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Abstract

Due to socioeconomic differences, the accuracy and extent of reporting on the

occurrence of native species differs among countries, which can impact the per-

formance of species distribution models. We assessed the importance of geo-

graphical biases in occurrence data on model performance using Hydrilla

verticillata as a case study. We used Maxent to predict potential North Ameri-

can distribution of the aquatic invasive macrophyte based upon training data

from its native range. We produced a model using all available native range

occurrence data, then explored the change in model performance produced by

omitting subsets of training data based on political boundaries. We also com-

pared those results with models trained on data from which a random sample

of occurrence data was omitted from across the native range. Although most

models accurately predicted the occurrence of H. verticillata in North America

(AUC > 0.7600), data omissions influenced model predictions. Omitting data

based on political boundaries resulted in larger shifts in model accuracy than

omitting randomly selected occurrence data. For well-documented species like

H. verticillata, missing records from single countries or ecoregions may mini-

mally influence model predictions, but for species with fewer documented

occurrences or poorly understood ranges, geographic biases could misguide pre-

dictions. Regardless of focal species, we recommend that future species distribu-

tion modeling efforts begin with a reflection on potential spatial biases of

available occurrence data. Improved biodiversity surveillance and reporting will

provide benefit not only in invaded ranges but also within under-reported and

unexplored native ranges.

Introduction

Globalization of commerce and travel has increased the

rates of introduction of nonindigenous species through-

out the world (Hulme 2009). Understanding the future

distribution of potentially harmful species represents a

key step in minimizing the damages associated with these

introductions. The use of models to predict potential

species ranges has become common in the study and man-

agement of biological invasions (Thuiller et al. 2005). In

general, such models correlate known species occurrences

with local environmental data, such as climatic patterns, to

characterize the niche and predict the likelihood that

species will find suitable habitat for establishment in new

locations. Over the last decade, improvements in comput-

ing power and increased data availability have contributed
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to the development of different methods for predicting

species ranges, collectively referred to as species distribu-

tion models (reviewed in Franklin 2009).

Distribution modeling of nonindigenous species pre-

sents several challenges, especially when spatial gaps in

occurrence records exist. For instance, predicting suitable

habitat based on native range occurrences can require

extrapolation to novel environmental conditions, and spe-

cies distribution modeling methods differ considerably in

their ability to perform such extrapolations (Elith and

Graham 2009). The ability to use models developed in

one region to predict species distribution in another is

referred to as model transferability and represents an

active area of research (Randin et al. 2006; Peterson et al.

2007; Phillips 2008; Heikkinen et al. 2012).

Combining occurrence data from native and introduced

ranges can influence model projections (Mau-Crimmins

et al. 2006; Loo et al. 2007). A key assumption of species

distribution modeling is that occurrence data represent

populations at equilibrium with their environment (Pear-

man et al. 2008; Warren 2012), yet occurrence data from

introduced populations may not represent the total extent

of habitable space in a given landscape due to dispersal

limitation or lags following an initial introduction (Broen-

nimann and Guisan 2008; V�aclav�ıc and Meentemeyer

2009, 2012; Robinson et al. 2010). On the other hand, the

attention received by the establishment of invasive species

likely increases the frequency and accuracy of occurrence

data reporting within introduced ranges compared to

native ranges where species are not often monitored and

reported. Thus, a trade-off may often exist between the use

of native range data, which represents an inaccurate and

incomplete portrayal of an equilibrium population, and

introduced range data, which may be more thorough but

depict a range still undergoing expansion.

Political boundaries represent a common spatial bias in

species occurrence data; differences in investment in sci-

ence and management can lead to differences in the com-

pleteness or availability of species occurrence records

among countries. Ethical, esthetic, and economic incen-

tives can all motivate governments to be proactive in bio-

diversity surveillance (Ehrlich and Ehrlich 1992).

Furthermore, the establishment of the United Nations

Environment Program and various international treaties

has increased political pressure for conservation and sus-

tainable development (Western 1989). Bioprospecting, the

search for new species with pharmacological or other eco-

nomic value, also provides growing motivation for species

inventory and discovery (Macilwain 1998), as does the

prospect of raising money by promoting ecotourism

(Bookbinder et al. 1998). Regardless of motivation, the

availability of biodiversity data is essential for scientists,

managers, and policymakers, including those making

predictions about the threat of nonindigenous invasive

species around the globe (Edwards et al. 2000).

Previous research has examined the influence of occur-

rence data spatial bias by partitioning data randomly

(Peterson et al. 2007; Phillips 2008) or reflecting other

aggregation that occurs as species are detected over time

(Feeley and Silman 2011; V�aclav�ıc and Meentemeyer

2012). Using the aquatic invasive macrophyte hydrilla

(Hydrilla verticillata [L.f.] Royle; Fig. 1) as a case study,

we assessed the impact of biases reflecting political

boundaries in occurrence data on the transferability of

species distribution models. Vegetative reproduction,

broad environmental tolerance, and an aggressive growth

habit have made hydrilla a formidable global invader

(Langeland 1996). These traits have motivated collection

of a large global occurrence data set, making hydrilla an

excellent case study for exploring the performance of spe-

cies distribution models. By assessing the impacts of

political biases in occurrence data on the transferability of

hydrilla distribution models, we can improve predictions

of species habitat and provide a more confident founda-

tion for the management of ecological reserves, surveil-

lance of biological invasions, or efforts to better define

the range of potentially threatened species.

Methods

Study organism

Hydrilla’s native range is found in central Asia and Aus-

tralia (Cook and L€u€ond 1982; Buckingham and Bennett

1996). Although there is speculation that some hydrilla

populations in China may represent reintroductions

rather than true native populations (Benoit 2011), we

consider all Chinese occurrences as representatives of the

native range in the present study. Hydrilla was first

Figure 1. Hydrilla verticillata (L.f.) Royle. Photo credit: Vic Ramey,

University of Florida/IFAS Center for Aquatic and Invasive Plants.
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detected in the United States in Florida in the 1960s

(Steward et al. 1984) and has since spread across most of

temperate North America. Introduced populations also

occur in Central and South America, Africa, Europe, and

New Zealand (Langeland 1996). Where introduced, hyd-

rilla often has considerable impacts including reduction

of flow in canals, interference with recreational activities,

and displacement of native plants through competition

for light and other resources (Langeland 1996).

Peterson et al. (2003) previously conducted species dis-

tribution modeling for hydrilla in the United States using

the genetic algorithm for rule-set prediction (GARP;

Stockwell and Peters 1999). However, recent Midwestern

appearances of hydrilla in Lake Manitou, Indiana, in 2006

and a private pond in Marinette County, Wisconsin, in

2007 fall outside the potential range estimated by Peter-

son et al. (2003). In the present study, we used a new

modeling technique and updated occurrence records to

inform management of hydrilla. Management efforts will

benefit from an updated demarcation of potential invasi-

ble habitat in the United States and determining previ-

ously unidentified native sources of hydrilla propagules.

Data collection

We accessed hydrilla occurrence data through the Global

Biodiversity Information Facility online database (http://

www.gbif.org accessed March 2012), the United States

Geological Survey Nonindigenous Aquatic Species data-

base (http://nas.er.usgs.gov/) and the United States

Department of Agriculture National Plant Data Center

PLANTS database (http://plants.usda.gov) as well as a

South American occurrence reported by Anderson et al.

(2005). In addition, we included data from two collection

efforts along the Ohio River, USA (N = 33) and through-

out the native range (N = 319) (see Appendix S1 for

description of collection). Overall, we compiled 4336 total

hydrilla occurrence records around the globe, including

1018 we identified as native range records (Fig. 2; see

Appendix S2 for list of geographic coordinates). Each

georeferenced position was verified, and error radii were

assigned using the georeferencing calculator provided by

MaNIS (Wieczorek et al. 2004). All localities with an

uncertainty of position larger than 50 km were removed.

As a first step to reduce bias that may be generated by

uneven sampling effort, we rarified occurrence data before

moving on to model implementation by converting the

occurrence points into a Raster file with the same cell size

as our environmental data, then back to a points file,

resulting in a maximum of one occurrence point per cell

(McDowell et al. 2014; data conversion and all further

mentioned visualization performed in ArcGIS 9.3,

Environmental Systems Research Institute, Redlands,

California, USA). Thus, the working occurrence dataset

included 323 native occurrences.

To establish the relationship between species occur-

rence and habitat, we selected data layers (average annual

temperature, average monthly temperature, growing

degree days) that had previously be used to determine

hydrilla growth and establishment (Van et al. 1978; Spen-

cer et al. 2000; Rybicki and Carter 2002). Data layers of

0.5° resolution were developed by New et al. (1999) and

accessed from Atlas of the Biosphere (http://www.sage.

wisc.edu/atlas/index.php). From the monthly average tem-

perature layers, we derived two composite layers to repre-

sent warm and cold temperature extremes in each

hemisphere. First, we used average monthly temperatures

(December, January, and February) to represent average

winter and summer temperatures for the northern and

southern hemispheres, respectively. Second, we used aver-

age monthly temperatures (June, July, and August) to

represent average northern hemisphere summer and aver-

age southern hemisphere winter temperatures. As an

aquatic macrophyte, hydrilla establishment can occur only

in aquatic habitats. However, we did not include any

indicators of water availability in the environmental layers

used to train our models because even in regions where

standing water is not plentiful, such as the southwestern

United States, hydrilla could establish if introduced into

riverine backwaters, oases, or water gardens, and we did

not want our model to miss suitable habitat in such

areas.

Figure 2. Native (N = 1018; green) and introduced (N = 3318; red)

occurrences of Hydrilla verticillata. Appendix S2 provides list of

geographic coordinates.
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Species distribution modeling

We modeled hydrilla distribution with maximum entropy

modeling (Maxent version 3.3.3k; Phillips et al. 2006).

Maxent operates by comparing the probability distribu-

tions of species presence and environmental variables to

develop a model that can be projected in geographic

space (Phillips et al. 2006; Elith et al. 2011). Maxent pro-

vides one appropriate strategy for working with presence

only data such as our hydrilla data set. Furthermore, in

head-to-head comparisons, Maxent consistently outper-

formed other species distribution model implementations

across taxa and geographic regions (Elith et al. 2006).

Because the purpose of our modeling effort was to

illustrate the potential for changes in model outputs to

occur in response to difference in input data rather than

explicitly testing model performance (e.g., Phillips and

Dud�ık 2008; Hijmans 2012), we generally opted for

default Maxent software settings in all model runs. How-

ever, because overly complex models can limit model

transferability (Warren and Seifert 2011), we conducted a

regularization parameter (b) tuning exercise (e.g., Elith

et al. 2010; Radosavljevic and Anderson 2014). We identi-

fied the default regularization parameter (b = 1) as most

appropriate for our dataset (full details of tuning exercise

available in Appendix S3). We did increase the maximum

allowable model iterations to 5000 based on pilot model

runs in which models took more than 500 iterations to

converge on optimal solutions.

We interpreted the logistic output of each Maxent run

as a probability map of hydrilla habitat suitability. In

addition to visual inspection of output maps, we assessed

model performance using area under the receiver operat-

ing characteristic curve (AUC) where AUC = 0.5 indicates

the model predicts outcomes no better than random, and

AUC ≥ 0.7 indicates strong predictive power (Hosmer

and Lemeshow 2000). To calculate AUC, we used previ-

ously rarified (see “Data collection”) North American

hydrilla occurrence records (N = 346) plus 346 randomly

generated pseudo-absence records across North America

(see Appendix S4). Use of the same test data across all

models justified using AUC to assess relative strength

across models (Jim�enez-Valverde 2012).

In the first Maxent model implementation, we used all

available native range hydrilla occurrences to predict suit-

able habitat in North America. Theoretical (Barve et al.

2011) and real-world examples (Anderson and Raza 2010)

have demonstrated that the way researchers define the

geographic space from which occurrences and back-

ground data are drawn can influence model predictions.

Because we were interested in testing the transferability of

models developed within the native range to invasible

North American habitat, we limited our training

landscape to only countries in which hydrilla occurrences

are known as well as the countries that border them in

Asia and Australia, coinciding with more general descrip-

tions of the native range of hydrilla (Cook and L€u€ond

1982; Buckingham and Bennett 1996).

To explore the influence of biasing occurrence data

within the native range according to political boundaries,

we developed five models using native occurrences as the

training data set but omitting a different country within

the native range from each model run. We conducted this

exercise for each country that contributed > 5% of the

total occurrence points in our native range occurrence

dataset (Australia, China, Japan, South Korea, and Thai-

land). We judged the impact of omitting each country by

calculating the absolute value of the difference between

the AUC of the omission model and the model developed

using all available native range data.

To explore whether political aggregation of data exacer-

bated the influence of data omission on model perfor-

mance, we produced 10 additional models for each

country in which an equally sized random sample of

occurrence data were omitted from across the native

range. For example, to provide comparison with the

model that excluded Australia (N = 77 occurrences), we

ran 10 models with 77 randomly selected occurrences

removed from across the entire native range. We calcu-

lated AUC for each model and determined the average

AUC for each set of 10 models. To avoid the statistical

pitfalls of multiple comparisons, we did not perform pair-

wise comparisons of receiver operating characteristic

curves between models (DeLong et al. 1988). Instead, we

relied on graphical comparisons between median AUC of

each set of 10 random-data omission models and the

model with a specific country omitted.

Results

Multivariate environmental similarity surfaces (MESS;

Elith et al. 2010) and mobility-oriented parity (MOP;

Owens et al. 2013) indicated similar environmental ranges

between the native and North American ranges of hydrilla

with regards to the environmental layers used in this

study, with the only considerable extrapolation in North

America occurring in northernmost regions of Nunavut,

Canada (Appendix S5). Based on model projections,

much of North America appears to represent suitable

habitat for hydrilla (Fig. 3). The predicted range includes

many regions that are not yet known to be colonized: gla-

cial lake districts of the upper Midwest, as well as the

major reservoirs and river systems throughout much of

the central and upper Midwestern United States. On the

other hand, several known occurrences (e.g., in Wisconsin

and Minnesota) fall outside the range projected to be
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suitable (Fig. 3). Little of Canada is predicted to be suit-

able, in contrast to the high habitat suitability of most of

Mexico and Central America (Fig. 3).

Based on visual inspection, the maximum predicted

extent of suitable hydrilla habitat in North America was

similar between the model developed with all native range

data and models excluding selected countries from the

native range; however, the level of habitat suitability (our

interpretation of the logistic output of each Maxent

model) differed between models (Fig. 3). Most notably,

compared to the model developed with all native range

data, the model developed while excluding hydrilla occur-

rences located in China resulted in lower predicted hydril-

la habitat suitability throughout the southeastern United

States. Also, relative to the all native range occurrence

data model, models developed while excluding data from

Japan or South Korea resulted in lower predicted hydrilla

habitat suitability in the central northern United States,

and the model developed while excluding Japan also dis-

played noticeably lower predicted hydrilla habitat suitabil-

ity in the United States Pacific northwest.

AUC differed among the models we developed to exam-

ine how excluding occurrence data from different political

boundaries influenced predictions, but all models demon-

strated considerable predictive accuracy (AUC > 0.7600)

regardless of which country was excluded from the native

range data set (Fig. 4). In order, the largest changes in AUC

Data: All Native Data: Exclude Australia Data: Exclude China

Data: Exclude Japan Data: Exclude South Korea Data: Exclude Thailand

Habitat Suitability Habitat Suitability Habitat Suitability

Habitat Suitability Habitat Suitability Habitat Suitability

High: 0.86
Low: 0.00

High: 0.92
Low: 0.00

High: 0.83
Low: 0.00

High: 0.89
Low: 0.00

High: 0.88
Low: 0.00

High: 0.83
Low: 0.00

Figure 3. Projection of suitable Hydrilla verticillata habitat in North America based on separate Maxent models developed with all native range

data or native range data excluding occurrences from Australia, China, Japan, South Korea, or Thailand. Shading indicates the logistic output of

each model.

Figure 4. Comparison of AUCs for models used to predict

H. verticillata occurrence in North America, but trained on different

subsets of H. verticillata occurrence data from the native range.

Dashed horizontal line indicates AUC (=0.8296) calculated for the

model developed using all native range data (i.e., all countries’

occurrence records included), and filled circles represent AUCs for

models trained with native data from which occurrences within

specific countries were excluded. Box-and-whisker plots represent 10

models developed for each country with an equal number of

randomly selected data omitted from across the native range.
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were produced by omitting China, then Japan, South

Korea, Australia, and Thailand. Models developed after

removal of random, rather than politically aggregated,

native range occurrences also demonstrated predictive

strength (AUC > 0.8000; Fig. 4). Although all models pos-

sessed strong predictive power, omitting data based on

political boundaries tended to produce a larger impact on

model AUC (compared to a model developed with all

native range data) than did models developed with a similar

number of hydrilla occurrences randomly omitted from

across the native range.

Discussion

Our analysis showed that spatial biases resulting from

political gaps in data impact predictions of species distri-

bution. In our experiments, the largest changes in model

prediction strength occurred as a result of omitting China

or Japan from model training, and relatively smaller

effects resulted from excluding Australia, South Korea or

Thailand (Fig. 4). Because geographic biases can influence

predictions of species distribution models, biodiversity

assessment efforts aimed at improving predictions of

future range should focus on areas of conspicuous data

absences, especially when such absences coincide with

political delineations. For instance, in the case of hydrilla,

no occurrence data were found within North Korea

despite documented occurrences in nearby South Korea,

Japan, and northern China (Fig. 2). Future modeling

efforts would benefit from surveys in these countries to

determine whether hydrilla is truly absent or the region

represents an area of inadequately surveyed and underre-

ported native habitat.

Several suggestions for removing spatial biases within

occurrence data have been published including producing

bias grids which prompt Maxent to weigh the importance

of occurrence records inversely proportional to their

proximity to neighboring occurrences (Elith et al. 2010;

Kramer-Schadt et al. 2013) as well as selecting occurrence

data of similar taxonomic groups that are likely to dem-

onstrate similar bias to target occurrences as background

points (e.g., Phillips et al. 2009). We explored the method

of implementing bias grids in data exclusion models

(Appendix S6) but found that results were consistent with

models conducted without bias grids. Using occurrence

data from similar species (e.g., other aquatic plant spe-

cies) may result in larger bias correction if political

boundaries are a major driver of spatial bias in occur-

rence data because such data will also likely be unac-

counted for in certain countries. However, we did not

test this method of bias correction in the present study.

Although somewhat counterintuitive, in some cases omit-

ting occurrences from the training dataset improved model

predictions in the invaded range. Specifically, models

developed with Japan omitted from the training dataset

produced notable increase in AUC relative to the model

developed based on the entire native range (Fig. 4). Consid-

ering a variety of taxa and modeling techniques, previous

studies have found negative relationships between model

accuracy and niche breadth (Brotons et al. 2004; Tsoar et al.

2007; Evangelista et al. 2008), range size (Luoto et al. 2005;

McPherson and Jetz 2007), and commonness (Franklin

et al. 2009), reflecting a decrease in model ability to pin-

point suitable habitat ranges as more environmental varia-

tion is included in the training data. In our study, omitting

the oceanic climate of Japan decreased the predicted suit-

ability of habitat in the US Pacific northwestern relative to

other models and increased AUC, although the general

extent of the predicted range of hydrilla remained similar to

other models (Fig. 3). Larger qualitative differences were

observed when omitting China from the native range data,

as the model predicted less suitable habitat much of the US

southeastern, and AUC decreased despite the general extent

of predicted hydrilla range in North America remaining

similar to other models. Negotiating discrepancies between

visual outputs and indicators of model performance such as

AUC remains a challenge for future species distribution

modeling efforts and the use of species distribution models

to inform environmental management.

Increased delimitation of the native range will also help

to identify sources of invasive propagules for countries

implementing import screening policies to prevent intro-

ductions. False absences could lead to misplaced compla-

cency in existing inspection regimes for international

trade. The efficacy of risk-based management aimed at

reducing invasions resulting from expanding international

trade will increase as the accuracy and completeness of

species occurrence data improve (Keller and Drake 2009).

Efficient prevention of biological invasions requires

engagement among nations, especially emphasizing the

closing of invasion pathways at their point of origin

(Meyerson and Reaser 2002). Otherwise, management of

invasive species will continue to be hindered by a “weak-

est-link” problem in which lax regulations in one political

boundary increase the overall risk of invasion (Perrings

et al. 2002; Peters and Lodge 2009).

In addition to predicting the spread of invasive species

under current conditions, previous species distribution

modeling efforts have sought to predict shifting species

ranges in response to climate change (e.g., Engler and Gui-

san 2009; McDowell et al. 2014). Just as geographic biases

in occurrence data may hinder ability to make predictions

about suitable habitat under current conditions, such

biases may also lead to inaccurate predictions under future

climate scenarios. In the case of hydrilla, we observed

little extrapolation beyond native range environmental

ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 2589

M. A. Barnes et al. Spatial Bias Affects Hydrilla Distribution Models



conditions when projecting from the native range to

North America under current conditions. However, differ-

ent effects of climate change between native and invaded

ranges could result in greater extrapolation and decreased

model performance.

Overall, much of North America, Central America, and

many Caribbean islands appear to represent suitable habi-

tat for hydrilla (Fig. 3). Our models identified far more

potential habitat in the United States than previous mod-

els (Peterson et al. 2003), including more northern lati-

tudes along the Atlantic and Pacific coasts and into the

Midwest, including the southern edge of the Great Lakes.

Nevertheless, the occurrence of hydrilla at sites in the

upper Midwest (Wisconsin and Minnesota, Fig. 3) sug-

gests that our model may still underestimate the potential

North American range of hydrilla. At northern latitudes

and high elevations, hydrilla habitat appeared to be lim-

ited by low average annual growing degree days and

cooler temperatures in warmest summer months. In the

southwestern United States and Mexican gulf coasts, the

model predicts unsuitable hydrilla habitat, apparently

reflecting constraints in the model of both high summer

temperatures and temperate winters. However, numerous

records for hydrilla along the Gulf of Mexico and Rio

Grande provide further indication that the model under-

estimates hydrilla habitat suitability in North America.

Underestimations of hydrilla invasive range at its

northern and southern extremes remind us that environ-

mental factors do not necessarily tell the entire story of

species distributions. A species’ realized niche may also be

constrained by geographic barriers to dispersal, competi-

tors, predators, pathogens, or a limited set of available

environments in natal habitats (Wiens et al. 2009; Alexan-

der and Edwards 2010; Hill et al. 2012). Alternatively,

hydrilla populations established in northern and southern

extremes that are predicted as unsuitable habitats may

represent evidence of niche shift (Broennimann et al.

2007; Hill et al. 2012) indicating that hydrilla in North

America has either adapted to new environments or

established in novel climatic zones (Alexander and

Edwards 2010) as a result of human-mediated dispersal.

It is also worth noting that two hydrilla biotypes, a

monoecious biotype genetically related to plants from

South Korea and a dioecious biotype genetically related

to plants in India (Madeira et al. 1999), occur within the

North American invaded range. With the exception of

Steward and Van (1987) demonstrating that the monoe-

cious biotype is better adapted to grow in cooler tempera-

tures and shorter photoperiods than the dioecious type,

little research exists regarding the physiological differences

between biotypes and their implications for invasion and

ability to produce impacts. We could not differentiate

between biotypes within most of our collected occurrence

data and did not account for this factor in our species

distribution model implementation. If more biotype

information becomes available, incorporating this infor-

mation into future species distribution modeling efforts

may improve our ability to predict suitable hydrilla habi-

tat in North America.

Differences between our projected models and the real-

ity of hydrilla occurrence in North America may be the

product of microscale habitat conditions not captured by

our environmental layers. Furthermore, although our

selection of environmental layers was motivated by

research demonstrating light and temperature influence

hydrilla growth and establishment (Van et al. 1978; Spen-

cer et al. 2000; Rybicki and Carter 2002), it is likely that

other factors such as water chemistry influence hydrilla

establishment. Unfortunately, lack of a repository of

diverse global environmental layers beyond temperature

and precipitation data represents a critical limitation of

species distribution modeling efforts, especially in aquatic

systems.

We used hydrilla as a case study, but the conclusion

that spatial biases according to political boundaries affects

accuracy of model predictions likely applies across diverse

taxa and geographic regions. Because hydrilla is a notori-

ous aquatic invasive species (Langeland 1996), occur-

rences are uniquely well documented around the world.

Thus, removing some data caused only modest changes in

model accuracy because remaining data were still numer-

ous and widespread. Previous studies have demonstrated

that Maxent possesses high predictive capacity even at

small (N < 30) sample sizes (Wisz et al. 2008). It is likely

that spatial biases like those imposed in our experiment

would much more dramatically impact predictive strength

of models for species with fewer documented occurrences

or poorly understood ranges.

Our study contributes to the growing understanding of

how spatial biases in species occurrence records can

impact species distribution model predictions. Regardless

of focal species, we recommend that future species distri-

bution modeling efforts begin with a reflection on poten-

tial spatial biases of available occurrence data. If data are

abundant and evenly dispersed across a species range,

absences in reporting from individual countries or ecore-

gions represent limited challenges to the robust Maxent

modeling framework. However, in situations where data

are limited or spatially aggregated, conspicuous omissions

of political boundaries or ecoregions can have greater

influence on model predictions. Inaccurate models of spe-

cies distributions can in turn hamper management efforts

for invasive species, imperiled species, or other species of

interest. The sampling intensity and accuracy of occur-

rence data used for training models represent important

considerations for all species distribution modeling
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efforts, especially when models will be used to extrapolate

beyond the native range into potentially invasible habitat.

Improved biodiversity surveillance and reporting will pro-

vide great benefit not only in invaded ranges but within

underreported and unexplored native ranges as well.
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