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Computational pathology is a burgeoning field which
shows promise in increasing access to health care, particu-
larly in resource-limited settings with a shortage of experi-
enced pathologists.1 Complementing advances in artificial
intelligence (AI) methods in identifying patterns of disease,
is the advent of publicly available haematoxylin and eosin
(H&E)-stained whole slide datasets from the Cancer
Genome Atlas (TCGA), and other consortia that have pro-
vided a basis on which AI models can be trained and
tested.2 AI simulates a human approach to problem-solv-
ing, utilising algorithms for visual perception, decision-
making and learning while processing large datasets.1

Deep learning models, a subdivision of AI, has greater
advantages than traditional machine learning approaches,
in that these multi-layered neural network algorithms are
able to extract more discriminatory features for diagnostic
purposes.2,3 Two main approaches are employed, super-
vised and unsupervised or weakly supervised approaches.
Supervised approaches rely on pathologists to manually
identify multiple regions of interest on H&E slides that are
then used to train the model. This is regarded as a more
time-consuming, and computationally expensive approach
that is dependent on large, gigapixel sized images or exten-
sive pixel-level annotations.2,4,5 To overcome these limita-
tions, research is being undertaken in developing weakly-
supervised approaches to deep learning where the slide is
given a single annotation (label) with features from image
patches or tiles being pooled under a multiple-instance
learning framework (MIL). Thus with slide-level labelling
if a slide is positive then one or all tiles must contain a
tumour sample, whereas if a slide is negative all tiles must
be tumour-free.4,5

A recent paper published in eBioMedicine, Brendel
et al.,4 using data accessible from The Cancer Genome
Atlas (TCGA), presents a weakly supervised deep learning
model that is capable of identifying key features on H&E
stained slides to accurately estimate tumour purity.
Tumour purity refers to the percentage of tumour cells
over a range of regions of interest (ROI) in a tissue section
enumerated by pathologists. Tumour purity estimates are
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not only reflective of the tumour microenvironment

(TME), but may have clinical significance in prognosis and
therapeutic response.6,7 In addition to the challenges of

inter-observer variability between pathologist scores, these

scores have been found to correlate poorly with molecular

tumour purity values generated from genomic and gene

expression data.6 These latter methodologies are them-

selves time-consuming and expensive that while enabling

precision oncology nevertheless have limitations in their

utility for traditional diagnostic methods. In this weakly-
supervised approach, Brendel et al., employed an attention

based, multi-task, multiple-instance learning (MIL) model

to learn weight features for ROIs within a slide as well as

feature representation that can vie with pathologist-derived

estimates of tumour purity, exceeding accuracy of previous

supervised learning approaches.4 With tumour purity asso-

ciated with tumour type, the author’s model could predict

cancer type in both test and validation tests with 93% accu-

racy. However, misclassification of breast cancer and lung
cancer were common.4 While this may relate to the spatial

distribution of the tissue, reducing noise and variability in

generation of large datasets and ensuring robusticity of

algorithms, is crucial to preventing false negatives and pos-

itives in real-life application.4,8 The model derived by Bren-

del et al. additionally was able to permit visualisation of

ROIs.4 These spatial maps are necessary for downstream

applications including sequencing or proteomics analysis

from tissue sections for precision medicine or exploratory
research that can assist in understanding the key cell types,

including immune cell influence, in the TME that can

describe tumour progression.6 Moreover, as targeted thera-

pies emerge confirming sufficient tumour purity for extrac-

tion for subsequent molecular testing is essential to

preventing false negative results.3 Model validation on for-

malin-fixed paraffin-wax embedded tissue sections,6 the

mainstay of resource-poor countries, is also required given

concerns regarding model robustness when taking into
account variance in preservation methods on tissue archi-

tecture and tissue processing. Nevertheless, by being able

to accurately predict tumour purity, such models could

assist in improving understanding tumour progression

and clinical outcomes without sequencing, particularly in

resource-limited settings. Computational pathology studies

could be enhanced with greater access to and development

of omics and histopathological databases that would permit
further training of such models in cases of extreme low

tumour purity,4 with the incorporation of other laboratory
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diagnostic information including tumour subtype to
improve sensitivity and accuracy. By determining
whether histopathological data could be used to infer
omics information, a better understanding of the
TME and tumour progression could ensue. Further
testing in larger cohorts would better elucidate
patient-patient variation as well as unearth potential
population group variations that impact response to
therapy and ultimately patient outcomes.
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