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AbsTrACT 
background  PALB2 monoallelic loss-of-function 
germ-line variants confer a breast cancer risk 
comparable to the average BRCA2 pathogenic variant. 
recommendations for risk reduction strategies in 
carriers are similar. elaborating robust criteria to identify 
loss-of-function variants in PALB2—without incurring 
overprediction—is thus of paramount clinical relevance. 
towards this aim, we have performed a comprehensive 
characterisation of alternative splicing in PALB2, 
analysing its relevance for the classification of truncating 
and splice site variants according to the 2015 american 
college of Medical genetics and genomics-association 
for Molecular Pathology guidelines.
Methods alternative splicing was characterised in 
rnas extracted from blood, breast and fimbriae/ovary-
related human specimens (n=112). rnaseq, rt-Pcr/
ce and cloneSeq experiments were performed by five 
contributing laboratories. centralised revision/curation 
was performed to assure high-quality annotations. 
additional splicing analyses were performed in 
PALB2 c.212–1g>a, c.1684+1g>a, c.2748+2t>g, 
c.3113+5g>a, c.3350+1g>a, c.3350+4a>c and 
c.3350+5g>a carriers. the impact of the findings on 
PVS1 status was evaluated for truncating and splice site 
variant.
results We identified 88 naturally occurring alternative 
splicing events (81 newly described), including 4 in-frame 
events predicted relevant to evaluate PVS1 status of 
splice site variants. We did not identify tissue-specific 
alternate gene transcripts in breast or ovarian-related 
samples, supporting the clinical relevance of blood-based 
splicing studies.
Conclusions PVS1 is not necessarily warranted for splice 
site variants targeting four PALB2 acceptor sites (exons 2, 
5, 7 and 10). as a result, rare variants at these splice sites 
cannot be assumed pathogenic/likely pathogenic without 
further evidences. Our study puts a warning in up to five 
PALB2 genetic variants that are currently reported as 
pathogenic/likely pathogenic in clinVar.

InTroduCTIon
Monoallelic loss-of-function (LoF) germ-line vari-
ants in PALB2 predispose to breast cancer, with esti-
mated absolute risks by age 80 ranging from 33% 
to 58%, depending on the family history.1 2 Excess 
risk for other cancers, such as pancreas, prostate, 
ovarian and male breast cancer, is still under inves-
tigation. Currently, gene panel testing for breast 
cancer predisposition includes PALB2,2 and LoF 
germ-line variants in this gene are considered 
actionable findings in many settings, with proposed 
actions ranging from increased surveillance to 
prophylactic surgery.3–5 Accordingly, classifying 
PALB2 LoF variants is of paramount clinical rele-
vance. Yet, the task is not trivial, as proved by the 
large number of variants of uncertain significance 
still existing in genes that have been extensively 
studied, such as BRCA1 or BRCA2.6

In the research setting, truncating (nonsense 
or frameshift) variants predicted to induce 
nonsense-mediated decay (PTC-NMD variants) 
and canonical ±1,2 splice site variants (hereafter 
named splice site variants) at cancer predisposi-
tion genes are often assumed pathogenic/likely 
pathogenic LoF variants.1 2 However, in the clin-
ical setting a more conservative approach is recom-
mended. According to the American College of 
Medical Genetics and Genomics-Association for 
Molecular Pathology (ACMG-AMP) interpretation 
guidelines,7 a PTC-NMD or splice site variant is 
a very strong evidence of pathogenicity (PVS1), 
but not sufficient to classify the variant as patho-
genic/likely pathogenic. Additional combinations of 
strong (PS), moderate (PM) and/or supporting (PP) 
evidence of pathogenicity are required. Further-
more, PVS1 is not warranted for every PTC-NMD/
splice site variant. Indeed, the ACMG-AMP-2015 
guidelines specify several caveats, including the 
possibility of: (i) rescue transcripts (alternate 
gene transcripts that skip the truncating variant, 
encoding functional or partially functional proteins 
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and resulting in reduced or no haploinsufficiency), (ii) splice site 
variants producing transcripts with in-frame deletions/insertions 
retaining some or all functional capacity and (iii) tissue-specific 
alternate gene transcripts.7 Therefore, the accurate interpreta-
tion of PALB2 PTC-NMD and splice site variants according to 
the ACMG-AMP-2015 guidelines requires reliable information 
on both protein structure/function and alternative splicing.

To be more precise, PALB2 PTC-NMD/splice site variants 
without direct risk estimates and/or functional data (a common 
scenario in genetic testing) should be classified as likely patho-
genic only if PVS1 is warranted. For PTC-NMD variants, PVS1 
is warranted if no rescue transcripts are predicted. For splice site 
variants the analysis is more complex. In addition to rescue tran-
scripts, the possibility of the variant allele producing transcripts 
with in-frame alterations retaining coding potential should be 
considered, although predicting the precise nature of the tran-
scripts produced by a splice site variant is challenging.

In recent years, the Evidence-based Network for the Interpre-
tation of Germ-line Mutant Alleles (ENIGMA consortium) has 
conducted a comprehensive characterisation of naturally occur-
ring alternate gene transcripts in BRCA1 and BRCA2,8 9 exploring 
the impact of the findings for the clinical classification of genetic 
variants at the two loci. Major achievements were the identifica-
tion of a subset of splice sites variants for which PVS1 was not 
necessarily warranted, the posterior demonstration that at least 
one allele containing a splice site variant, BRCA1 c.[594-2A>C; 
641A>G], does not increase breast cancer risk and the observa-
tion that splicing assays may lead to erroneous clinical conclu-
sions if alternate gene transcripts are not properly addressed.8–11 
Recommendations based on these studies are documented in the 
ENIGMA BRCA1/2 Gene Variant Classification Criteria (https:// 
enigmaconsortium. org) that support BRCA1 and BRCA2 expert 
panel review interpretation at ClinVar.

A recent study has identified alternate gene transcripts at the 
PALB2 locus, but no inferences in relation to the clinical inter-
pretation of genetic variants were made.12 Here, we undertake 
a comprehensive characterisation of PALB2 alternative splicing, 
exploring the possible relevance of the findings for the clinical 
classification of PTC-NMD and splice site variants according to 
the ACMG-AMP-2015 guidelines.

MeThods
Identification of alternative splicing events
To characterise alternative splicing at the PALB2 locus, we anal-
ysed RNAs isolated from 112 specimens, including lympho-
blastic cell lines not treated with the NMD-inhibitor puromycin 
(n=68), matched replicates treated with puromycin (LCLs+Puro, 
n=1), stimulated leucocytes cultures not treated with puromycin 
(n=6), matched replicates treated with puromycin (sLEU+Puro, 
n=3), RNA stabilised peripheral blood samples (PAXgene, 
QIAGEN, n=7; Tempus, Thermo Fisher, n=10), non-malignant 
breast tissue samples from unrelated women (Breast, n=12; 10 
corresponding to women with a diagnosis of breast cancer, of 
which 9 are included in SCAN-B,  ClinicalTrials. gov identifier: 
NCT02306096; 2 corresponding to women without a diagnosis 
of breast cancer included in CASOHAR trial NTC02560818), 
a human mammary epithelial cell (HMEC, n=1, 2 technical 
replicas included in the analysis), commercially available RNA 
from non-malignant breast tissue (Clontech 636576, n=1), 
normal ovarian fimbriae tissue samples from prophylactic 
oophorectomies performed in postmenopausal women without 
cancer (Fimbriae, n=2) and one pool of 3 non-malignant ovarian 
tissues (Clontech 636555, n=1).

Experiments were performed independently in five ENIGMA 
laboratories (figure 1). Most samples were analysed by targeted 
RNAseq (n=72) in laboratory 1 (online supplementary table 1 
and 2). Other samples were analysed by whole transcriptome 
RNAseq (n=13) in laboratories 2 and 3 (online supplementary 
table 1 and 2), by capillary electrophoresis of RT-PCR products 
(RT-PCR/CE, n=22) in laboratory 4 (online supplementary 
table 1, 2, 3 and figures 1A, B), and by whole-gene CloneSeq 
splicing analysis (n=5) in laboratory 5 (online supplementary 
figure 1B). We later performed a centralised revision/curation of 
the data, including the search for putative tissue-specific alter-
nate gene transcripts. To this end, we pooled together all data 
produced in LCLs±Puro, sLEU±Puro, PAXgene and Tempus 
samples (hereafter referred collectively as BLOOD), all data 
produced in non-malignant breast tissues, HMEC and Clontech 
636 576 (hereafter referred as BREAST) and all data produced 
in non-malignant ovarian fimbriae and Clontech 636 555 (here-
after referred as OVARY). The overall workflow is summarised in 
figure 1 (see online supplementary section 1 for further details).

Annotation of alternative splicing events
We described all alternative splicing events according to 
HGVS guidelines, using as a reference the Ensembl transcript 
ENST00000261584.8 (NCBI RefSeq NM_024675.3). For the 
sake of simplicity, we also identified most events with a code that 
combines the following symbols: ∆ (skipping of reference exonic 
sequences), ▼ (inclusion of reference intronic sequences), E 
(exon), I (intron), p (acceptor shift), q (donor shift), AFE (alter-
native first exon) and IVS± (located at intervening sequence). 
When necessary, the exact number of nucleotides skipped (or 
retained) is indicated. Events were annotated as well according 
to the confidence of the finding (high-confidence vs lower-con-
fidence), predictions on coding potential (LoF vs uncertain) and 
relative quantification (expression level relative to the corre-
sponding reference transcript) (see online supplementary mate-
rial section 2 and figures 2-5 for further details).

Analysis of PVs1 status (warranted vs not warranted) for 
every possible PTC-nMd and splice site variant at the PALB2 
locus
To decide if PVS1 is warranted we used predictions based on: (i) 
the identification of alternate gene transcripts in control samples, 
(ii) RNA splicing assays performed previously in carriers of PALB2 
splice site variants (online supplementary table 4) and (iii) novel 
RNA splicing assays (online supplementary table 4, figures 6A, B 
and C). In brief, we consider PVS1 warranted for PTC-NMD vari-
ants only if no plausible rescue transcripts have been detected. Simi-
larly, we consider PVS1 warranted for splice site variants only if all 
predicted RNA product are bona fide LoF transcripts. To predict 
possible RNA products, we used splicing assays performed in 
carriers of splice site variants (assuming that other PALB2 splice site 
variants targeting the same splicing site will produce similar tran-
scripts). If no splicing assay was available for a particular splice site, 
we based predictions on alternate gene transcripts, as previously 
done for BRCA1 and BRCA2.9 10 Further details are shown in online 
supplementary material section 3 and table 4.

resulTs
We used RNA extracted from different human biological samples 
(blood-derived, breast and ovary; see 'Methods' section) to char-
acterise naturally occurring alternative splicing at the PALB2 
locus. This study combined targeted RNAseq, whole transcrip-
tome RNAseq, RT-PCR/CE and whole-gene CloneSeq splicing 
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Figure 1 Workflow. the workflow is followed by the evidence-based network for the interpretation of germ-line Mutant alleles consortium to 
characterise the naturally occurring alternative splicing profile at the PALB2 locus in BlOOD-derived, BreaSt-derived and OVarY-derived samples. rnaseq 
data were produced in five independent laboratories using different methodologies in unrelated samples. laboratory 1 (clinical Biology and Oncology 
laboratory, cancer center François Baclesse, normandy University caen, France) performed targeted rnaseq analysis. laboratories 2 (Division of Oncology 
and Pathology, Department of clinical Sciences, lund University, Sweden) and 3 (Department of Pathology and Biomedical Science, University of Otago 
christchurch, new Zealand) performed whole transcriptome rnaseq. laboratory 4 (Molecular Oncology laboratory, academic Hospital San carlos, Madrid, 
Spain) performed capillary electrophoresis analysis of real-time Pcr products (rt-Pcr/ce). laboratory 5 (ambry genetics) performed whole-gene cloneSeq 
alternative splicing analysis. as indicated, the overall contribution of targeted rnaseq reads to the analysis is roughly 1000× higher than that of whole 
transcriptome rnaseq. For instance, targeted rnaseq experiments end up with 13 754 118 reads aligned to reference exon-exon junctions, but only 
459 186 reads supporting alternative splicing events (≈3%). the same percentage was observed in whole transcriptome rna experiments, although the 
total number of reads was much lower (14 933 reads combining data from laboratories 2 and 3). rt-Pcr/ce contributed 1747 data points (individual rt-
Pcr experiments performed with a particular combination of primers in individual samples, including technical replicas). cloneSeq analysis contributed 
1.2×106 reads (≈2.4% of the reads supporting alternative splicing events). Data were pooled together, reviewed and cross-checked to end up with a list of 
high-confidence naturally occurring alternative splicing events (events detected by different techniques in different samples), and a list of lower-confidence 
splicing events (events not qualifying for higher confidence events). Finally, the possible relevance of high-confidence findings for the initial classification of 
canonical splicing site and Ptc-nMD variants was explored. acMg-aMP, american college of Medical genetics and genomics-association for Molecular 
Pathology; HMec, human mammary epithelial cell; lcl, lymphoblastic cell line; nMD, nonsense-mediated decay.

analysis data that was independently produced at five contributing 
centres (figure 1). The analysis identified 44 naturally occurring 
alternative splicing events with high-confidence (online supple-
mentary table 1) and provided evidence for the existence of up 
to 44 additional (lower-confidence events, online supplementary 
table 2 and supplemental material section 2.2). Most events 
(37 out of 44 high-confidence and all lower-confidence events) 
have not been described previously in GENCODE (https://www. 
gencodegenes. org/) or the scientific literature to our knowledge.

Up to 15 high-confidence events preserved a bona fide open 
reading frame (ie, an ORF spanning from the reference start 
codon to the reference termination codon, table 1, protein 
column). Of these, nine were predicted to code for non-func-
tional proteins, and the remaining six for proteins of uncertain 

functionality (table 1, coding potential column). Twenty-nine 
high-confidence events did not preserve a bona fide ORF. All 
of them were predicted to code for non-functional proteins 
(table 2).

Targeted RNAseq data (online supplemental table 1, labo-
ratory 1) indicated that most high-confidence events make on 
average (n=72 samples) a minor contribution to the expression 
level (ie, reads supporting the splicing event representing ≤1% 
of the reads supporting the corresponding reference tran-
script). The only exceptions were ∆(E1q17), IVS1-463▼(134), 
∆(E7p10), ∆(E11), ∆(E11_E12) and ∆(E12), with contributions 
of ≈2%, ≈5%, ≈1.4%, ≈2%, ≈2% and ≈13%, respectively. 
In silico analysis suggests that events contributing >1% might 
be related to the presence of suboptimal splice sites at the 
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Table 1 High-confidence alternative splicing events at the PALB2 locus (in-frame events)

designation* biotype† rnA‡ Protein‡
Coding 
potential§ rationale§ blood breast ovary

▼(AFE600)+ ∆(E1)¶ Terminal modification r.1_28delins28+805_28+858 p.Asp2_Lys16delins17 Uncertain Damaging to CC Yes Yes –

▼(E1q9) Donor shift r.48_49ins48+1_48+9 (p.Lys16_Leu17ins3) Uncertain Uncertain impact on CC Yes – Yes

∆(E2p6) Acceptor shift r.49_54del (p.Leu17_Lys18del) Uncertain Uncertain impact on CC Yes Yes Yes

∆(E2) Cassette r.49_108del (p.Leu17_Asn36del) LoF Damaging to CC Yes – Yes

∆(E4) Cassette r.212_1684del (p.Glu71_Lys561del) LoF Damaging to ChAM Yes Yes Yes

∆(E5p24) Acceptor shift r.1685_1708del (p.Gly562_Lys569del) Uncertain No domain affected Yes Yes Yes

∆(E6)** Cassette r.2515_2586del (pThr839_Lys862del) LoF** Damaging to WD40¥ Yes Yes Yes

▼(E7p42) Acceptor shift r.2586_2587ins2587-42_2587–1 (p.Lys862_Asn863ins14) Uncertain Uncertain impact on WD40 Yes Yes Yes

∆(E7) Cassette r.2587_2748del (p.Arg863_Glu916del) LoF Damaging to WD40 Yes Yes Yes

∆(E9p30) Acceptor shift r.2835_2864del (p.Ala946_Glu954del) LoF Damaging to WD40 Yes Yes Yes

∆(E9) Cassette r.2835_2996del (p.Ala946_Gly1000del) LoF Damaging to WD40 Yes Yes Yes

∆(E9_E10) Multicassette r.2835_3113del (p.Ala946_Trp1038del) LoF Damaging to WD40 Yes Yes – 

∆(E10p3) Acceptor shift r.2997_2999del (p.Gly1000del) Uncertain Uncertain impact on WD40 Yes Yes – 

∆(E10) Cassette r.2997_3113del (p.Gly1000_Trp1038del) LoF Damaging to WD40 Yes Yes Yes

∆(E11_E12)†† Multicassette r.3114_3350del (p.Asn1039_Arg1117del) LoF Damaging to WD40 Yes Yes Yes

*See supplementary material section 2.1 and figure 2 for details.
†Biotype according to ENCODE.25

‡RNA and predicted protein described according to the Human Genome Variation Society guidelines at http://varnomen.hgvs.org/, using Ensembl transcript ENST00000261584.8 as a reference.
§Uncertain coding potential if the transcript encodes a protein predicted to preserve (or partially preserve) functional capacity. See online supplemental material section 2.3 and figure 4 for further 
details.
¶Only▼(AFE600)+∆(E1) described in GENCODE (comprehensive gene annotation from GENCODE release 26 retrieved through Ensembl at http://www.ensembl.org/).
**Δ(E6) transcripts code for a hypomorphic protein (instable, but with residual activity).26

††Only Δ11_12 described previously in the literature.12

CC, N-terminal coiled-coil domain; ChAM, chromatin- associated motif; LOF, loss-of-function; WD40, WD40 β-propeller C-terminal domain.

PALB2 gene (online supplemental figure 7), with ∆(E12) 
contribution (≈13%) probably explained by the intrinsically 
weak exon 12 GC donor site.13 The relatively elevated level 
of alternative splicing resulting in skipping of exons 11 and/or 
12 is supported by targeted and whole transcriptome RNAseq 
(online supplemental table 1), semi-quantitative RT-PCR/CE 
analysis (online supplemental figure 1A), whole-gene CloneSeq 
splicing analysis (online supplemental figure 1B) and quantita-
tive dPCR (online supplemental figure 5B). According to the 
latter, ≈8%–34% of the PALB2 transcripts (depending on the 
sample analysed) may skip exon 11, exon 12 or both.

Overall coverage in whole transcriptome RNAseq was substan-
tially lower than in targeted RNAseq experiments (figure 1). As a 
result, several events representing ≤1% of the targeted RNAseq 
reads were not detected by this approach. Only one major discrep-
ancy was observed related to PALB2 ∆(E4_E5), which represented 
≤1% of the corresponding reference signal in targeted RNAseq 
and whole-exon GenClone experiments, but >5% in RNAseq data 
generated by laboratory 3. However, subsequent digital PCR quan-
tification in BLOOD, BREAST and OVARY confirmed that ∆(E4_
E5) represents, on average, ≤1% of the corresponding reference 
signal (online supplemental figure 5).

Despite the lower coverage, whole transcriptome RNAseq 
and/or RT-PCR/CE experiments allowed us to detect 50 splicing 
events in BREAST, and 29 in OVARY. Of these, 24 splicing 
events—among them ∆(E1q17), IVS-463▼(134), ∆(E7p10), 
∆(E11), ∆(E11_E12) and ∆(E12)—were detected in both tissues 
(table 1 and online supplemental table 1). Equally relevant, we 
did not identify tissue-specific PALB2 alternate gene transcripts 
(neither in BREAST nor in OVARY), suggesting that if they exist, 
they are expressed at very low levels—supporting the clinical 
relevance of BLOOD-based PALB2 splicing studies.

Finally, we used data on alternate gene transcripts to analyse if 
PVS1 is warranted for all possible PTC-NMD/splice site variants at 
the PALB2 gene. In brief, we concluded that PVS1 is warranted for 
every possible PTC-NMD variant, regardless of the location, that is, 

we have not identified any plausible rescue transcript (see 'Discus-
sion' section). By contrast, we conclude that PVS1 is not necessarily 
warranted for every possible splice site variant. To be more precise, 
we propose that PVS1 may not be warranted for splice site variants 
located at the acceptor sites of exons 2, 5, 7 and 10. For this subset 
of splice site variants, the production of RNA transcripts retaining 
some or all functional capacity is plausible (see table 3 for further 
details). If splicing assays and/or clinical data supporting pathoge-
nicity are lacking, we recommend caution when classifying splice 
site variants at these specific sites, that is, such variants should not be 
assumed pathogenic/likely pathogenic.

dIsCussIon
Alternative splicing probably occurs in all metazoan organisms, and 
increasing prevalence has been linked to phenotypic complexity.14 
Virtually all human multiexon loci produce alternate gene tran-
scripts.15 Apart from a presumed role in expanding protein diver-
sity16 that is currently under dispute,17 18 some authors have suggested 
that alternative splicing may buffer mutational consequences.19 The 
latter possibility has obvious implications for the clinical interpre-
tation of genetic testing results. The ACMG-AMP-2015 guidelines 
acknowledge this by recommending caution about overinterpreting 
the impact of PTC-NMD and splice site variants if multiple tran-
scripts are present.7 Here, we have addressed this relevant aspect 
of alternative splicing for the particular case of classifying genetic 
variants at the breast cancer predisposition gene PALB2.

Alternative splicing analysis might be influenced by many factors, 
including collection of RNA samples, experimental design and 
detection sensitivity. For instance, one study characterising alter-
native splicing at breast cancer susceptibility genes by RNAseq 
noticed the poor performance of PAXgene if compared with LCL 
samples,12 and a previous ENIGMA collaborative study comparing 
RT-PCR splicing protocols across different laboratories concluded 
that primers design and detection sensitivity (rather than RNA 
extraction and/or cDNA synthesis protocols) had an impact on the 
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Table 2 High-confidence alternative splicing events at the PALB2 locus (PTC-NMD events)

designation* biotype† rnA‡ Protein
Coding
potential blood breast ovary

∆(E1q169) Donor shift r.-121_48del Non-coding LoF Yes Yes Yes

∆(E1q17)§¶ Donor shift r.32_48del p.Cys11Phefs*25 LoF Yes Yes Yes

▼(E1q337) Donor shift r.48_49ins48+1_48+337 p.Leu17Valfs*19 LoF Yes – – 

IVS1-463▼(134)§¶ Cassette r.48_49ins49-463_49–330 p.Leu17Valfs*11 LoF Yes Yes – 

▼(E2p26) Acceptor shift r.48_49ins49-26_49–1 p.Leu17Tyrfs*9 LoF Yes – Yes

▼(I2) Intron retention r.108_109ins108+1_109–1 p.R37_S1186delins11 LoF Yes – – 

▼(E3p36)∗∗ Acceptor shift r.108_109ins109-36_109–1 p.Arg37_Ser1186deldelins11 LoF Yes Yes Yes

▼(E4p25) Acceptor shift r.211_212ins212-25_212–1 p.Glu71Valfs*10 LoF Yes – – 

Δ(E4_E5)§¶ Multicassette r.212_2514del p.Glu71Aspfs*1 LoF Yes Yes – 

∆(E5p139) Acceptor shift r.1685_1823del p.Gly562Valfs*19 LoF Yes Yes – 

∆(E5) Cassette r.1685_2514del p.Gly562Aspfs*1 LoF Yes – – 

▼(E6p28) Acceptor shift r.2514_2515ins2515-28_2515–1 p.Glu840Asnfs*9 LoF Yes Yes Yes

▼(E7p20) Acceptor shift r.2586_2587ins2587-20_2587–1 p.Pro864Cysfs*13 LoF Yes – Yes

∆(E7p2) Acceptor shift r.2587_2588del p.Asn863Serfs*20 LoF Yes Yes – 

∆(E7p10) Acceptor shift r.2587_2596del p.Asn863Valfs*4 LoF Yes Yes Yes

∆(E7p25) Acceptor shift r.2587_2611del p.Asn863Metfs*1 LoF Yes Yes Yes

▼(E8p30)†† Acceptor shift r.2748_2749ins2749-30_2749–1 p.Val917_Ser1186delins9 LoF Yes – Yes

∆(E8) Cassette r.2749_2834del p.Val917Glyfs*6 LoF Yes Yes Yes

∆(E8_E9) Multicassette r.2749_2996del p.Val917Argfs*10 LoF Yes Yes – 

∆(E10p2) Acceptor shift r.2997_2998del p.Gly1000Glnfs*9 LoF Yes – – 

∆(E10q31) Donor shift r.3083_3113del p.Thr1029Ilefs*1 LoF Yes Yes – 

▼(E11p23) Acceptor shift r.113_3114ins3111-23_3114–1 p.Trp1038Cysfs*7 LoF Yes Yes Yes

∆(E11p2) Acceptor shift r.3114_3115del p.Trp1038Ter LoF Yes Yes Yes

∆(E11)§ Cassette r.3114_3201del p.Asn1039Glyfs*5 LoF Yes Yes Yes

∆(E11)+▼(E12p446) Mixed r.3114_3201del+r0.3201_3202ins3202-446_3202–1 p.Trp1038Cysfs*3 LoF Yes – – 

∆(E11)+▼(E12p65) Mixed r.3114_3201del+r0.3201_3202ins3202-65_3202–1 p.Trp1038Ter LoF Yes – – 

▼(E12p65) Acceptor shift r.3201_3202ins3202-65_3202–1 p.Gly1068Ilefs*28 LoF Yes Yes Yes

∆(E12p136) Acceptor shift r.3202_3337del p.Leu1069Argfs*9 LoF Yes – – 

∆(E12)§¶ Cassette r.3202_3350del (p.Gly1068_Ser1186delins4) LoF Yes Yes Yes

*See 'Methods' section.
†Biotype according to ENCODE.25

‡RNA described according to the Human Genome Variation Society rules at http://varnomen.hgvs.org/, using Ensembl transcript ENST00000261584.8 as a reference.
§described previously in the literature.12

¶ described in comprenesive gene annotation from GENCODE realese 26 retrieved through Ensembl at http://www.ensembl.org/
**The predicted 36 nucleotides insertion includes an in-frame PTC (p.Arg37_Ser1186delinsKTYFWGCFCLL).
††The predicted 30 nucleotides insertion includes an in-frame PTC (p.Val917_Ser1186delinsHNFWLLCFI).

analytical outcome.20 A strength of our study design was the applica-
tion of different assay designs, RNA samples and subsequent levels 
of sensitivity and/or filtering, by five independent laboratories to 
identify PALB2 alternative splicing events (see online supplementary 
material section 1 for further details). We elected to define high-con-
fidence splicing events as those found in at least two different data 
sets (the rationale being that events detected by a minimum of two 
laboratories, two sample types and two methodologies are very 
unlikely to represent technical artefacts and/or biological outliers), 
but acknowledge that such definition may lead to exclusion of real 
events found by a single laboratory. A higher stringency of high-con-
fidence splicing events found by more than two laboratories was 
not used due to differences in the level of sensitivity between assays.

Overall, we identified 44 high-confidence alternative splicing 
events at the PALB2 locus, and we provide evidence for 44 addi-
tional events (although we cannot discard the possibility that some 
of the latter represent technical artefacts and/or biological outliers). 
Interestingly, all PALB2 reference exons are affected by one or 
more high-confidence alternative splicing events, suggesting that 
no PALB2 exon should be annotated as constitutive. Despite the 
considerable number of alternative splicing events identified, our 

data suggest that their contribution to the overall PALB2 expression 
is low in all three tissues investigated. Splice site and PTC-NMD 
variants in cancer susceptibility genes can be overinterpreted 
(misinterpreted as pathogenic), if alternate gene transcripts are not 
properly considered.7 10 11 21–23 In the past, this has led to errors 
in the clinical management of families carrying the BRCA1 allele 
c.[594-2A>C; 641A>G].23 The low level of alternative splicing 
observed for PALB2 in BLOOD, BREAST and OVARY suggests 
that overinterpreting genetic variants at this locus is less likely to 
occur. However, some of the alternative splicing events we report 
can be relevant for the clinical interpretation of PALB2 PTC-NMD 
and splice site variants, in particular to decide if PVS1 is warranted.

PTC-NMD variants: the existence of rescue transcripts 
reducing or eliminating the functional and clinical impact of 
certain PTC-NMD variants in cancer susceptibility genes has 
been confirmed for APC22 and BRCA1.11 More specifically, the 
alternate gene transcript APC ∆(E9p303) explains the associ-
ation of PTC-NMD variants located at codons 312–412 with 
mild disease,22 and the alternate gene transcript BRCA1 ∆(E9_
E10) explains the low breast cancer risk observed in carriers 
of the splice site variant BRCA1 c.594-2A>C.11 However, we 
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Table 3 Proposed classification of PALB2 splice site variants according to the ACMG-AMP-2015 guidelines (based solely on location and MAF)

splice site variant

Predicted rnA products/coding potential*

PVs1* gnomAd† PM2† Classification‡LoF* uncertain*

E1 donor c.48+1,2 ∆(E1q17)§ – Warranted – Yes Likely pathogenic

E2 acceptor c.49–1,2 – ∆(E2p6)§ Not warranted NFE (1allele) Yes uncertain 
significance

E2 donor c.108+1,2 ∆(E2)/▼(I2) – Warranted – Yes Likely pathogenic

E3 acceptor c.109–1,2 ▼(E3p36)/∆(E3) – Warranted – Yes Likely pathogenic

E3 donor c.211+1,2 ∆(E3) – Warranted – Yes Likely pathogenic

E4 acceptor c.212–1,2 ∆(E4_E5)† – Warranted NFE (1 allele) Yes Likely pathogenic

E4 donor c.1684+1,2 ∆(E4_E5)† – Warranted – Yes Likely pathogenic

E5 acceptor c.1685–1,2 ∆(E5) ∆(E5p24) Not warranted NFE (1 allele) Yes uncertain 
significance

E5 donor c.2514+1,2 ∆(E5) – Warranted SAS (1 allele) Yes Likely pathogenic

E6 acceptor c.2515–1,2 ∆(E6)† – Warranted AMR (1 allele) Yes Likely pathogenic

E6 donor c.2586+1,2 ∆(E6)† – Warranted SAS (1 allele) Yes Likely pathogenic

E7 acceptor c.2587–1,2 ▼(E7p20)/∆(E7p2)/∆(E7p10)/∆(E7p25)/∆(E7) ▼(E7p42) Not warranted SAS (1allele) Yes uncertain 
significance

E7 donor c.2748+1,2 ∆(E7)§ – Warranted NFE (1 allele) Yes Likely pathogenic

E8 acceptor c.2749–1,2 ▼(E8p30)/∆(E8) – Warranted – Yes Likely pathogenic

E8 donor c.2834+1,2 ∆(E8) – Warranted – Yes Likely pathogenic

E9 acceptor c.2835–1,2 ∆(E9p30)§/∆(E9)§ – Warranted – Yes Likely pathogenic

E9 donor c.2996+1,2 ∆(E9)/∆(E9_E10) – Warranted – Yes Likely pathogenic

E10 acceptor c.2997–1,2 ∆(E10p2)/∆(E9_E10)/∆(E10) ∆(E10p3) Not warranted SAS (1 allele) Yes uncertain 
significance

E10 donor c.3113+1,2 ∆(E10q31)§/∆(E9_E10)§/∆(E10)§ – Warranted – Yes Likely pathogenic

E11 acceptor c.3114–1,2 ∆(E11)/∆(E11p2)/∆(E11p23)/∆(E11_E12) – Warranted – Yes Likely pathogenic

E11 donor c.3201+1,2 ∆(E11)/∆(E11_E12) – Warranted – Yes Likely pathogenic

E12 acceptor c.3202–1,2 ▼(E12p65)/∆(E12p136)/∆(E11_E12)/∆(E12) – Warranted – Yes Likely pathogenic

E12 donor c.3350+1,2 ∆(E11_E12)§/∆(E12)§- Warranted – Yes Likely pathogenic

E13 acceptor c.3351–1,2 – – Warranted – Yes Likely pathogenic

*If available (§), predictions on possible RNA products are based on splicing assays performed in representative examples of splice site variants (see online supplementary 
table 4). If not, predictions are based on the possible upregulation of naturally occurring alternate gene transcripts. Predicted RNA products are classified according to their 
coding potential as loss-of-function (LoF) or uncertain (the possibility of coding for a functional or partially functional protein cannot be disregarded). If only LoF transcripts 
are predicted, we assume that PVS1 is warranted. If ≥1 transcript with uncertain coding potential is predicted, we propose that PVS1 (based solely on variant location) is not 
warranted.
†After reviewing gnomAD, we conclude that PM2 is met for all possible splice site variants.
‡According to the ACMG-AMP-2015 guidelines, if PVS1 and PM2 are warranted, splice site variants should be classified as likely pathogenic. Otherwise, splice site variants 
should be classified as uncertain significance. This analysis has highlighted seven splice site variants in ClinVar needing additional justification for assertion as pathogenic/likely 
pathogenic (see online supplementary table 5 for further details).
ACMG-AMP, American College of Medical Genetics and Genomics-Association for Molecular Pathology; AMR, American; NFE, non-finish Europeans; SAS, South Asia. 

Table 4 Known PALB2 splice site variants for which we put a warning

splicing site Variant reported dbsnP

ClinVar Proposed
ACMG-
AMP-2015
classificationClassification review status Assertion method

E2 acceptor c.49-2A>T rs786203245 Likely pathogenic ** Ambry autosomal dominant
Invitae Variant Classification Sherlock

 
 
Uncertain 
significance

E5 acceptor c.1685-2A>G rs754660432 Likely pathogenic ** GeneDx variant classification
Ambry autosomal dominant

c.1685–1G>C rs1057520645 Pathogenic * GeneDx variant classification

E7 acceptor c.2587-2A>C rs1060502787 Likely pathogenic * Invitae Variant Classification Sherlock

E10 acceptor c.2997-2A>C – Likely pathogenic * Ambry autosomal dominant

These five PALB2 variants are classified as pathogenic/likely pathogenic based on assertion criteria defined by the submitters. Ambry Genetics and/or GeneDx classify the 
indicated variants as pathogenic based on the fact that these are very rare variants located at canonical splice sites, predicted to abolish or significantly reduce native site using 
in silico predictors and identified in affected/+family history cohort. Invitae classifies the indicated variants as likely pathogenic based on the fact that donor and acceptor splice 
site variants are typically loss-of-function and loss-of-function variants in PALB2 are known to be pathogenic. Remarkably, for any of these variants classification is based on 
splicing assays, and/or in segregation information supporting pathogenicity (Tina Pesaran, unpublished data; Kathleen S Hruska, unpublished data, Inviate ClinVar summary 
evidences). These are splice site variants targeting acceptor sites for which, in our opinion (table 3), PVS1 is not necessarily warranted. For that reason, we propose that, in 
absence of functional and/or genetic data, these variants should be classified according to the ACMG-AMP-2015 guidelines as uncertain significance.
ACMG-AMP, American College of Medical Genetics and Genomics-Association for Molecular Pathology.
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have not identified plausible rescue transcripts for PALB2. 
Alternate gene transcripts ∆(E2p6), ∆(E6), ∆(E5p24) and 
∆(E10p3) might code for functional or partially functional 
proteins, but their respective contribution to the overall 
PALB2 expression (<1%) is too low to be plausible rescue 
transcripts. By contrast, the combined expression of ∆(E11_
E12) and ∆(E12) might represent 8%–34% of the overall 
gene expression (depending on samples and methodologies), 
but the predicted proteins encoded by these two transcripts 
(table 1) are unlike to be functional, as they lack part of the 
C-terminal WD40 β-propeller domain (online supplementary 
material section 2.3) that mediates PALB2 interaction with 
several key homologous recombination proteins, including 
BRCA2 and RAD51.24 For that reason, we do not consider 
∆(E11_E12) and ∆(E12) plausible rescue transcripts, although 
we cannot rule out the possibility of truncating variants in 
exons 11 and/or 12 conferring lower cancer risk than trun-
cating variants in other PALB2 exons.

Canonical ±1,2 splice site variants: we propose that naturally 
occurring alternate gene transcripts provide predictive informa-
tion identifying seven PALB2 canonical splice sites for which, 
in absence of splicing assays, PVS1 is not warranted (variants 
targeting exons 2, 5, 7 and 10 acceptor sites). For exon 2 acceptor 
site, the proposal is based on experimental data obtained in a 
PALB2 c.49–1G>A (IVS1-1G>A) carrier indicating upregulation 
of ∆(E2p6) (Dr Georgios Tsaousis, Genekor Medical, personal 
communication, June 2018). The possibility that ∆(E2p6) code 
for a functional/partially functional protein cannot be discarded 
(see online supplementary material section 2.3), supporting our 
conservative stance. For the remaining splice sites, we hypothesise 
that naturally occurring alternate gene transcripts (even if lowly 
expressed in control samples) may become upregulated if splice 
site variants impair the expression of reference transcripts. The 
hypothesis is supported by several observations made in carriers of 
PALB2 (among them, the upregulation of ∆(E2p6) in c.49–1G>A 
carriers), BRCA1 and BRCA2 splice site variants (see online supple-
mentary table 4). Note that we propose that PVS1 is not warranted 
for splice site variants if at least one RNA product with uncer-
tain coding potential is predicted, regardless of other predictions. 
For instance, we propose that PVS1 is not warranted for vari-
ants targeting the PALB2 exon 7 acceptor site because one RNA 
product of uncertain coding potential, ▼(E7p42), is predicted 
(table 3), despite the fact that up to five bona fide LoF transcripts 
are also predicted (▼(E7p20), ∆(E7p2), ∆(E7p10), ∆(E7p25) and 
∆(E7)). When classifying splice site variants in high-risk breast 
cancer genes as pathogenic/likely pathogenic without functional 
or genetic data, we favour a very conservative approach. We have 
identified 43 different PALB2 splice site variants in ClinVar (last 
accessed 13 April 2018), all of them reported as pathogenic/likely 
pathogenic. For four of these variants, we think that the patho-
genic/likely pathogenic classification may not be justified without 
considering additional clinical and/or splicing data (table 4).

In short, we highlight the fact that, where alternate gene tran-
scripts exist, assertions of pathogenicity are warranted only with 
the support of additional quantitative splicing assays, and pref-
erably clinical evidence.
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