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ABSTRACT

Objective: To determine whether a machine learning model can detect SARS-CoV-2 infection from physiologi-

cal metrics collected from wearable devices.

Materials and Methods: Health care workers from 7 hospitals were enrolled and prospectively followed in a

multicenter observational study. Subjects downloaded a custom smart phone app and wore Apple Watches for

the duration of the study period. Daily surveys related to symptoms and the diagnosis of Coronavirus Disease

2019 were answered in the app.

Results: We enrolled 407 participants with 49 (12%) having a positive nasal SARS-CoV-2 polymerase chain reac-

tion test during follow-up. We examined 5 machine-learning approaches and found that gradient-boosting

machines (GBM) had the most favorable validation performance. Across all testing sets, our GBM model pre-

dicted SARS-CoV-2 infection with an average area under the receiver operating characteristic (auROC) ¼ 86.4%

(confidence interval [CI] 84–89%). The model was calibrated to value sensitivity over specificity, achieving an av-

erage sensitivity of 82% (CI 6�4%) and specificity of 77% (CI 6�1%). The most important predictors included

parameters describing the circadian heart rate variability mean (MESOR) and peak-timing (acrophase), and age.

Discussion: We show that a tree-based ML algorithm applied to physiological metrics passively collected from

a wearable device can identify and predict SARS-CoV-2 infection.

VC The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.
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Conclusion: Applying machine learning models to the passively collected physiological metrics from wearable

devices may improve SARS-CoV-2 screening methods and infection tracking.

Key words: COVID-19, wearable device, machine learning, coronavirus, apple watch

LAY SUMMARY

The goal of the study is to determine if SARS-CoV-2 infections, which cause Coronavirus Disease 2019 (COVID-19), can be

detected using machine learning algorithms applied to the information collected by wearable devices. Four hundred and nine

health care workers were enrolled from 7 hospitals in New York City. Participants downloaded a custom smart phone applica-

tion and were provided with an Apple Watch, if they did not have one of their own. Daily questions collected information from

participants about how they feel and whether they were diagnosed with COVID-19. We found that a type of machine learning al-

gorithm, called gradient boosting machines was able to reliably predict severe acute respiratory syndrome coronavirus-2

(SARS-CoV-2) infections by combining various metrics collected from the Apple Watch. We found markers of heart rate variabil-

ity, or the calculation of the small-time differences between each heartbeat, to be important in identifying infections. These find-

ings demonstrate that wearable devices may improve screening for SARS-CoV-2 infections and the overall tracking of infec-

tions.

INTRODUCTION

Infection prediction traditionally relies on the development of char-

acteristic symptomatology, prompting confirmatory diagnostic test-

ing. However, the SARS-CoV-2 infection poses a challenge to this

traditional paradigm given its variable symptomatology, prolonged

incubation period, high rate of asymptomatic infection, and variable

access to testing.1,2 Ongoing case surges throughout the world,

prompted by the delta variant, are characterized by greater infectiv-

ity and raise the possibility that SARS-CoV-2 may become endemic.

While highly effective vaccines against SARS-CoV-2 have been de-

veloped, limited vaccine supplies, low vaccination rates in some

communities and the evolution of variants, have prompted ongoing

infectious spread.3 Novel means to identify and predict SARS-CoV-

2 infection are needed.

Wearable devices are commonly used and can measure multi-

modal continuous data throughout daily life.4 Increasingly, they

have been applied to applications in health and disease.5 Research-

ers have previously demonstrated that the addition of wearable sen-

sor data to symptom tracking apps can increase the ability to

identify Coronavirus Disease 2019 (COVID-19) patients.6 Addition-

ally, the combination of heart rate, activity, and sleep metrics mea-

sured from wearable devices was able to identify 63% of COVID-

19 cases before symptoms, further demonstrating the promise of

this approach.6,7

Our group launched the Warrior Watch Study, which employed

a custom smartphone app to remotely monitor health care workers

(HCWs) throughout the Mount Sinai Health System.8 This app de-

livered surveys to the subject’s iPhones and enabled passive collec-

tion of Apple Watch data. We previously demonstrated that

significant changes in heart rate variability (HRV), the small differ-

ences in time between each heartbeat that reflect autonomic nervous

system (ANS) function, collected from the Apple Watch, occurred

up to 7 days before a COVID-19 diagnosis.8,9

OBJECTIVE

Building on these observations, our primary aim was to determine

the feasibility to train and validate machine learning approaches

combining HRV measurements with resting heart rate (RHR) met-

rics to predict COVID-19 before diagnosis via nasal polymerase

chain reaction (PCR).

MATERIALS AND METHODS

Study design
We recruited HCWs for this prospective observational study from 7

hospitals in New York City (The Mount Sinai Hospital, Morning-

side Hospital, Mount Sinai West, Mount Sinai Beth Israel, Mount

Sinai Queens, New York Eye and Ear Infirmary, Mount Sinai

Brooklyn).8 Subjects were �18 years, employees at one of these hos-

pitals, had at least an iPhone series 6, and were willing to wear an

Apple Watch Series 4 or higher. Underlying autoimmune or inflam-

matory diseases, as well as medications known to interfere with

ANS function, were exclusionary. The study was approved by the

Mount Sinai Hospital Institutional Review Board, and all subjects

provided informed consent prior to enrollment.

Study procedures
Subjects downloaded the Warrior Watch Study app, signed the elec-

tronic consent, and completed baseline demographic questionnaires.

Prior COVID-19 diagnosis, medical history, and occupation classifi-

cation within the hospital were collected via in-app assessments.

Subjects completed daily surveys to report any COVID-19 related

symptoms, symptom severity, the results for any SARS-CoV-2 nasal

PCR tests, and SARS-CoV-2 antibody test results. A positive diagno-

sis was defined as a self-reported positive SARS-CoV-2 nasal PCR

test. Each subject was asked to report the date he or she was diag-

nosed with a SARS-CoV-2 infection, which correlates with the date

the nasal PCR took place. Subjects were asked to wear the Apple

Watch for at least 8 hours per day (Figure 1A).

Wearable device
Subjects wore an Apple Watch Series 4 or higher, which are com-

mercially available wearable devices that connect via Bluetooth to

participants’ iPhones. The Apple Watch uses infrared and visible-

light light-emitting diodes and photodiodes that act as a photople-

thysmogram generating time series peaks from each heartbeat.10

There is a moving average window during which heart rate measure-

ments are calculated while the device is worn. HRV is automatically

2 JAMIA Open, 2022, Vol. 5, No. 2



calculated in ultra-short 60-second recording periods as the standard

deviation (SD) of the inter-beat interval of normal sinus beats

(SDNN), a time-domain index.9 SDNN reflects sympathetic and

parasympathetic nervous system activity. The Warrior Watch Study

app collects the generated SDNN and heart rate measurements at

survey completion.

Data handling, model development, and statistical

analysis
Our primary analysis consisted of measurements of HRV. HRV fol-

lows a circadian pattern that can be characterized by 3 parameters,

namely the MESOR (M: the mean HRV during the day), amplitude

(A: maximum HRV during the day), and the acrophase (W: describ-
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Figure 1. General Strategy for training and testing statistical classifiers. Diagram illustrating the general strategy for developing the statistical classifier. (A) Sub-

jects wore smartwatches that collect measurements of HRV and RHR. Subjects answer daily surveys to provide health outcomes including COVID test results. (B)

Each day each subject is labeled as either; COVIDþ if observation was made within 67 days of the patients first positive COVID-19 test, otherwise the observation

is labeled COVID�. (C) HRV measurements were too sparse to estimate HRV COSINOR parameters (MESOR, Amplitude, and Acrophase) for each day, thus, we

estimated smoothed parameters using a 7-day sliding window. RHR (mean, standard deviation, minimum, and maximum) was also estimated over this window.

(D) The data were split into 100 training and testing sets, models were fit to the training data and performance was estimated using 10-fold CV. 10-CV predictions

were used define a decision rule that increases sensitivity, this decision rule was applied to the predictions in the testing data to get the final performance.

COVID-19: Coronavirus Disease 2019; CV: cross-validation; HRV: heart rate variability; RHR: resting heart rate.
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ing when the maximum occurs).8 We previously developed a mixed-

effects COSINOR model to compare HRV circadian patterns at the

group level and show that changes in those parameters were associ-

ated with infection.8 Given these findings, daily measurements of

HRV were incorporated as potential diagnostic biomarkers for our

machine-learning approach.

HRV measurements for each day were sparse and were not taken

at regular intervals. Thus, daily estimates of HRV COSINOR

parameters M, A, and W could not be calculated. Due to this limita-

tion, we estimated the daily HRV parameters for each subject and

day (tn) using HRV data from a 7-day sliding window (tn–tn–6),

thereby creating daily smoothed estimates reflecting changes in the

last 7 days (Figure 1B). To aid the optimization procedures, each

subject’s initial estimates are obtained using the first 2 weeks of data

from each subject fitted to a mixed-effect COSINOR model with A,

M, and W as random effects.8 From this model, the subject-specific

COVID-negative baseline A, M, and W is derived and used to initial-

ize the iterative 7-day smoothed estimates within each subject. If the

number of days in the 7-day window was <3, the window was ex-

panded to 14 days (tn–14). In rare cases, no data were available over

14-days, and parameters were imputed using the last observation

carried forward imputation method. During each window, we also

measured the maximum, minimum, mean, and SD of the RHR. For

each day and subject, there were a total of 8 digital biomarkers used

to develop our predictive models: HRV-amplitude, HRV-MESOR,

HRV-acrophase, daily RHR, RHR-max, RHR-min, RHR-sd, RHR-

mean, and 3 demographic variables known to impact HRV-body

mass index (BMI), age, and gender.11 This smoothed approach

ensures that small and transient changes in HRV profile will not dra-

matically effect daily HRV metrics, rather, our feature engineering

approach detects large and sustained changes from the subjects

COVID-negative baseline.

Data were split into independent training and testing sets, ensur-

ing that observations with proximity in time (64 days), for the same

subject, were in the same set. The rational being those measurements

taken on chronologically similar days (eg, day 6 and day 7), would

have similar HRV metrics, and thus would create time-dependency

bias if they appeared in different sets (eg, day 6 in training, day 7 in

testing). This procedure created 100 training and testing sets, con-

taining 90% and 10% of the data, respectively. Care was also taken

to ensure that the prevalence of COVID-19 positive (COVIDþ) di-

agnoses in each set was similar to the prevalence of the full data set.

Machine learning model training and evaluation were performed

using caret and pROC packages, with tuning parameters estimated

using 25 validation sets, selected using the same sampling procedure

as the testing data. To safeguard against biases induced by the low

prevalence of COVIDþ samples, we considered several sampling

methods to balance the data during model training, ultimately using

class weights to give more weighting to the minority class. Models

were trained on each of the 100 training sets, and their performance

(area under the receiver operating characteristic [auROC], partial-

auROC, area under the precision recall curve [auPRC], accuracy,

precision, sensitivity/recall, specificity, and balanced accuracy) was

assessed on the corresponding testing set and presented as mean

with 95% confidence interval (CI). The sensitivity of the diagnostic

algorithm was prioritized since the application of wearable devices

as a noninvasive screening modality would be to prompt a confirma-

tory PCR test. Our models were trained to maximize partial-auROC

(sensitivity boundary of >75%), with tuning parameters estimated

using the 25-validation sample. When exploring the training data,

validation performance for several different machine-learning algo-

rithms was assessed (gradient-boosting machines [GBM], elastic-net,

partial least squares, support vector machines, and random forests).

However, a GBM model was selected as the best performing and

was used to develop our statistical classifier.

When calibrating the model, the validation predictions were

used to optimize the probability threshold such that the sensitivity

was above >78%. The average value of this probability threshold,

over all 100 iterations, was then used to define the final decision

rule where cases with a predicted probability above this threshold

were considered COVIDþ. We used a previously described method

to estimate each feature’s relative influence/importance in the

model, over all 100 training sets.12 All analyses were performed by

R, version 4.0.2, including the caret and pROC packages.13,14

RESULTS

Study population
Four hundred and seven HCWs were enrolled between April 29,

2020 and March 2, 2021 (Table 1). The mean age of participants at

enrollment was 38 years (SD 9.8), and 34.2% were men. A positive

SARS-CoV-2 nasal PCR was reported by 12.0% (49/407) of partici-

pants during follow-up (Figure 1C). The median follow-up time was

73 days (range, 3–253 days) for a total of 28 528 days of observa-

tions. A median of 4 HRV samples were collected at varying times

per participant per day, and daily measures of RHR. Subjects who

were diagnosed with COVID-19 were less likely to report a baseline

negative SARS-CoV-2 nasal PCR test (73.5% vs 96.6%, respec-

tively; P< .001).

Performance in training and 10 cross-validation, and

model calibration
Given the low prevalence of COVIDþ observations (<1% of all

daily observations were COVIDþ), and to avoid biased performance

metrics resulting from a single split, the data were split into 100

training (including �90% of the data) and testing (�10%) sets, us-

ing a strategy that guarantees independence between testing and

training sets. This procedure produced robust estimates of the model

performance in the testing set as well as 95% CI (Figure 1D). The

validation performance of several different machine-learning meth-

ods was explored, but ultimately, GBM had the most favorable per-

formance, particularly compared to linear methods such as elastic

net regularization (Table 2), suggesting a non-linear relationship be-

tween HRV and SARS-CoV-2 infection.

As would be expected, ROC curves calculated for GBM using all

training samples show a high AUC (>99%) (Figure 2A and B),

whilst performance in validation sets achieved AUC¼ 85%. The val-

idation sets were selected to minimize time-correlation between

training and validation, and to provide less biased performance esti-

mates. We also calculated the auPRC, a metric that is more informa-

tive for imbalanced data, which achieved 19%, much higher than

the prevalence of positive outcomes.15 It is important to note that,

since this wearable device-based algorithm would be used as a

screening test, we optimized the model to value sensitivity/recall

metrics rather than metrics based on precision.

We calibrated the final decision rule to guarantee high sensitiv-

ity, as a wearable device-based algorithm would be utilized as a

screening test (Table 3). This calibrated decision rule increases the

true positive rate by allowing for a larger rate of false positive

results. To keep the testing performance unbiased, we used the vali-

dation data to optimize the decision rule to guarantee a sensitivity
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>78% (Figure 2C). This optimal decision rule was 0.21 (Figure 2C)

and produced an average validation Accuracy (Figure 2D) of 78%

(CI 6�1%), with 77% sensitivity and 78% specificity, thus indicat-

ing a specificity loss of 18%, for a 19% gain in sensitivity compared

to the standard 0.5 decision threshold. When the calibrated diagnos-

tic rule was applied to testing data, an AUC >85% (Figure 2D and

E) was achieved. Accuracy was 77%, specificity was 77% (CI

6�1%) (Figure 2D). The mean sensitivity was 82% (CI 6�4%).

Feature importance and interpretation
The 4 most important/influential predictors were HRV acrophase,

HRV MESOR, age, and BMI (Figure 3A), with median importance

>70%. RHR metrics (maximum, minimum, SD, mean) as well as

HRV amplitude, were less influential (median importance 25–50%).

Sex had importance equal to 0 in most models. To visualize the rela-

tionship between feature values and model prediction, we selected

the 9 patients for which the model was best able to predict COVID-

19 (AUC>79% validation), and plotted the acrophase, amplitude,

MESOR and max RHR, as well as the predicted probability, for

each day (Figure 3). This analysis revealed a complex relationship

between HRV parameters and SARS-CoV-2 infection. It was nota-

ble that, for some subjects, the predicted probability increased when

HRV amplitude decreased, which is consistent with our previously

published analysis.8

DISCUSSION

Our results demonstrate that a machine learning approach applied

to the physiological metrics measured by a wearable device identifies

and predicts SARS-CoV-2 infections, in a manner suitable for a

screening test. This highlights the potential utility of assessing indi-

vidual changes in passively collected physiological data from wear-

able devices to facilitate the management of the COVID-19

pandemic.

Infections alter physiological metrics differentiating infected and

uninfected states. Changes in vital signs in the setting of infection,

including increased heart rate, elevated respiratory rate, and altered

body temperature, have been well described.16,17 In addition to

these traditional physiological metrics, ANS function, measured by

HRV, is altered during illness. Several small studies have shown that

changes in HRV can identify and predict infections.18,19 Building on

these observations and the growing capabilities of wearable technol-

ogy, wearable devices have been increasingly explored in the setting

of infection. They provide a unique means to measure physiological

parameters and offer an advantage over periodic assessments in the

clinical setting by collecting real-time continuous measurements.20

This approach can identify trends in individual physiological out-

puts. On a population level, retrospective analysis of physical activ-

ity and heart rate data collected from Fitbits was shown to improve

influenza-like illness predictions.21 This approach applied to an indi-

vidual level was explored during the COVID-19 pandemic.

SARS-CoV-2 alters physiological metrics commonly measured

by wearable devices.22 Quer et al6 collected symptom data and phys-

iological metrics from smartwatches. They found that while RHR

could not discriminate SARS-CoV-2 infections from negative cases

(AUC of 0.52), when combined with sleep, activity, and symptom-

based data, the AUC increased to 0.80. They demonstrated that the

addition of wearable-based data significantly improved the ability of

symptoms alone to discriminate between those positive or negative

for COVID-19. Similarly, Mishra et al7 demonstrated that heart

rate, physical activity, and sleep time collected from wearable devi-

ces could detect COVID-19. They found that 26 of the 32 COVID-

19 positive subjects in their cohort had significant alterations of

these metrics before diagnosis or symptom development and that

63% of cases could be detected before symptom onset.

Table 1. Baseline characteristics of study participants

Total cohort

(n¼ 407)

Never COVID-19

positive (n¼ 358)

COVID-19 positive

(n¼ 49)

P value

Age, mean (SD) 37.9 (9.82) 37.9 (9.73) 37.3 (10.55) .65

Body Mass Index, mean (SD) 25.7 (5.47) 25.7 (5.50) 25.8 (5.31) .91

Male gender (%) 139 (34.2) 128 (35.8) 11 (22.4) .09

Race (%) .07

Asian 111 (27.3) 104 (29.1) 7 (14.3)

Black 43 (10.6) 40 (11.2) 3 (6.1)

Hispanic/Latino 71 (17.4) 58 (16.2) 13 (26.5)

Other 23 (5.7) 21 (5.9) 2 (4.1)

White 159 (39.1) 135 (37.7) 24 (49.0)

Baseline negative SARS-CoV-2 Nasal PCR (%) 382 (93.9) 346 (96.6) 36 (73.5) <.001

Baseline negative SARS-CoV-2 serum antibody (%) 367 (90.2) 325 (90.8) 42 (85.7) .39

Baseline smoking status (%) .61

Never/rarely smoker 343 (84.3) 300 (83.8) 43 (87.8)

Current/past smoker 64 (15.7) 58 (16.2) 6 (12.2)

COVID-19, coronavirus disease 2019; PCR, polymerase chain reaction; SD, standard deviation.

Table 2. Validation performance of GBM and Elastic Net machine learning methods

Machine learning method Area under receiver

operating characteristic

Area under partial receiver

operating characteristic (sensitivity> 0.75)

Area under precision

recall curve

Gradient boosting machines 0.85 0.79 0.19

Elastic net regularization 0.60 0.60 0.03
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HRV has been evaluated in SARS-CoV-2 infections. A small

study of 17 subjects with SARS-CoV-2 found that rises in inflamma-

tion markers were preceded by low HRV, while another study on 14

subjects with SARS-CoV-2 in the intensive care unit demonstrated

that high frequency HRV was higher and SDNN was lower in

patients who later passed away.23,24 These findings were followed

in a larger study of 271 subjects hospitalized with SARS-CoV-2

infections, which calculated HRV from 10 seconds of electrocardio-

gram recordings at admission. SDNN was predictive of survival

(hazard ratio¼ 0.53) in subjects over 70 years of age.25 These studies

demonstrate that changes in HRV are useful in the context of

COVID-19. While they demonstrate a relationship in a cross-

sectional fashion, we sought to leverage the longitudinal nature of

HRV collection using wearable devices to expand upon these obser-

vations. Our group previously demonstrated that changes in the cir-

cadian pattern of HRV were associated with a COVID-19

diagnosis.8 We demonstrated that significant changes, particularly

in the amplitude of SDNN, were observed over the 7 days before di-

agnosis in both symptomatic and asymptomatic individuals. Based

on this observation, we built a machine learning algorithm that in-

corporated HRV circadian rhythm, RHR parameters, and demo-

graphic characteristics that can easily be collected from wearable

Figure 2. Model performance in training and testing data. (A) ROC curve and AUC over all training and validation samples. (B) Boxplots show distribution of vali-

dation performance metrics in over all 100 training sets. (C) Plot shows specificity (red, upward sloping line) and sensitivity (blue, downward sloping line) at dif-

ferent response thresholds for all validation samples, a threshold �0.21 achieved a sensitivity of 77% and a specificity of 78%. (D) Boxplots show distribution of

performance metrics over all 100 training and test sets using the 0.21 threshold decision rule. (E) ROC curve and AUC over all testing samples. AUC: area under

the curve; ROC: receiver operating characteristic.

Table 3. Performance summary of the gradient boosting machine learning model in validation and testing sets before and after calibration

10-fold cross-validation

before calibration (n¼ 100)

10-fold cross-validation

after calibration (n¼ 100)

Testing sets (n¼ 100)

AUC 84.7% (CI 6�0.1%) 84.7% (CI 6�0.1%) 86.4% (CI 6�3%)

AUC partial 78.5% (CI 6�1%) 78.5% (CI 6�1%) 79.6% (CI 6�3%)

Accuracy 95.4% (CI 6�0.1%) 78% (CI 6�1%) 77.2% (CI 6�1%)

Sensitivity 57.4% (CI 6�1%) 76.8% (CI 6�1%) 81.7% (CI 6�4%)

Specificity 95.7% (CI 6�0.1%) 78.0% (CI 6�1%) 77.2% (CI 6�1%)

Balanced accuracy 76.5% (CI 6�0.1%) 77.4% (CI 6�1%) 79.5% (CI 6�2%)

auPRC 19.3% (CI 6�1%) 19.3% (CI 6�0.1%) 18.0% (CI 6�3%)

AUC, area under the curve; auPRC, area under the precision recall curve; CI: confidence interval.
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device users. We trained a predictive model and then demonstrated

the ability to accurately predict COVID-19 status in new data with

relatively high sensitivity (82%) and specificity (77%), compared to

the current gold standard of SARS-CoV-2 nasal PCR testing. This

model’s high sensitivity and the minimal demographic data required

lend itself to easy deployment. Our model has an advantage over

prior publications evaluating the relationship between wearable-

based data and a COVID-19 diagnosis, in that we trained a predic-

tive model and then demonstrated its accuracy in predicting

COVID-19 status in a test set not used in training or validation.6–8

Our findings highlight how changes in circadian features of

HRV can be used to identify inflammatory events, such as SARS-

CoV-2 infections. Traditionally, HRV analyses rely on assessing

relative sympathetic and parasympathetic ANS tone. However, by

Figure 3. Changes in HRV parameters and model predictions over time. (A) Box plots show the importance of each variable selected by the GBM models over all

100 training sets. (B) Line plots show daily measurements of HRV parameters (Acrophase, MESOR, and Amplitude), and Maximum resting heart rate, as well as

the probability of infection (black, solid line) predicted by the model. Feature values are centered, scaled and smoothed to facilitate comparison. Daily measure-

ments for 9 subjects are shown, predictions for each of these 9 subjects all had AUC > 65% in validation. Vertical red-dashed lines indicate the infection window

for each patient, horizontal gray solid line indicates the .18 probability threshold used for the decision rule. AUC: area under the curve; GBM: gradient-boosting

machines; HRV: heart rate variability.
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evaluating subtle alterations in HRV architecture, nuanced changes

in the ANS can be identified to perhaps enhance identification of

physiological changes. In our model, alteration of HRV features

were more influential predictors of infection compared to heart

rate metrics. This observation warrants further exploration in other

disease states as well and may identify a physiological feature that

can improve predictive wearable-based algorithms in other dis-

eases. It is important to recognize that while wearable device de-

rived physiological metrics offer the ability to identify SARS-CoV-2

infections, these changes are likely not specific to this condition.

Other infections, such as influenza, or exacerbations of chronic in-

flammatory conditions, can result in physiological deviations in

HRV and other metrics.21,26 Chronic diseases were excluded in our

study, however, recognition of this limitation, in all wearable-based

algorithms, is important especially when applications to real-world

data are considered. Operationalization of such algorithms there-

fore requires a minimum prevalence of the condition to be pre-

dicted which will improve its positive predictive value. While our

study was able to control for prior infection with SARS-CoV-2 in

the analysis, our prior work demonstrated that its impact on HRV

circadian pattern was short lived with statistically significant altera-

tions for 7 days from the date of COVID-19 diagnosis, mitigating

the long-term impact of prior infection on machine learning models

incorporating this data.

There are several limitations to our study. First, HRV was col-

lected sporadically by the Apple Watch. We employed statistical

modeling to account for this. However, a denser data set using

continuous data would likely further improve our predictions. Sec-

ond, the model we employed used a 7-day smoothing approach.

This approach observed infection-induced changes in HRV later

than if HRV was estimated using a single-day method. Thus, the

approach we employed is conservative. It is important to mention

that our approach relies on first establishing a COVID-negative

baseline HRV profile for each patient and attempts to learn when

changes from this baseline are associated with being COVID-19

positive. Thus, to mimic the clinical implementation of this ap-

proach, we used a data splitting approach that allowed samples

from the same patient to be in training and test, albeit at different

time points. This approach is not beyond critique since the testing

and training sets are not fully independent and could lead to an

overestimate of performance. Although we argue that our ap-

proach appropriately emulates the real-world application of this

algorithm, we acknowledge we would need to externally validate

our machine learning algorithm in another cohort to get a more

accurate estimate of performance.

An additional limitation is that the Apple Watch provides

HRV measurements only in the SDDN time domain. This limits

assessments between other types of HRV measurements and

COVID-19 outcomes. Additionally, other factors might impact

HRV, which we were not able to capture and control for in the

analysis. Furthermore, we were not routinely checking for SARS-

CoV-2 infections and relied on subjects reporting a COVID-19 di-

agnosis. Therefore, infections could have occurred that are not

accounted for, or the date of a COVID-19 diagnosis could vary

from the true date, due to subject reporting errors. Another limita-

tion is it is not known whether different SARS-CoV-2 variants,

and their slightly different physiological effects, can be identified

using the same machine learning algorithm. While our recruitment

included through the period when the Delta variant was circulat-

ing in the United States, we did not recruit HCWs while the omi-

cron variant was present.

CONCLUSION

We demonstrate that a machine learning algorithm combining circa-

dian features of HRV with features of RHR derived from the Apple

Watch achieves high sensitivity and specificity in predicting the de-

velopment of COVID-19. While further validation is necessary, this

non-invasive and passive modality may be helpful to monitor large

numbers of people for possible infection with SARS-CoV-2 and help

direct testing toward high-risk individuals.
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