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Abstract: The presented paper aims to describe the influence of accelerating admixtures on the
properties and microstructure of cement pastes and mortars. Blended slag cement CEM II/B-
S containing two different clinkers (differing amounts of siliceous and aluminous phases) and
four types of accelerators (calcium nitrate, sodium hydroxide, cement kiln dust, and crystal seeds)
were used in research. Compressive strength tests (after 12, 24, 48 h of curing), Scanning Electron
Microscope (SEM) observations together with an Energy Dispersive Spectroscopy (EDS) analysis,
Mercury Intrusion Porosimetry (MIP) tests, and X-ray diffraction (XRD) analysis were conducted.
Results have shown that SEM and EDS examination of the microstructure of cement pastes modified
with accelerating admixtures at the observed points did not reveal differences that would be sufficient
to explain the changes in compressive strength. Still, the increase in amorphous phase content
indicates a faster hydration reaction rate for all pastes modified with accelerating admixture. It is
backed up also by lower non-hydrated compounds content. All admixtures accelerate the hydration
reaction of calcium silicate phases of cement, but only NaOH and cement kiln dust (CKD) influence
the aluminate phase reaction rate. The pore volume is independent of the clinker type, while the pore
size distribution is not.

Keywords: cement; accelerating admixtures; concrete; microstructure; SEM

1. Introduction

The presented paper describes the influence of accelerating admixtures on the prop-
erties and microstructure of cement pastes and mortars. The publications [1,2] describe
the microstructure of cement pastes and mortars in the range of high C3A cement [3]. The
microstructure was analyzed in the form of microscopic observations without XRD or
porosimetry analysis. This paper is a continuation and extension of previous research.
This paper also gives a comparison of high and normal C3A types of cement. Accelerators
involved in research were: modern accelerator providing heterogeneous nucleation seeds;
cement kiln dust (CKD), used because of its great fineness and similarity in composition
to Portland cement (and possibility to act as nucleating seeds as well); sodium hydroxide,
because of its proven activating effect on alkali activated slag (AAS); and calcium nitrate
as a reference, well-known, and commonly used accelerator. The most relevant aspect of
the conducted research is the observation of the effects of CKD and modern accelerator on
microstructure of cement pastes.

Concrete is one of the primary building materials. Its main ingredient is cement, for
which, production in 2016 exceeded 4.2 billion tons globally [4]. The amount of cement
produced has been steady in recent years, reaching about 4.1 billion tons in 2019 as well [4].
Cement production has a significant impact on the environment. It is estimated that this
sector is responsible for about 5–8% of anthropogenic CO2 emissions. [5]. Emissions are
caused mainly by fuel combustion and CaCO3 decomposition [6]. Therefore, it is crucial
to advance in cement and concrete technology in any way that allows decreasing this
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emission [7]. One of the possibilities is to speed up construction works by accelerating
setting and hardening of cement [8,9].

Mineral additives and chemical admixtures are commonly used in cement and concrete
technology. One of the most widely used mineral additives is ground granulated blast-
furnace slag (GGBFS). The result of its reaction with water is primarily the C-S-H (calcium
silicate hydrate) phase and other phases that may also be found in Portland cement
paste [10].

During the initial period of hydration of cements containing slag, Portland clinker
phases are primarily responsible for strength development. Later slag activity increases,
increasing in the C-S-H phase content [11,12]. The hydration process of blast furnace slag
in cement paste begins by reacting with sodium and potassium hydroxides and, almost
simultaneously, with calcium hydroxide [10,13–15]. The microstructure of hardened pastes
of cement containing slag is denser than OPC (ordinary Portland cement) [16,17]. These
contain much more C-S-H phase and much less calcium hydroxide [10,18]. The finer pore
structure is produced while the GGBFS is incorporated in the cement [19]. Hydrated
calcium aluminates are also formed since many aluminum ions are present in the slag [16].
The composition of the C-S-H phase formed by the hydration of cement containing slag has
a higher Si/Ca molar ratio than OPC [18,20]. The strength can significantly affect cement
with high C3A (tricalcium aluminate) content during the initial hardening period [21].

Set and hardening accelerating admixtures are often used to shorten the period to
release forms in prefabrication plants and enhance early compressive strength. Those
effects are widely known [8,10,22,23]. However, there are few studies on the microstructure
of cement composites containing these admixtures. This paper tries to fill this gap. Espe-
cially, there are few descriptions of the microstructure of composites containing modern
accelerating admixtures with nucleation seeds for concrete.

The effect of the setting and hardening accelerating admixtures on the microstructure
development depends on their chemical composition. Calcium nitrite and calcium nitrate
are commonly used as accelerating admixtures for concrete. Both contain calcium cations
like phases of Portland clinker. The effect of its usage—shortening initial setting time and
increasing early-stage compressive strength—is widely known [22,24,25]. These admixtures
can act as a nucleation seed and cause an accelerated reaction of calcium silicates (mainly
C3S—tricalcium silicate) with water [9]. The addition of calcium nitrate results in a cement
paste microstructure with similar total porosity and more gel pores [24]. At the early stage,
the calcium nitrate promotes the hydration of C3S and the formation of C-S-H phase’s
silicate chains, thus it increases the specific surface area [26]. It is also stated that calcium
nitrate and nitrite are embedded into the AFm (alumina, ferric oxide, tri-sulfate) and AFt
(alumina, ferric oxide, mono-sulfate) and is affecting the ratio of AFm/Aft. In consequence,
it affects the specific volume of hardened paste [27].

Cement kiln dust (CKD) is a by-product of Portland clinker production. It is a very
fine, powdered, grey material with micron-sized grains. Its composition highly depends
on the raw materials and fuel used in the cement’s manufacture [28]. CKD contains sig-
nificant amounts of sodium and potassium, which accelerates the strength development
of slag cement by increasing the rate of slag hydration [29]. CKD has a large specific
surface area of about 4600–14,000 cm2/g [28], so that the dissolution rate of its compo-
nents in water is notable. CKD also contains chlorides and calcium carbonate. These
components are used as admixtures to accelerate cement setting and hardening [9]. The
reactivity of CKD is primarily dependent on its CaO content [30,31]. According to some
sources, a small addition of CKD (5–15%) can increase the strength, shorten the initial
and final setting times and improve the porosity pattern by increasing the number of
gel pores [32,33]. The excellent strength development was observed in research [34,35], in
which the microstructure was also examined. It was concluded that the microstructure of
CKD containing cement mortars is more uniform, denser, and less porous.

Sodium hydroxide dissolved in the batch water causes an increase in pH, resulting in
faster hydration of the slag [9,36,37]. The effect of increased strength with NaOH occurs
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only during the initial hardening phase [3,9]. This compound is also commonly used as an
alkali activator for alkali-activated slag mortars (AAS), containing GGBFS [37,38]. Because
of those properties, it was incorporated into the present research. In terms of microstructure
there, is little information in the literature. The addition of sodium hydroxide forms a C-S-H
phase with a smaller surface area than that formed without the hydroxide [9]. There was
no effect of sodium hydroxide on the total porosity of pastes [9,39].

Modern setting and hardening accelerating admixtures mainly have a physical effect
by introducing additional micro- or nanoparticles into the batch water, which play the role
of heterogeneous nucleation seeds (C-S-H seeds, crystallization seeds) [40]. Such particles
are synthetic C-S-H phase—the main product of hydration of the cement that is dispersed
in cement paste [41,42]. As a result, hydration products are formed not only on the surface
of cement grains, but also in the spaces between them [42–44]. This effect is visible also in
the term of refinement of porosity pattern [43,45]. The microstructure of the cement matrix
was reported to be much denser and finer after six [46] and eight hours of curing [47].
Hardened pastes with these admixtures obtain a denser microstructure faster [48,49]. It
was stated that the microstructure of hydration products was changed using C-S-H seed
admixture [50]. The same work reports potential problems with the water demand of
cement modified with nanoparticles and with decreased compressive strength. It was also
reported in another manuscript at w/c = 0.3. In the case of higher w/c ratios, the effect
disappeared [45].

2. Materials and Methods
2.1. Types of Cements

The tests were conducted with blended slag cement (CEM II/B-S), containing 35%
of ground granulated blast furnace slag (GGBFS). The cement were blends of Portland
clinker, GGBFS, and anhydrite as a set regulator. Two types of Portland clinkers (C1, C2)
differing in phase composition were used. The choice of such clinkers is supported by
the differences in their behavior mainly in the initial hydration stage. More C3A phase
containing cement sets and hardens faster [8,21]. Besides that, different admixtures react
with different cement phases and their efficiency depends on it [9]. Characteristics of both
clinkers are given in Table 1. The anhydrite amount was set for obtaining 2% of SO3 in the
resulting cement. The chemical composition of anhydrite is given in Table 1. GGBFS used
in the research was obtained from one of the polish ironworks. The main characteristics
of GGBFS required by EN 15167-1—the reactivity indices are greater than required by
EN—were after 7 days 62.8% (required by the standard is 45%) and after 28 days 88.3%
(required by the standard is 70%). The amorphous phase content of 98.5% is also higher
than 67% required by EN 197-1. The chemical composition of slag is given in Table 1. The
X-ray diffraction (XRD) analysis was conducted for GGBFS. The result is given in Figure 1.

Table 1. Chemical and phase composition of Portland clinkers, GGBFS, and anhydrite, mass %.

Sym. SiO2 Al2O3 Fe2O3 CaO MgO SO3 Cl– Na2O K2O CaOfree Ign. Loss.

C1 20.25 6.83 3.23 65.66 1.39 0.69 0.01 0.15 1.02 2.80 0.15
C2 21.25 5.00 3.40 64.81 2.09 0.55 0.03 0.11 1.03 1.48 0.35

GGBFS 37.35 7.30 1.22 43.90 5.73 0.62 0.03 0.55 0.56 - 0.17
Anhydrite 0.61 - - 40.16 0.40 54.83 - 0.02 - - 2.71

Phase Composition
Blaine’s Specific Surface Area

C2S C3S C3A C4AF

C1 11 64 14 7 3000 cm2/g
C2 12 69 4 12 3000 cm2/g

GGBFS - - - - 3900 cm2/g
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2.2. Accelerating Admixtures

Four accelerating agents were involved in the research:

• 20% sodium hydroxide (NaOH) solution. The solution was introduced to the batch
water to obtain 5% NaOH according to cement’s mass.

• 20% calcium nitrate tetrahydrate (Ca(NO3)2·4H2O). The solution was added to reach
2% of calcium nitrate for the cement’s mass (symbol CN).

• Cement kiln dust (CKD)—obtained from one of the polish cement plants. CKD was
added as an ingredient of the cement. The amount was established as 5% of total
cement’s mass. The chemical composition of CKD is given in Table 2. The X-ray
diffraction (XRD) analysis was conducted for CKD and Portland clinker from which
manufacture the CKD was derived. The results are given in Figure 2. The similarity of
constituents described in the Introduction section is visible.

• Available on market modern setting and hardening accelerating admixture containing
crystal seeds in form of C-S-H nanoparticles (symbol CS).

Table 2. Chemical composition of CKD, mass %.

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Cl– Na2O K2O P2O5 TiO2 Mn2O3 SrO ZnO Ign. Loss.

18.16 4.55 2.03 57.13 1.26 1.95 1.44 0.12 2.38 0.12 0.22 0.06 0.10 0.24 11.70
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C—tricalcium aluminate (C3A, Ca3Al2O6); Br—Brownmillerite, tetracalcium aluminoferrite (C4AF,
Ca2(Al,Fe)2O5); Q—quartz (SiO2); P—portlandite (Ca(OH)2).
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Cement mortars for compressive strength tests were prepared with ingredients listed
above in the proportions stated in Table 3. The composition of cement pastes for Scanning
Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD),
porosimetry, and initial setting time tests is given in Table 4.

Table 3. Composition of mortars for compressive strength tests.

No. Portland
Clinker GGBFS Anhydrite Sand Water CKD Admixture

type [g] type [% m.c.] [g]

1

C1

285.3 153.6 11.07 1350 225 - - - -
2 285.3 153.6 11.07 1350 225 - CS 4.0 18.0
3 285.3 153.6 11.07 1350 225 - CN 2.0 9.0
4 285.3 153.6 11.07 1350 225 - NaOH 2.0 9.0
5 270.9 145.8 10.8 1350 225 22.5 - - -

6

C2

284.8 153.4 11.8 1350 225 - - - -
7 284.8 153.4 11.8 1350 225 - CS 4.0 18.0
8 284.8 153.4 11.8 1350 225 - CN 2.0 9.0
9 284.8 153.4 11.8 1350 225 - NaOH 2.0 9.0

10 270.4 145.6 11.5 1350 225 22.5 - - -

Table 4. Composition of cement pastes for SEM, EDS, XRD (for C1), and porosimetry and initial
setting time (for C1 and C2) tests.

No. Portland
Clinker GGBFS Anhydrite Water Water

Demand CKD Admixture

type [g] [g] % [g] type [% m.c.] [g]

1

C1

285.3 153.6 11.07 217 43 - - - -
2 285.3 153.6 11.07 218 44 - CS 4.0 18.0
3 285.3 153.6 11.07 169 34 - CN 2.0 9.0
4 285.3 153.6 11.07 183 37 - NaOH 2.0 9.0
5 270.9 145.8 10.8 167 33 22.5 - - -

6

C2

284.8 153.4 11.8 149 30 - - - -
7 284.8 153.4 11.8 150 30 - CS 4.0 18.0
8 284.8 153.4 11.8 150 30 - CN 2.0 9.0
9 284.8 153.4 11.8 178 36 - NaOH 2.0 9.0

10 270.4 145.6 11.5 152 30 22.5 - - -

2.3. Methods

Compressive strength tests, SEM observations, EDS analysis, Mercury Intrusion
Porosimetry (MIP) tests, and XRD analysis were conducted.

Mortar samples with dimensions 160 mm × 40 mm × 40 mm for compressive strength
tests were prepared according to EN 196-1. The samples were broken into halves, which
were tested. Loading area was 40 mm × 40 mm according to EN 196-1. The samples were
cured for 12 h in a climatic chamber at a temperature of 20 ± 1 ◦C and relative humidity
of 60%. After this time, the samples were demolded and then the samples were cured in
water at 20 ± 1 ◦C. Compressive strength testing was performed after 12 h and after 1 and
2 days of curing.

Samples of cement pastes intended for microstructure tests were prepared according
to PN-EN 196-3 standard with a water-cement ratio of 0.5. The samples were prepared
in the form of tiny prisms with dimensions of 5 mm × 5 mm × 25 mm (SEM + EDS)
and 10 mm × 10 mm × 30 mm (MIP, XRD). The samples were properly compacted to
avoid unintended pores occurrence. The samples were cured for 48 h, covered with a wet
cloth, at a temperature of 20 ± 1 ◦C. One hour before testing, the samples were dried at a
temperature of 40 ◦C to avoid the microstructure change connected to high temperature—
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possible dehydration of gypsum—and hence the change of microstructure. A similar
procedure was described by [51,52].

Microscopic observations of the fractures of samples were performed. The inves-
tigations were carried out using a SEM equipped with an EDS analyzer allowing the
determination of the chemical composition of selected phases in the micro-areas.

The center sections were cut from 10 mm × 10 mm × 30 mm cuboid samples and
placed in a porosimeter to determine the volume of air pores. The method used was
Mercury Intrusion Porosimetry (MIP).

The samples intended for XRD testing were those formed by grinding the samples
tested in the SEM. The tests were performed using the PANalytical Empyrean instrument
using filtered cobalt radiation, configured with Pixcel detector. Phase composition identifi-
cation was performed according to the International Centre for Diffraction Data PDF-4+
database, version 2016. Quantitative results were obtained using the Rietveld refinement as
used for testing multicomponent materials. The sample for quantitative phase analysis was
prepared as a mixture of ground cement paste sample and powdered corundum (certified
Standard Reference Material No. 676a, manufactured at the National Institute for Standards
and Technology, Gaithersburg, MD, USA). Due to the significant content of the amorphous
phase in the cement paste samples (originating from the hydration product—C-S-H phase
and GGBFS), the content of non-crystalline constituents was determined by subtracting the
content; of identified and determined contributions of crystalline phases from the total.

SEM + EDS and MIP studies were performed for cements containing C1 and C2
clinkers. XRD examination was performed only for cement containing C1 clinker.

3. Results and Discussion
3.1. Compressive Strength

The results of the compressive strength test are given in Figures 3 and 4. In the initial
period of hardening—up to 48 h—the compressive strength of mortars made of Portland
cement slag CEM II/B-S containing C2 clinker is higher by 30%, 35%, and 38% after 12, 24,
and 48 h, respectively, than that of one containing C1 clinker. This was due to the higher
content of tricalcium silicate in the C2 clinker. It is claimed that, in the initial period, the
cement containing a lot of C3S and about 10% C3A provides the highest strength, especially
in the case of high acid slags [10].
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The effectiveness of the hardening accelerating admixtures also depends on the phase
composition of the clinker used to manufacture the cement. In the initial period (up to 48 h),
for Portland slag cement CEM II/B-S made from clinker C1, containing more C3A, the
effectiveness of admixtures containing crystallization seeds (CS) and calcium nitrate (CN)
is similar. For cement made from C2 clinker, with higher total silicate content (dicalcium
silicate–C2S and tricalcium silicate–C3S), calcium nitrate has greater efficiency. Similar
results were obtained by other authors [25,53–55]. CKD also increases the compressive
strength of mortars at an early age. Its effectiveness does not depend on the phase compo-
sition of the clinkers. It is also lower than crystallization seeds and calcium nitrate. Sodium
hydroxide (NaOH) significantly increases the compressive strength of mortars after 12 h
of curing, but decreases it after a longer curing time, which has been known for a long
time [9].

3.2. Scanning Electron Microscopy and Energy Dispersive Spectroscopy

After 48 h of curing, the compressive strength of the mortars varies with the type of
clinker and admixture used to accelerate setting and hardening. Therefore, an attempt was
made to explain those differences by observing the microstructure of the grouts made from
them under a scanning electron microscope (SEM). Respective EDS spectral point analysis
graphs are presented in Appendix A (Figures A1–A10).

3.2.1. Non-Modified Cement Pastes

Microscopic images of cement paste samples of Portland slag cements CEM II/B-S con-
taining clinkers C1 and C2 without the addition of modifiers are shown in Figures 5 and 6,
respectively. C2 clinker cement paste contains more C-S-H phase and portlandite at the
tested points. The C-S-H phase is found in the form of a honeycomb [10,16]. On the other
hand, no ettringite was found. The C-S-H phase provides the highest strength of mortars
made from cement with this clinker after 48 h of hydration. In the cement paste containing
C1 clinker, ettringite is found in the form of thin, long, and interconnecting needles at
the observed points. Ettringite creates the crystalline skeleton responsible for the early
strength of mortars made with this cement [8,10,16], but a weaker microstructure than that
derived from C-S-H [16,44]. It results in a lower compressive strength of mortar made
from cement containing this clinker than mortar containing cement from C2 clinker. In all
samples there are non-hydrated cement particles covered with hydration products. At the
observed points, the sample made of cement containing C1 clinker has single crystals of
portlandite (Ca(OH)2) and cement grains covered with C-S-H phase.
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3.2.2. Cement Pastes Modified with Crystallization Seeds (CS)

The cement paste samples modified with an activator containing crystallization seeds
(CS) exhibits the presence of C-S-H type (II) phase in the form of honeycomb, ettringite,
which is present in the form of long, thin, and interconnecting rods and single crystals of
portlandite in the examined observation points in the case of cement containing C1 clinker
(Figure 7). Higher content of C-S-H was found compared to the observed points of the
reference sample, which corresponds to the results presented in the previous research [56].
In the case of a paste containing C2 clinker cement modified with CS, the observed points
reveal a C-S-H phase in the form of a honeycomb. In contrast to the reference sample,
ettringite is present in the sample in the form of thicker bars, in contrast to the reference
sample. Single crystals of portlandite and AFm phase are present (Figure 8). This clinker
is characterized by a higher amount of C3S phase (69%) and C2S phase (12%). The total
content of silicate phases is higher (81%) than that of C1 clinker (75%), and the content
of aluminate phases is lower (C2—16%, C1—21%). Thus, it can be concluded that the
efficiency of crystallization seeds (CS) increases with increasing content of C3S and C2S
phases and decreasing content of C3A and C4AF phases. The results are consistent with
other research provided for OPC without mineral additives [57] and C3S paste [58]. Present
research gives the background for further investigation of nucleation seeds action in cement
containing supplementary cementitious materials (SCMs) like GGBFS or fly ash.
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3.2.3. Cement Pastes Modified with Calcium Nitrate (CN)

In the case of the modification of slurries made with calcium nitrate (CN), it can be
observed that the morphology of the C-S-H phase does not differ in the tested sample areas.
The C-S-H phase is still in the form of a honeycomb. In the observed spots, the cement
paste sample containing C1 clinker shows fewer ettringite crystals, which are smaller in
length than to the sample that was not modified with calcium nitrate (CN) (Figure 9). In the
case of cement containing C2 clinker, ettringite is not present in the observed points after
calcium nitrate (CN) modification as much as in the case of unmodified cement (Figure 10).
The presence of CaO crystal in the newly hydrated paste is a manifestation of the presence
of free CaO in Portland clinker (Table 1). It is called dead-burn lime or sintered lime.
The existence of free CaO in cement is the result of clinker production at 1450 ◦C. At this
temperature, a thin, insoluble layer is formed on its surface, slowing its reaction with
water and forming Ca(OH)2 [59–61]. It is a significant difference compared to quicklime,
produced at temperatures up to 1050 ◦C and reacts with water without delay. Despite
slight differences in the microstructure of unmodified and calcium nitrate (CN)-modified
hardened cement pastes made from different clinkers, the compressive strength of mortars
modified with calcium nitrate (CN) is higher than those not modified. It is stated that
CN influences both C3S and C3A phase reactions. The AFm containing nitrates is formed
from the latter. Accelerated C3S hydration results in tighter microstructure and better
mechanical performance [62]. The C3S hydration products (especially C-S-H phase) have
the same atomic structure with and without CN [26]. The present research results show
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that CN is effective regardless of the clinker composition—reacting both with silicate and
aluminate phases—and also with GGBFS cements.
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3.2.4. Cement Pastes Modified with Sodium Hydroxide (NaOH)

After two days of curing, sodium hydroxide (NaOH) significantly reduces the com-
pressive strength of mortars. This is applicable to cement containing both clinkers. In
the case of cement made from clinker C1, the observed ettringite crystals are thicker and
shorter (Figure 11), making the spatial structure less developed [8,10,16]. The morphol-
ogy of the C-S-H phase and the portlandite (Ca(OH)2) content of the observed points are
similar to those of the reference sample. In cement paste sample made from C2 clinker,
the C-S-H phase is present in the form of a honeycomb and single crystals of portlandite
are present. Ettringite is not present in the analyzed areas of these samples (Figure 12).
Sodium hydroxide compromises the compressive strength also in early terms. The results
are similar to those obtained for white Portland cement also in terms of microstructure.
NaOH lowers the total amount of hydration products, especially the ettringite [63].
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3.2.5. Cement Pastes Modified with Cement Kiln Dust (CKD)

The microstructure of cement kiln dust (CKD)-modified pastes is similar to pastes
without CKD, regardless of the type of clinker used to make the cement (Figures 13 and 14).
The difference for the analyzed areas of all samples is the presence of calcite in the form of
rosettes. Its occurrence is related to the large amount of carbonates contained in CKD in
the form of ignition losses. Ettringite, which did not appear in the reference sample, can
be observed in the observed points of the sample of paste made from C2 clinker cement
with the addition of CKD (Figure 14). The similarity to the microstructure of unmodified
pastes is due to the similar dust composition of CKD and cement [64,65]. CKD usefulness
is backed up also by its cooperation with GGBFS as an alkali activator for materials with
latent hydraulic properties [66]. Some research reports that the density of the cement matrix
is also enhanced [34].

3.3. X-ray Diffraction (XRD) Analysis

C-S-H phase is the main component of the hardened Portland cement paste in terms
of both amount and influence on the strength evolution. Researchers have different opin-
ions on whether its structure is amorphous or semi-crystalline (also poorly-crystalline or
nanocrystalline) [67–69]. This crystallinity of the product depends on the conditions during
its formation and Ca/Si ratio [70–73]. In the early hydration stage, the second amorphous
component of Portland cement–GGBFS blends is GGBFS itself [8,74–76]. However, those
two components are very hard to be distinguished in XRD analysis because the nature of
both is non-crystalline.



Materials 2021, 14, 6300 14 of 24

Materials 2021, 14, x FOR PEER REVIEW 15 of 26 
 

 

form of rosettes. Its occurrence is related to the large amount of carbonates contained in 
CKD in the form of ignition losses. Ettringite, which did not appear in the reference sam-
ple, can be observed in the observed points of the sample of paste made from C2 clinker 
cement with the addition of CKD (Figure 14). The similarity to the microstructure of un-
modified pastes is due to the similar dust composition of CKD and cement [64,65]. CKD 
usefulness is backed up also by its cooperation with GGBFS as an alkali activator for ma-
terials with latent hydraulic properties [66]. Some research reports that the density of the 
cement matrix is also enhanced [34]. 

Figure 13. SEM images for cement paste made with CEM II/B-S manufactured with clinker C1, mod-
ified with cement kiln dust (CKD). 1—C-S-H phase, 2—ettringite, 3—calcite. Figure 13. SEM images for cement paste made with CEM II/B-S manufactured with clinker C1,

modified with cement kiln dust (CKD). 1—C-S-H phase, 2—ettringite, 3—calcite.
Materials 2021, 14, x FOR PEER REVIEW 16 of 26 
 

 

Figure 14. SEM images for cement paste made with CEM II/B-S manufactured with clinker C2, mod-
ified with cement kiln dust (CKD). 1—C-S-H phase, 2—ettringite, 3—calcite. 

3.3. X-ray Diffraction (XRD) Analysis 
C-S-H phase is the main component of the hardened Portland cement paste in terms 

of both amount and influence on the strength evolution. Researchers have different opin-
ions on whether its structure is amorphous or semi-crystalline (also poorly-crystalline or 
nanocrystalline) [67–69]. This crystallinity of the product depends on the conditions dur-
ing its formation and Ca/Si ratio [70–73]. In the early hydration stage, the second amor-
phous component of Portland cement–GGBFS blends is GGBFS itself [8,74–76]. However, 
those two components are very hard to be distinguished in XRD analysis because the na-
ture of both is non-crystalline. 

The XRD analysis results are presented in Table 5 and Figure 15. These indicate that 
the smallest amount of the amorphous phase (55.1%) is present in the cement paste sample 
without modifications. Pastes containing crystallization seeds, calcium nitrate, and CKD 
show a similar quantity (61.1–62.3%). The largest amount of amorphous phase is present 
in NaOH-modified paste (68.1%). More amorphous phase means that more C-S-H phase 
is formed from Portland cement hydration. In addition, the amorphous non-hydrated 
GGBFS forms the amorphous C-S-H phase as well. Thus, the increase of total amorphous 
phase content indicates a faster hydration reaction rate for all modified pastes, at the great-
est extent for NaOH-modified paste.  

The second hydration reaction product is calcium hydroxide (Ca(OH)2, portlandite). 
Its amount is the highest in non-modified paste (9.2%) and lowest in pastes modified with 
CN and NaOH (4.4%) (Table 5, Figure 15). The lower amount of portlandite in CN-modi-
fied paste was also reported by other researchers [22,62]. Medium values (6.5% and 8.5%, 

Figure 14. SEM images for cement paste made with CEM II/B-S manufactured with clinker C2,
modified with cement kiln dust (CKD). 1—C-S-H phase, 2—ettringite, 3—calcite.



Materials 2021, 14, 6300 15 of 24

The XRD analysis results are presented in Table 5 and Figure 15. These indicate that
the smallest amount of the amorphous phase (55.1%) is present in the cement paste sample
without modifications. Pastes containing crystallization seeds, calcium nitrate, and CKD
show a similar quantity (61.1–62.3%). The largest amount of amorphous phase is present
in NaOH-modified paste (68.1%). More amorphous phase means that more C-S-H phase is
formed from Portland cement hydration. In addition, the amorphous non-hydrated GGBFS
forms the amorphous C-S-H phase as well. Thus, the increase of total amorphous phase
content indicates a faster hydration reaction rate for all modified pastes, at the greatest
extent for NaOH-modified paste.

Table 5. Quantitative XRD analysis results.

Paste C1_REF C1_CS C1_CN C1_NaOH C1_CKD

Content [%]

C3S 16.1 13.3 14.6 14.1 14.9
C2S 9.6 8 8.8 6.8 7.8
C3A 5.4 5.9 5.6 3.2 3.6

C4AF 2.6 2.3 2.1 2.0 2.2
Portlandite 9.2 6.5 4.4 4.4 8.5

Anhydrite, calcite, quartz,
ettringite, other Each < 1.0

Sum of crystalline components 42.9 36.0 35.5 30.5 37.0
Amorphous phase 55.1 62.2 62.3 68.1 61.1

The second hydration reaction product is calcium hydroxide (Ca(OH)2, portlandite).
Its amount is the highest in non-modified paste (9.2%) and lowest in pastes modified
with CN and NaOH (4.4%) (Table 5, Figure 15). The lower amount of portlandite in CN-
modified paste was also reported by other researchers [22,62]. Medium values (6.5% and
8.5%, respectively) is observed for CS- and CKD-modified pastes. GGBFS shows both
latent hydraulic and pozzolanic properties [77,78]. The portlandite is consumed during the
pozzolanic reaction between it and GGBFS resulting in C-S-H phase formation. Thus, the
lower amount of portlandite is evidence of a faster reaction of GGBFS.

The lower amount of non-hydrated calcium silicate components (C2S, C3S) of cement
are present in all modified pastes than in the reference one. Amount of aluminate (C3A)
phase is similar in non-modified pastes and ones modified with CS and CN (5.4–5.9%).
However it is significantly lower for pastes modified with CKD and NaOH admixture (3.6%
and 3.2%, respectively). Ferrite (C4AF) phase content is similar in all pastes (2.0–2.3%).
Taking above into account together with starting amount of those components in ce-
ment paste (considering clinker/GGBFS ratio)—C2S = 6.6%, C3S = 38.4%, C3A = 8.4%,
C4AF = 4.2%—generally lower content of non-hydrated compounds is the evidence of
faster hydration reaction for pastes modified with all admixtures. The results also imply
that while all admixtures accelerate the hydration of calcium silicates, only NaOH and
CKD influences the rate of aluminate phase reaction.

Because of a limited number of XRD results for cement pastes modified with acceler-
ating admixtures, especially for modern accelerators, it is a promising path for researchers
to follow.

3.4. Mercury Intrusion Porosimetry (MIP) Analysis

The porosimetry tests were performed for all pastes. Results for non-modified pastes
(Figure 16) indicates that lower porosity is generated in C1 clinker. Moreover, it contains
more C3A and less C2S and C3S together than C2 clinker. Summary pore volume is similar
(33–34%), but C1-based paste exhibits greater amount of larger pores.
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Pastes modified with accelerating admixtures, generally show lower or similar total
pore volume, independent of the clinker used to manufacture the cement (Figures 17 and 18).
The lowest total pore volume show pastes modified with CS admixture (27% for clinker C1
and 30% for clinker C2). The porosimetry results are consistent with compressive strength
(Figures 3 and 4). However, it is necessary to mention that CN-modified paste exhibits subtly
greater porosity, but very similar strength. Results of SEM visual analysis also shows more
tight structure (Figures 9 and 10). Modification of pastes with NaOH for both cements
led to the greatest porosity from the modified pastes. However, it resulted in similar total
porosity to the non-modified one. It is also consistent with the compressive strength of
respective mortars—the strength of NaOH-modified ones was the lowest from all tested
samples. Although the compressive strength of reference mortar is significantly higher, the
porosity cannot explain their differences. This issue needs to be subjected to further research.
Visual observations also show greater porosity of reference C2 paste (Figure 6) and NaOH-
modified one with C1 clinker (Figure 11) smaller pores. It is the result of a high amount of
ettringite crystals, but with a greater volume.
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Results obtained for CN and CKD modifications of C1 clinker based cement are in
the middle (30% and 31%, respectively). Those for C2 clinker-based cement are similar
to total pore volume for the non-modified one and that modified with NaOH. The lower
porosity of CKD-modified pastes than reference paste is connected to its fineness and very
high specific surface area. The compressive strength of CKD containing mortar is also
higher than for the reference one. The microstructure of C-S-H phase and ettringite is
also finer for pastes with this modification (Figures 13 and 14). The CKD influence on
the porosity of cement composites is reported to be different—depending on the source
it increases [79] or decreases [33,34]. The effect of CKD on microstructure and factors
affecting its various behavior requires further research. Calcium nitrates influence on the
pore structure of cement pastes is reported to be similar to this observed in current research–
both pore diameter and total volume tend to decrease [80,81]. Article [81] also reports that
NaOH-modified mortars’ porosity exhibited similar porosity to non-modified ones.

It is worth noting that while the volume of pores with different dimensions is propor-
tional between non-modified and modified with CS, CN, and CKD pastes, the porosity
of NaOH-modified pastes is different. Therefore, those pastes, made from both clinkers,
exhibit a smaller amount of large pores (<0.1 mm).

4. Conclusions

Mortars made from cement containing clinker with a higher tricalcium silicate content
(C2 clinker) have the highest compressive strength after 48 h of curing. This was caused by
the faster development of the C-S-H phase structure in cement with high C3S content.

Mortars made from clinker C1, with a higher tricalcium aluminate content, achieved
slightly lower compressive strengths after this time. In this case, the developed C-S-H
phase structure, but mainly the ettringite, which forms a crystalline skeleton composed
of long and thin interconnecting crystals, are responsible for the compressive strength.
The ettringite formation is promoted by high C3A content in the cement. All accelerators,
except NaOH, enhanced the early compressive strength.

SEM and EDS examination of the microstructure of cement pastes modified with
accelerating admixtures at the observed points did not reveal differences that would be
sufficient to explain the changes in compressive strength caused by the application of
setting and hardening accelerators after two days of curing. However, it should be noted
that the observed differences in intermeshed ettringite needles and C-S-H phase patches
are qualitative and not quantitative. Still, those are not sufficient to explain differences
in strength properties. The microstructure of CKD-modified pastes is similar to pastes
without CKD (because of the similar CKD and OPC composition), but contains calcite in the
form of rosettes (caused by the large amount of carbonates in CKD). Accelerator containing
crystallization seeds (CS) caused better development of C-S-H phase and change in the
ettringite to form thicker bars. The efficiency increases with content of calcium silicate
phases. After modification with calcium nitrate, the morphology of the C-S-H phase
is similar, but fewer and shorter ettringite crystals occurs. With NaOH presence in the
cement paste, the ettringite crystals are thicker and shorter, making the spatial structure
less developed (in C1 paste) and it is not present at all in the C2 paste.

The lower amount of portlandite shown in XRD analysis is the proof of faster reaction
of GGBFS in the presence of accelerators.

The increase of total amorphous phase content and lower non-hydrated compounds
content indicate the faster hydration reaction rate for all accelerating admixture-modified
pastes. The latter indicates also that all admixtures accelerate the hydration reaction of
calcium silicate phases of cement, but only NaOH and CKD influence the rate of aluminate
phase reaction.

The total pores volume is independent of the cement phase composition, while the pore
size distribution is not. The lowest total pore volume was observed for pastes modified
with CS admixture. The porosity results support differences in compressive strength.
NaOH modification of cement pastes results in the smaller dimension of pores, while the
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total volume remains similar. The lower porosity of pastes with CKD is connected to its
fineness and very high specific surface area.
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