
protein structure without using homologous structural information
and structural alignment.
Results: A neural network ensemble (NNE) method that utilizes
negative correlation learning (NCL) approach was developed
for identification of structurally conserved residues (SCRs) in
proteins using features that represent amino acid conservation and
composition, physico-chemical properties and structural properties.
The NCL-NNE method was applied to 6042 SCRs that have been
extracted from 496 protein domains. This method obtained high
prediction sensitivity (92.8%) and quality (Matthew’s correlation
coefficient is 0.852) in identification of SCRs. Further benchmarking
using 60 protein domains containing 1657 SCRs that were not part
of the training and testing datasets shows that the NCL-NNE can
correctly predict SCRs with ∼90% sensitivity. These results suggest
the usefulness of NCL-NNE for facilitating the identification of SCRs
utilizing information derived from a single protein structure. Therefore,
this method could be extremely effective in large-scale benchmarking
studies where reliable structural homologs and alignments are
limited.
Availability: The executable for the NCL-NNE algorithm is available
at http://www3.ntu.edu.sg/home/EPNSugan/index_files/SCR.htm
Contact: epnsugan@ntu.edu.sg; chakraba@ncbi.nlm.nih.gov.
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The overall fold is very important to maintain a suitable framework
for protein function. It is well established that the structure of
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proteins is determined by their amino acid sequences (Anfinsen,
1973). Although there is an exponential increase in the available
protein structures, the number of protein folds is still very limited
in nature (Chothia, 1992). In other words, many evolutionary and
functionally related proteins with well-diverged sequences still keep
the same folding pattern. This suggests that the protein folding
pattern depends not only on the whole sequence but also on some
small segments of residues that are conserved during evolution in
both sequence and structural aspects. These residues, which might
have important implications in maintenance of protein folds, are
termed as SCR.

Sequence-based motifs and conserved residues are useful
in understanding the conservational variation and have been
successfully linked to functionally important sites indicating higher
selection pressure on them (Neuwald et al., 1995; Saqi and
Sternberg, 1994). However, SCRs identified at 3D structure level
provide more meaningful information towards understanding the
structure–function relationship of proteins (Paiardini et al., 2005;
Peters et al., 2006; Shapiro and Brutlag, 2004). In our earlier
works (Chakrabarti and Sowdhamini, 2003; Chakrabarti et al.,
2003, 2006; Pugalenthi et al., 2007), we identified structurally
invariant segments at superfamily level where proteins are distantly
related but retain similar fold and biological functions. These
structural motifs were recognized on the basis of both sequence
conservation and preservation of important structural properties,
such as solvent accessibility, secondary structural content, hydrogen-
bonding pattern and residue compactness. They are also found to
maintain a similar spatial orientation pattern, when compared across
different proteins belonging to the same family or superfamily.
Therefore, these SCRs might be crucial for the formation of common
structural core that provides optimal environment for the protein
to perform its molecular or biological function. SCRs might also
provide important clues as sequence–structural signature of multiple
folding units for each protein fold, and therefore can be extremely
useful in protein engineering and design experiments.

Identification of SCRs is a difficult and challenging task as
it requires careful examination of 3D structural homologs and
development of reliable structural alignments. Additionally, many
protein structures are reported to have limited or no structural
homologs. For example, 566 out of 1194 superfamilies in PASS2
database have only single structural entry (Bhaduri et al., 2004).
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Therefore, identification of SCRs from protein structure that has
limited or no homologous structural information is very important
and poses a challenging task.

In this study, we propose a neural network ensemble (NNE)
method that utilizes negative correlation learning (NCL) for
classification and prediction of SCRs. As the availability of 3D
structures and structural alignments are still limited in protein
comparison studies, the NCL-NNE prediction approach provides
a useful option that can successfully predict important structural
residues utilizing a single protein structure.

2 METHODS

2.1 The dataset
The dataset used for training and testing our algorithm was obtained from
MegaMotifBase database (Pugalenthi et al., 2008a), which contains protein
structural motifs for structurally aligned protein domains related at the
superfamily level. These structural motifs were identified by screening
the superfamily alignment (structural alignment) positions for conservation
of important structural properties, such as solvent accessibility, secondary
structural content, hydrogen-bonding pattern and residue compactness. In
addition to the structural motif definition for the superfamily, this database
also provides structural motif information for each individual structure by
consulting the structural alignments. Thus, SCRs for individual domain
can be extracted from the structural motif definitions provided by the
MegaMotifBase database (Pugalenthi et al., 2008a).

In this study, we used 191 superfamilies for classification. Out of 191,
131 superfamilies belonging to 14 All-α, 25 All-β, 47 α/β, 37 α + β, 4 small
domains, 3 multidomain protein and 1 membrane/cell surface protein classes
were selected for training and testing. From 131 superfamilies, 496 domains
were chosen for training and testing. From the remaining 60 superfamilies
that do not overlap with training and testing datasets, 60 protein domains
were used for benchmarking study. Each protein domain sequence in our
dataset has <40% sequence identity to any other sequences in the training,
testing and benchmarking datasets (Supplementary Material 1 and 2).

We used 6042 SCRs (positive dataset) and 105 204 non-SCRs (negative
dataset) that were obtained from the selected 496 domains for training
and testing. To avoid imbalance between positive and negative (residues)
datasets, we randomly selected 3021 SCRs from 6042 positive samples and
3021 non-SCRs from the negative samples for training. In the same way,
the test data were constructed from the remaining 3021 positive samples
and 3021 residues randomly chosen from the remaining negative samples
(Supplementary Material 3 and 4). In addition, 1657 SCRs were obtained
from 60 protein domains for benchmarking.

2.2 Feature set
Each residue in the SCR dataset is represented by 212 features that
include sequence and structural information extracted from the homologous
alignment and 3D structure (Supplementary Material 5). Homologous
sequences for each protein domain were obtained using five rounds of PSI-
BLAST (Altschul et al., 1997) against NCBI non-redundant protein database,
with an E-value cutoff of 0.001. CLUSTALW (Thompson et al., 1994)
was used to align the homologous sequences. Sequences having <80%
of the length of the query structure were removed from the alignment.
Secondary structural information was assigned for all sequence homologs
in the alignment using PSIPRED (McGuffin et al., 2000). The details of the
features used in this study are briefly mentioned below.

Conservation score: sequence conservation score for each alignment
position was evaluated consulting a standard 20× 20 substitution matrix
(Johnson and Overington, 1993).

Amino acid type and functional groups: we categorized 20 amino acids
into 10 functional groups based on the presence of side chain chemical group,

such as phenyl (F/W/Y), carboxyl (D/E), imidazole (H), primary amine
(K), guanidino (R), thiol (C), sulfur (M), amido (Q/N), hydroxyl (S/T) and
non-polar (A/G/I/L/V/P). The compositional diversities of each SCR were
evaluated by calculating the frequency of 20 amino acids and 10 functional
groups within the SCR alignment positions.

Structural features: structural features, such as solvent accessibility,
secondary structures, hydrogen bonds and residue compactness were
computed from the individual protein structure using the JOY package
(Mizuguchi et al., 1998).

Physico-chemical properties: matrices containing quantitative values
for amino acids’ physico-chemical properties scaled between 0 and 1
were obtained from the UMBC AAIndex database (Kawashima et al.,
1999). The selected physico-chemical properties include molecular weight,
hydrophobicity, hydrophilicity, hydration potential, refractivity, average
accessible surface area, free energy transfer, flexibility, residue volume,
mutability, melting point, optical activity, side chain volume, polarity and
isoelectric points.

Sequence and structural features from spatial neighbors: spatially
neighboring residues were shown to have positive influence in identification
of critical sites in proteins (Pugalenthi et al., 2008b). The residues whose
Cβ atoms were found within 5 Å distance from the Cβ of a SCR were
considered as spatial neighbors of the SCR. In case of glycine, a virtual Cβ

atom was considered. Content of amino acid type and functional groups,
structural features and physico-chemical property values were computed
from all spatial neighbors for each SCR.

2.3 Classification protocol
The classification model presented in this article was built through three
steps. First, all the input features of training data were normalized to be
between -1 and 1 by a linear function. Then, a NNE was trained by a method
called NCL (Liu and Yao, 1997, 1999a, b; Yao et al., 2001). Finally, ‘feature
selection’ was conducted to investigate whether we can still achieve good
prediction performance with only a subset of features.

NCL approach is widely used for training the NN ensembles. Below, we
briefly describe the basic ideas and steps of the NCL and readers are requested
to refer the original publications (Liu and Yao, 1997, 1999a, b; Yao et al.,
2001) for full details.

Suppose that we have a training set of size N , denoted by

D = {(x1,y1),...,(xN ,yN )}
where x∈Rd is the d-dimensional training samples and y is the corresponding
class labels. NCL is designed to train a NN ensemble of the form:

F(n) = 1

M

M∑

i=1

Fi(n) (1)

where M is the number of the individual NNs in the ensemble. Fi(n) is the
output of the i-th NN on the n-th training sample and F(n) is the output of
the ensemble on the n-th training sample.

NCL employs the standard back-propagation algorithm to train the
individual NNs in parallel. The key to the success of NCL is the use of
the error function. NCL uses the sum of the mean squared error (MSE) and
a penalty term as the error function during the learning process. When the
n-th training sample is presented, the i-th NN is trained to minimize the error
function:

Ei(n) = 1

2
(Fi(n)−yn)2 +λpi(n) (2)

where λ is a positive parameter controlling the tradeoff between the MSE
(accuracy) and y is the class label and the penalty term (diversity) can be
calculated by:

pi(n) = (Fi(n)−F(n))
∑

j �=i

(Fj(n)−F(n)) (3)

It can be seen from Equation (3) that the penalty term explicitly
encourages the i-th NN to be negatively correlated with the remaining NNs
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in the ensemble. By this means, diversity among the individual NNs is
achieved. It can also be seen that with λ = 0 we would have an ensemble
exactly equivalent to training a set of NNs independently of one another.
When λ is increased, more and more emphasis would be placed on seeking
the negative correlation.

The NN ensemble used in this work has five NNs. Each individual NN is a
feed forward network with one hidden layer. The number of hidden neurons
is set to five for all individual NNs. When employing NCL to train the NN
ensemble λ is set to 1 and the number of learning epochs is set to 100.

2.4 Feature selection
Since the number of features in this study is high, we conducted feature
selection to decrease the size of the features by omitting the non-effective
features. We designed a wrapper approach to conduct feature selection
for our dataset. A feature selection method typically consists of two main
components: a selection criterion and a search scheme. The selection criterion
measures the usefulness of any feature subset, and feature selection seeks
the feature subset that optimizes the selection criterion. The search scheme
determines how to search for the optimal feature subset among all possible
combinations of features. In this work, the Matthew’s Correlation Coefficient
(MCC) defined in Equation (7) was used as the selection criterion, and we
adopted a sequential backward elimination (or recursive feature elimination)
(Webb, 2002) search scheme in this study. The feature selection procedure
is described briefly in the following.

We trained the NN ensemble using the whole feature set (i.e. the original
training dataset). After that, the trained NN ensemble was preserved and the
MCC was calculated. Then, starting from the whole feature set, features
were iteratively pruned. For each individual NN, we removed the input
neurons (and the weights associated to them) that correspond to the omitted
features, while keeping all the other structure of the NN unchanged. The
output of the NN ensemble was obtained using Equation (1) and the MCC
was calculated based on it. At each iteration, the feature whose omission led
to the largest MCC was pruned. The feature selection procedure terminates
when a predefined number of features have been pruned.

2.5 Performance measures
Four different parameters have been used to measure the performance of
the prediction method. These four parameters can be derived from the four
scalar values: TP (true positives: number of correctly classified SCR), TN
(true negatives: number of correctly classified non-SCR), FP (false positives:
number of non-SCR incorrectly classified as SCR) and FN (false negatives:
number of SCR incorrectly classified as non-SCR). Using the following
formulas, we calculated sensitivity, specificity, positive prediction value
(PPV) and MCC.

Sensitivity =
TP

TP+FN
(4)

Specificity =
TN

TN+FP
(5)

PPV =
TP

TP+FP
(6)

MCC =
TP∗TN−FP∗FN√

(TP+FN)(TP+FP)(TN+FP)(TN+FN)
(7)

3 RESULTS

3.1 Distribution of SCRs
We collected 6042 SCRs from 131 protein superfamilies enlisted in
MegaMotifBase database (Pugalenthi et al., 2008a). Generally SCRs
maintain a basal level of sequence conservation (≥30% sequence
identity), but there could be more conserved residues in proteins

Table 1. Residue conservation between SCR and non-SCR residues

Residue conservation (%) No. of residues No. of SCR

30–40 31648 2518
41–50 15848 1976
51–60 5226 1122
61–70 1620 254
71–80 276 88
81–90 238 58
91–100 102 26
Total 54958 6042
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Fig. 1. Distribution of spatial distances between pairs of SCRs. Spatial
distance between two SCRs was calculated utilizing the Cβ–Cβ atom
coordinates supplied in the individual PDB (Berman et al., 2000) file.

than the SCRs. As shown in Table 1, there are totally 54 958 residues
from 496 domains that fall within the residue conservation range of
30–100%. Out of 54 958 residues, only 6042 are SCRs. Therefore,
only 11% of sequentially conserved residues account for the SCRs.
This observation suggests that although the SCRs are conserved in
the sequence, it is difficult to specifically identify the SCRs just by
looking at the residue conservation score.

Further, we examined the spatial distances between all pairs of
6042 SCRs calculated from each protein domain (Fig. 1). Figure 1
provides the distance distribution of SCRs along with distances (Cβ–
Cβ distances) calculated from all non-SCR pair as well as randomly
selected non-SCR pairs (numbers equal to the SCR pairs). From this
distance distribution, it can be seen that higher number SCR pair
distances fall in lower distance bins (<20 Å) compared with that of
non-SCRs. Therefore, it is reasonable to state that SCRs prefer a
probable requirement of spatial proximity.

3.2 Prediction of SCR
We employed the NCL-NNE for classification and subsequent
prediction of SCRs in proteins. The NCL-NNE was trained using
the training dataset containing 3021 SCRs (positive samples) and
3021 non-SCRs (negative samples), while the performance of the
classifier was tested on the testing dataset containing the remaining
3021 SCRs and 3021 randomly selected negative samples. Our
NCL-NNE method achieved 92.8% sensitivities with MCC score
of 0.852 in the testing data using all the 212 features that represents
the compositional and conservational properties of SCRs (Table 2).

We applied a feature reduction protocol utilizing seven feature
subsets to eliminate the redundant features. As seen in Table 2,
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Table 2. Classification results achieved for the testing data using different
feature subsets

No. of features Sensitivity (%) Specificity (%) PPV (%) MCC

5 92.59 85.95 86.83 0.787
8 90.47 91.30 91.23 0.818

10 92.19 91.63 91.68 0.836
50 91.03 93.52 93.35 0.846

100 91.72 92.73 92.66 0.845
150 92.06 92.57 92.53 0.846
200 91.00 93.20 93.05 0.842
212 92.82 92.50 92.52 0.852

Fig. 2. ROC curves. ROC curves were plotted utilizing the fractions of TP
and FP values derived using top 10 features and all features.

feature selection (reduction) generally does not deteriorate the
classification performance much until the number of features
decreases below 10. Before that, the usage of smaller number of
features only leads to a very little decrease in the sensitivity and
specificity rates. We also investigated the influence of the feature
reduction by plotting receiver operating characteristic (ROC) curves
(Fig. 2) derived from the sensitivity (TP rate) and specificity (FP
rate) values for the classifiers using all the features and the 10
best performing features, respectively. Figure 2 shows that the
classifiers built with the 10 features and the whole feature set perform
comparably. Such observation is also supported by the similar values
(0.9682 for 10 features and 0.9762 for all features) of the area under
curve (AUC) obtained from the ROC curves.

Although the trained NCL-NNE shows good performance on
the testing data, it is natural to ask whether the performance of
NCL-NNE depends on any specific split of training and testing
data. To verify this issue, we also conducted 5-fold cross-validation
procedures on the training data. For each feature subsets presented
in the Table 2, the corresponding performance measures achieved
in the 5-fold cross-validation procedure are also provided in
Table 3. If NCL-NNE exhibits significantly different performance
in the cross-validation and testing procedure, then its performance

Table 3. Classification results achieved for the training data using 5-fold
cross-validation on different feature subsets

No. of features Sensitivity (%) Specificity(%) PPV (%) MCC

5 93.81 (1.60) 79.84 (3.37) 82.70 (2.26) 0.747 (0.014)
8 92.09 (1.49) 85.44 (2.77) 86.68 (2.12) 0.780 (0.012)

10 94.34 (1.10) 87.62 (2.24) 88.62 (1.77) 0.823 (0.012)
50 94.17 (0.95) 90.10 (0.99) 90.54 (0.79) 0.844 (0.006)

100 93.41 (1.36) 90.60 (1.23) 90.94 (0.98) 0.842 (0.008)
150 92.68 (0.51) 91.99 (0.70) 92.07 (0.62) 0.847 (0.006)
200 92.68 (0.33) 92.02 (0.41) 92.08 (0.36) 0.847 (0.004)
212 93.03 (0.10) 91.48 (0.13) 91.61 (0.12) 0.845 (0.002)

Statistical errors (standard error) associated with the average sensitivity, specificity,
PPV and MCC are provided within the parenthesis.

highly depends on the training data. If NCL-NNE shows similar
performance in the two scenarios, we may expect the NN ensemble
trained with it generalizes well to unseen data. It can be observed
from Tables 2 and 3 that NCL-NNE performed more or less similar
in the two scenarios. Therefore, we can conclude that NCL-NNE is
not very sensitive to different training data, and thus our final NN
ensemble generalizes well.

In order to check whether the high accuracy is due to the NCL-
NNE classifier or the quality of the selected features, we applied
a linear model on our datasets. We obtained good prediction rate
using all features (sensitivity 83.45% and specificity 83.28%) and
10 features (sensitivity 90.90% and specificity 89.47%). This result
shows that the quality of the best performing features selected by
our ‘feature selection’ approach play an important role in successful
classification. However, NCL-NNE reported higher sensitivity and
specificity rates than the linear model signifying its importance for
better performance.

3.3 Influence of structural features and spatial
neighbors

Table 4 shows the list of 10 best performing features. Eight out of the
10 best performing features that were automatically selected by the
classifier involve features that represent structural properties, such
as solvent accessibility, secondary structures, hydrogen bonding and
residue compactness for a given SCR and its spatial neighbors. This
finding emphasizes that important structural properties retrieved
from a single protein can be successfully used in machine learning
classification for identification of sites that are conserved for
such properties across similar protein structures. Our finding also
indicates that the environment of neighboring residues of the
SCRs can be an important factor towards better classification and
identification of SCRs.

As shown in Figure 3a, we found that significantly higher number
of SCRs prefer aliphatic, hydrophobic residues (73.06%, 76.61%,
86.58% and 80.75% of SCRs has at least one alanine, isoleucine,
leucine and valine, respectively, as their structural neighbor)
surrounding themselves compared with that of non-SCRs. Similarly,
lower fractions of SCRs prefer charged residues (aspartic acid:
37.32%, glutamic acid: 35.50%, histidine: 24.20% and arginine:
35.37%) as their structural neighbor. Figure 3b compares the fraction
of each amino acid within the spatial neighbors of SCRs and non-
SCRs where fraction of each amino acid is normalized by the overall
background frequency of that particular residue. Higher preference

207



G.Pugalenthi et al.

Table 4. List of best performing features

Feature SCR SCR Structural Sequence
related neighbors feature feature

related

Helix content in SCR Yes No Yes No
Strand content in SCR Yes No Yes No
Coil content in the SCR Yes No Yes No
Helix content in the No Yes Yes No
spatial neighbor
Solvent accessibility Yes No Yes No
in SCR
Hydrogen bonding Yes No Yes No

information in SCR
Residue compactness Yes No Yes No

in SCR
Residue compactness in No Yes Yes No

the spatial neighbor
Leucine content in No Yes Yes Yes

spatial neighbor
Cysteine content Yes No No Yes

in SCR
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Fig. 3. Distribution of 20 amino acid type within the spatial neighbors of
SCRs. (a) Shows the percentage of residues having at least one of the 20
amino acids within their spatial neighbor whereas (b) provides the fraction of
each amino acid within the spatial neighbor. White bars with standard error
from five trials provide data obtained from randomly selected non-SCRs.

of aliphatic, hydrophobic residues as spatial neighbors for the SCRs
is also observed in Figure 3b.

We also trained our NCL-NNE on different feature subsets
that were formed by grouping the qualitatively similar features
together. We categorized all the 212 features into four different
groups. Group 1 and group 2 contain features that represent
the amino acids’ composition and conservation for a given SCR

Table 5. Evaluation of performance of different feature groups

No. of Sensitivity Sensitivity Specificity Specificity
features using 5-fold without using 5-fold without

CV (%) CV (%) CV (%) CV (%)

Group 1 33.79 (10.03) 30.22 89.57 (2.79) 93.77
Group 2 11.35 (3.46) 7.55 97.85 (1.06) 98.83
Group 3 41.90 (9.90) 41.31 90.41 (4.79) 85.48
Group 4 97.91 (0.26) 97.38 79.11 (1.87) 79.13
Group 1 + 2 13.01 (3.66) 10.76 98.94 (0.28) 99.07
Group 1 + 3 44.15 (8.53) 32.17 93.12 (2.43) 96.12
Group 1 + 4 96.62 (0.36) 96.46 85.57 (1.14) 85.31
Group 2 + 3 26.45 (6.88) 12.45 96.79 (1.07) 99.17
Group 2 + 4 95.13 (0.61) 94.97 88.25 (1.62) 88.80
Group 3 + 4 97.85 (0.26) 97.25 79.48 (2.19) 80.47
Group 1 + 2 + 3 22.28 (4.36) 14.86 98.54 (0.51) 99.22
Group 1 + 2 + 4 92.85 (0.22) 93.11 91.89 (0.78) 92.18
Group 1 + 3 + 4 96.29 (0.63) 96.19 85.67 (1.28) 86.28
Group 2 + 3 + 4 95.10 (0.65) 94.74 88.28 (1.60) 89.73
All Groups 93.03 (0.10) 92.82 91.48 (0.13) 92.50

Statistical errors (standard error) associated with the average sensitivity are provided
within the parenthesis. CV, cross-validation.

and its spatial neighbors, respectively. Group 3 contains physico-
chemical property features computed for a given SCR and its
spatial neighbors. Similarly, group 4 represents the structural
property features for a given SCR and its spatial neighbors. We
test the performance of the classifier utilizing these feature groups
separately as well as mixing them in all possible combinations. The
performance of the NCL-NNE utilizing various combinations of
feature groups is summarized in Table 5. Table 5 presents the results
obtained via conducting 5-fold cross-validation on the training set
and the results obtained on the testing set. As can be observed,
NCL-NNE again performed similar in the two cases. Among the
feature groups, group 4 alone performs quite well, in fact achieved
the highest sensitivity (97.38%). This result further ascertains the
importance of structural properties of the SCRs and its neighbors,
and thereby supports their (structural property features) selection as
best performing ones by the automated feature reduction protocol
used in this study. However, the specificity of the prediction is
compromised when only group 4 features were used. It can also be
noticed that combination of structural property features (group 4)
together with features belonging to other three groups significantly
improves the specificity (92.50%), while marginally decreasing the
sensitivity (92.82%) value.

3.4 Benchmarking studies
To test the capability, we applied the NCL-NNE to 60 protein
domains obtained from 60 superfamilies for the prediction of SCRs.
These 60 domains contain 1657 SCRs that do not overlap with
the training and test datasets. The NCL-NNE prediction module
correctly predicts 1497 SCRs (out of 1657 SCRs) with 90.3%
sensitivity and 89.2% specificity. Further, the performance of our
approach was compared with recently reported CUSP algorithm
(Sandhya et al., 2008) that utilizes protein’s structural homologs and
structural alignments to distinguish structurally conserved regions.
CUSP method correctly predicts 1485 SCRs with 89.6% sensitivity
(Supplementary Material 6). This suggests that the result obtained
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(a)

(c)

(b)

Fig. 4. Example of successful prediction of SCRs. SCRs predicted by NCL-
NNE are shown in purple. Predicted SCRs that are experimentally verified
are shown in ball and stick model. (a) Wild-type CheY from Escherichia
coli (PDB code: 3CHY); (b) serum RBP (PDB code: 1JYD) and c) Cu–
Zn superoxide dismutase (SOD) (PDB code: 2SOD). Regular secondary
structures are colored in blue (helix), green (strand) and yellow (loops).

from our method is very similar to CUSP result obtained from high
quality structural alignments. Importantly, our method achieves high
sensitivity rate in absence of homologous structural information and
structural alignments.

In order to show the structural and functional importance of SCR,
we applied NCL-NNE for the prediction of SCRs from three protein
structures (Fig 4). Figure 4a shows three-dimensional structure of
wild-type CheY from Escherichia coli (PDB code: 3chy) (Lopez-
Hernandez and Serrano, 1996). Our approach predicts 15 residues
as SCRs (F8, L9, V10, V11, A42, F53, V54, I55, S56, D57, L68,
V83, L84, M85 and V86). Out of 15 predicted SCRs, five residues
V10, V11, A42, V54 and V57 (shown in purple ball and stick model
in Fig. 4a) were reported in the previous studies as a part of folding
nuclei, which play important role in folding of the protein (Mirny
and Shakhnovich, 2001).

The structural importance of SCRs can be further explained by
serum retinol binding protein (RBP), a member of the lipocalin
family (PDB code: 1JYD) (Fig. 4b). Our algorithm predicts 27
SCRs (W24, A26, K29, A43, E44, F45, M53, A55, G75, H104,
W105, I106, V107, T109, Y114, A115, V116, Q117, Y118, S119,
C120, Y133, S134, F135, V136, F137 and S138). This structure
has four conserved tryptophans (W24, W67, W91 and W105) and
W24 and W105 were predicted as SCRs by NCL-NNE. Greene et al.
(2001) conducted conservative substitutions for the four tryptophans
and observed that substitutions at W67 and W91 positions do not
affect the overall structural integrity. Substitution of W105, which
is largely buried in the wall of the β-barrel, has minor effect on
the structure. Further they reported that mutation at W24 position

Table 6. Execution time for NCL-NNE method

Protein PDB code Chain identifier Length Execution time (in s)

1BY5 A 698 74
1EZ0 A 504 57
1CPT – 412 43
1EZF A 323 39
1A7T A 227 31
1DOI – 128 25
2HPQ P 79 21

leads to large losses in stability and lower yields of native protein
generated by in vitro folding.

Though the SCRs are generally associated with structural stability,
some of them might have functional role or provide optimal
environment for the protein to perform its function. For example,
H41 plays both catalytic and structural role in Cu–Zn superoxide
dismutase (SOD) (PDB code: 2SOD; Fig. 4c). Twenty-one SCRs
are predicted (A4, C6, L8, I18, V29, I33, H41, G42, F43, H44,
V45, H46, D81, L82, V85, T114, M115, V116 and V117) for the
Cu–Zn SOD by NCL-NNE. Previous analysis by Toyama et al.
(2004) suggest that H41 involves in hydrogen bonding with T37
and H118 and this H41-mediated hydrogen bonds (T37-H41-H118)
play crucial role in keeping the protein structure suitable for its
efficient catalytic reactions.

3.5 Execution time
The execution time for our algorithm is reasonably faster. The
procedure involves formulation of the features and prediction of
SCRs using NCL-NNE model. In order to provide a flavor of
the computation time for NCL-NNE, we randomly selected seven
proteins with varying lengths and measured the user CPU time
(Table 6) spent for the feature generation followed by prediction
on a Pentium4 machine having 3 GHz CPU and 2 GB memory.

4 CONCLUSION
SCRs are crucial for the overall protein fold and can play important
role in maintaining the suitable scaffold for the function of a protein.
Identification of SCRs from single structure is a challenging task.
Here, we implemented a NNE method that utilizes NCL approach
for prediction of SCRs using features that represent the amino
acid conservation and composition, physico-chemical properties
and structural properties, such as solvent accessibility, secondary
structures, hydrogen bonding and residue compactness. Validation
of the NCL-NNE on the test dataset provided high sensitivity and
quality of prediction (sensitivity: 92.8%, MCC: 0.852). Additional
large-scale benchmarking using alignments of separate 60 protein
domains shows 90.3% prediction sensitivity for the NCL-NNE. We
also found that utilization of the structural features derived from
the SCRs and their spatial neighbors are beneficial for successful
classification and prediction. Our NCL-NNE prediction approach
utilizes information derived from a single protein structure and
its sequence homologs. Therefore, this method could be extremely
useful for identification of SCRs in large-scale benchmarking studies
where structural homologs and reliable structural alignments are still
limited.

209



G.Pugalenthi et al.

ACKNOWLEDGEMENTS
We thank Dr R. Sowdhamini and Sandhya Sankaran for providing
CUSP results.

Funding: A*Star (Agency for Science, Technology and Research
to G.P. and P.N.S.); National Natural Science Foundation of China
grant (No. 60802036 to K.T.); Intramural Research Program of the
National Library of Medicine at National Institutes of Health/DHHS
(to S.C.).

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res., 25, 3389–3402.
Anfinsen,C.B. (1973) Principles that govern the folding of protein chains. Science, 181,

223–230.
Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242.
Bhaduri,A. et al. (2004) PASS2: an automated database of protein alignments organised

as structural superfamilies. BMC Bioinformatics. 5, 35.
Chakrabarti,S. and Sowdhamini,R. (2003) Regions of minimal structural variation

among members of protein domain superfamilies: application to remote homology
detection and modeling using distant relationships. FEBS Lett., 569, 31–36.

Chakrabarti,S. et al. (2003) SMoS: a database of structural motifs of superfamily.
Protein Eng., 16, 791–793.

Chakrabarti,S. et al. (2006) SSToSS - sequence-structural templates of single-member
superfamilies. In Sillico Biol., 6, 0029.

Chothia,C. (1992) Proteins. One thousand families for the molecular biologist. Nature,
357, 543–544.

Greene,L.H. et al. (2001) Role of conserved residues in structure and stability:
Tryptophans of human serum retinol-binding protein, a model for the lipocalin
superfamily. Protein Sci., 10, 2301–2316.

Johnson,M.S. and Overington,J.P. (1993) A structural basis for sequence comparisons.
An evaluation of scoring methodologies. J. Mol. Biol., 233,716–738.

Kawashima,S. et al. (1999) AAindex: amino acid index database. Nucleic Acids Res.,
27, 368–369.

Liu,Y. and Yao,X. (1997) Negatively correlated neural networks can produce best
ensembles. Aust. J. Intell. Inf. Process. Syst., 4, 176–185.

Liu,Y. and Yao,X. (1999a) Ensemble learning via negative correlation. Neural Netw.,
12, 1399–1404.

Liu,Y. and Yao,X. (1999b) Simultaneous training of negatively correlated neural
networks in an ensemble. IEEE Trans. Syst. Man Cybern. B Cybern., 29, 716–725.

Lopez-Hernandez,E. and Serrano,L. (1996) Structure of the transition state for folding
of the 129 aa protein chey resembles that of a smaller protein, ci2. Fold. Des., 1,
43–55.

McGuffin,L.J. et al. (2000) The PSIPRED protein structure prediction server.
Bioinformatics, 16, 404–405.

Mirny,L. and Shakhnovich,E. (2001) Evolutionary conservation of the folding nucleus.
J. Mol. Biol., 308, 123–129.

Mizuguchi,K. et al. (1998) JOY: protein sequence-structure representation and analysis.
Bioinformatics, 14, 617–623.

Neuwald,A.F. et al. (1995) Gibbs motif sampling: detection of bacterial outer membrane
protein repeats. Protein Sci., 4, 1618–1632.

Paiardini,A. et al. (2005) CAMPO, SCR_FIND and CHC_FIND: a suite of web tools
for computational structural biology. Nucleic Acids Res., 33, W50–W55.

Peters,B. et al. (2006) Identification of similar regions of protein structures using
integrated sequence and structure analysis tools. BMC Struct. Biol., 6, 4.

Pugalenthi,G. et al. (2007) SMotif: a server for structural motifs in proteins.
Bioinformatics. 23, 637–638.

Pugalenthi,G. et al. (2008a) MegaMotifBase: a database of structural motifs in protein
families and superfamilies. Nucleic Acid Res., 36, D218–D221.

Pugalenthi,G. et al. (2008b) Identification of catalytic residues from protein structure
using support vector machine with sequence and structural features. Biochem.
Biophys. Res. Commun., 367, 630634.

Sandhya,S. et al. (2008) CUSP: an algorithm to distinguish structurally conserved and
unconserved regions in protein domain alignments and its application in the study
of large length variations. BMC Struct. Biol., 8, 28.

Saqi,M.A. and Sternberg,M.J. (1994) Identification of sequence motifs from a set of
proteins with related function. Protein Eng., 7, 165–171.

Shapiro,J. and Brutlag,D. (2004) FoldMiner: structural motif discovery using an
improved superposition algorithm. Protein Sci., 13, 278–294.

Thompson,J.D. et al. (1994) CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

Toyama,A (2004) Catalytic and structural role of a metal-free histidine residue in bovine
Cu-Zn Superoxide dismutase Biochemistry, 43, 4670–4679.

Webb,A.R. (2002) Statistical Pattern Recognition. John Wiley and Sons, London.
Yao,X. et al. (2001) Neural network ensembles and their application to traffic flow

prediction in telecommunications networks. In Proceedings of International Joint
Conference on Neural Networks. IEEE Press, Washington DC 1, pp. 693–698.

210


