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ABSTRACT: Despite the prevalence of diabetes and the global health risks
it poses, the biochemical pathogenesis of diabetic complications remains
poorly understood with few effective therapies. This study employs capillary
liquid chromatography (capLC) and tandem mass spectrometry (MS/MS) in
conjunction with both global metabolomics and isobaric tags specific to
amines and carbonyls to probe aortic metabolic content in diabetic mice with
hyperglycemia, hyperlipidemia, hypertension, and stenotic vascular damage.
Using these combined techniques, metabolites well-characterized in diabetes
as well as novel pathways were investigated. A total of 53 986 features were
detected, 719 compounds were identified as having significant fold changes
(thresholds ≥2 or ≤0.5), and 48 metabolic pathways were found to be
altered with at least 2 metabolite hits in diabetic samples. Pathways related to
carbonyl stress, carbohydrate metabolism, and amino acid metabolism
showed the greatest number of metabolite changes. Three novel pathways with previously limited or undescribed roles in diabetic
complicationsvitamin B6, propanoate, and butanoate metabolismwere also shown to be altered in multiple points along the
pathway. These discoveries support the theory that diabetic vascular complications arise from the interplay of a myriad of
metabolic pathways in conjunction with oxidative and carbonyl stress, which may provide not only new and much needed
biomarkers but also insights into novel therapeutic targets.

KEYWORDS: diabetes, diabetic complications, global metabolomics, isobaric tags, capillary liquid chromatography,
tandem mass spectrometry, metabolic pathway dysfunction

■ INTRODUCTION

Diabetes is a chronic metabolic disorder characterized by the
inability to effectively produce or use insulin, resulting in
hyperglycemia and enhanced lipolysis. Perturbations in both
glucose and lipid metabolism contribute to the production of
reactive oxygen species (ROS) by the mitochondrial electron
transport chain, which diminish production of the vasodilator
nitric oxide (NO) and impair vascular function.1 Vascular tissue
is susceptible to hyperglycemic damage due to its inability to
regulate intracellular glucose levels.2 Hypertension frequently
accompanies and accelerates the development of stenotic
cardiovascular disease, which is responsible for 80% of deaths in
patients with diabetes.3,4 Oxidative stress promoted by
hyperglycemia and hyperlipidemia causes diabetic tissue
damage through several metabolic pathways, including
increased polyol pathway flux and the formation of advanced
glycation end products (AGEs).1 Current therapies targeting
these pathways have proven ineffective in the long-term
prevention of vascular injury. Identifying alternate metabolic

aberrations in diabetic vascular tissue is thus crucial to
understanding the relationship between hyperglycemia, asso-
ciated dyslipidemia, and vascular damage in order to establish
novel therapeutic targets.
Functional genomics and proteomics can increase our

understanding of the pathophysiology of diabetes. However,
examination of a single class of molecules will inevitably restrict
the discovery of novel pathways and mechanisms. Global
analyses of genes, gene expression, and proteins have shown
over 2 million biochemical changes often implicating metabolic
pathways.5,6 For instance, a proteomics profiling study
investigating human pancreatic islets classified 25% of the
isolated proteins as having a role in cell metabolism.7 This
supports our contention that metabolomic strategies are
needed to complement proteomic and genomic findings.
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Liquid chromatography−mass spectrometry (LC−MS) is
used to elucidate metabolic signatures of vascular damage by
analyzing cultured cells and plasma.8,9 Such investigations
report a correlation between advanced glycation end products,
branched chain amino acids, and macrovascular disease.10,11

LC−MS based metabolomics of vascular tissue reveals an
interplay between metabolic pathways and external stimuli such
as surgery or hyperlipidemic diet.12,13 Although these findings
yield useful biomarkers for vascular dysfunction, the metabolic
connections between these compounds, particularly with regard
to diabetic complications, remain unclear.
Despite the relationship between abnormal glucose and lipid

metabolism and aortic damage, few studies attempt to identify
the metabolic pathways that become defective in vascular
dysfunction, in part due to the lack of sensitivity, selectivity, and
quantitation in metabolomic strategies. Isotope-labeling

approaches can overcome these limitations by improving
quantitation and selecting classes of metabolites for analysis.14

We have described a cleavable isobaric labeling affinity tag
(CILAT) for the selective enrichment of carbonyls from a
biological sample.15 As aldehydes and ketones are implicated in
diabetic pathogenesis,16 these tags make it possible to highlight
carbonyl stresses within aortic tissue. Also employed in this
study is a deuterium isobaric amine reactive tag (DiART),
which is used to selectively tag amines.17 The DiART tag offers
a 100-fold signal-to-noise enhancement in mass spectrometry
analyses of amines. We also describe here a global approach to
identifying metabolites that change in response to hyper-
glycemia based on both exact mass and MS/MS fragmentation.
In this study, we employ both targeted and untargeted
approaches to examine multiple classes of metabolites in
harvested diabetic and control mice aorta. All experiments are

Figure 1. (a) Schematic of sample preparation. Aortas are removed from either db/db or db/+ mice and digested with collagenase. Cell lysis is
accomplished using 80% MeOH and a sonic dismembrator. Samples are centrifuged and metabolites are dried and reconstituted in 30 μL of H2O/
formic acid. Analysis is accomplished by four different modes: positive and negative untargeted, semitargeted amine tagging, and semitargeted
carbonyl tagging. (b) Untargeted positive and negative mode data analysis flowchart. Analysis steps (dark green) include XCMS, filtering resulting
peaks, identification using METLIN, and pathway analysis with MetPA. Criteria for data processing (light green) consists of fold change, p-value,
retention time, and signal intensity thresholds. Nonendogenous metabolites and peaks with m/z greater than 5 ppm are excluded from results.
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conducted in a capillary LC (capLC) column, which provides
an additional level of sensitivity over conventional bore HPLC
techniques.18 Using these combined approaches, we report
significant changes in 719 compounds present in 48 metabolic
pathways in diabetic vascular tissue.

■ MATERIALS AND METHODS

Materials

Triethylammonium bicarbonate buffer (1 M, pH 8.5) and
aniline were obtained from Sigma-Aldrich (St. Louis, MO).
DiART 6-plex reagents and CILAT 2-plex reagents were
synthesized in-house.15,19 HPLC-grade solvents were purchased
from Honeywell Burdick & Jackson (Muskegon, MI). 4-[3-
(Perfluorooctyl)-propyl-1-oxy]benzaldehyde was obtained from
Fluorous Technologies Inc. (Ambridge, PA). Strepavidin
Sepharose high-performance beads were purchased from GE
Healthcare Life Sciences (Pittsburgh, PA). Diabetic (BKS.Cg-
m+/+Leprdb/J, BKS-db/db) and control (BKS-db/+) mice were
purchased from Jackson Laboratories (Bar Harbor, ME). Mice
were housed in a pathogen-free environment, with continuous
access to food (Purina 5053 chow) and water on a 12 h light−
12 h dark schedule, and cared for following the University of
Michigan Committee on the Care and Use of Animals
guidelines (approval no. 07675).20

Experimental Methods

A schematic approach for preparation of mice aortic cells for
metabolomics studies is illustrated in Figure 1a. Aortas were
harvested from the db/+ or db/db mice. After weighing and
washing with warm phosphate-buffered saline (PBS), the aortic
tissue sample was added to 100 μL of PBS buffer containing
collagenase (2 mg/mL) and glucose (db/+, 163.5 mg/dL; db/
db, 448 mg/dL).21 The amount of glucose coincubated with
collagenase was determined by the average blood glucose level
measured from db/+ or db/db mice at 12 weeks. Following
incubation at 37 °C for 15 min, 400 μL of ice-cold methanol
was added to quench the collagenase reaction. After resting in a
dry ice/ethanol bath for 5 min, the aortas were lysed by
sonicating (Mixonix XL-2000, Qsonica, CT) on ice with 10 1-s
bursts at low power. Cell lysates were centrifuged at 14 000
rpm for 8 min at 4 °C. The supernatants were collected, dried
by SpeedVac, and then reconstituted in 30 μL of H2O/formic
acid.
For untargeted metabolomics analyses, the reconstituted

samples were directly subjected to LC−MS analysis in both
negative and positive mode. To enrich the amine-containing
metabolites, DiART reagents were used as described in
previous studies.17 In brief, 10 μL of the reconstituted sample
from db/+ or db/db mouse was added with an excess amount
of DiART (114−119) in 70% acetonitrile. For each set of
DiART isobars (114−119), three were used to label db/+ cell
lysates and the other three were used with db/db cell lysates.
The reaction pH was adjusted to 8.5 with triethylammonium
bicarbonate (1 M). The labeling reaction was conducted at
room temperature for 2.5 h. A set of six samples labeled by
DiART 114−119 was mixed at a 1:1 ratio after normalizing to
the mass of the mouse aorta from which the aortic cells were
obtained. The mixed samples were then dried by SpeedVac.
To label the carbonyls, the reconstituted cell lysates were

incubated with 20 mM CILAT 114 (db/db) or 115 (db/+) in
70% acetonitrile containing triethylammonium bicarbonate
using aniline (100 mM) as catalyst, as described previously.15

The pH of the reaction solution was adjusted to 4.5 by 2 M

acetic acid. The labeling reactions were conducted for 22 h at
65 °C. Following labeling, the CILAT 114 (db/db) and 115
(db/+) labeled cell lysates were mixed at a 1:1 ratio after
normalizing to the mass of the aorta. Excess CILAT tag was
scavenged by 4-[3-(perfluorooctyl)-propyl-1-oxy]benzaldehyde.
The labeled carbonyls were then captured by streptavidin
beads. After UV (365 nm) cleavage, the released CILAT-
labeled carbonyls were dried by speedvac.

LC−MS Conditions

LC−MS analyses were performed in positive ion mode (amine
metabolites and carbonyls) or both positive and negative mode
(untargeted) with a Thermo LTQ Orbitrap Discovery ion trap
mass spectrometer (San Jose, CA) equipped with a nanospray
ionization (NSI) interface coupled with an Agilent 1200 HPLC
(Palo Alto, CA). A microcross (Upchurch, Oakharbor, WA)
was placed between the pump and capillary column to reduce
the flow rate directed to the capillary column to 20−30 nL/min
using a 75 μm i.d. silica capillary as the flow splitter. Separations
were performed on 50 μm i.d. silica capillary (Polymicro
Technologies, Phoenix, AZ) columns with in-house-made frits
packed with 3 μm Atlantis T3 C18 aqueous reverse phase
particles (Waters, Milford, MA). All columns had a 20 cm
packed bed length.
For analysis of carbonyl and amine metabolites, mobile phase

A was 10 mM formic acid in H2O and mobile phase B was 10
mM formic acid in methanol. Analytes were eluted with a 40
min gradient: 30 min from 0 to 70% solvent B and 10 min from
70 to 95% solvent B. The temperature of the heated MS inlet
capillary was 200 °C. Fragmentation was activated by higher-
energy collision induced dissociation (HCD) with a collision
energy of 45%. All metabolites were analyzed using data-
dependent analysis at a resolving power of 15 000. The
chromatography and correlation function were activated during
data-dependent analysis.
A pH gradient was used for untargeted metabolite analysis.

Mobile phase A was 5 mM ammonium formate in H2O (pH 6),
mobile phase B was 10 mM formic acid in H2O (pH 3), and
mobile phase C was 5 mM ammonium formate in methanol.
The separation was initiated with 5 min isocratic 100% B
followed by a 10 min pH gradient from 100% B to 100% A.
The separation was further performed with mobile phase A and
C: a 10 min gradient from 0 to 40% C followed by 5 min from
40% C to 90% C. The temperature of the heated MS inlet
capillary was 200 °C. Fragmentation was activated by collision-
induced dissociation (CID) with a collision energy of 35%. All
metabolites were analyzed using data-dependent analysis at a
resolving power of 30 000.
The instrument control, data acquisition, and data analysis

were performed by Xcalibur software (Thermo Electron
Corporation, version 2.0.7 SP1). The quantification of
DiART-labeled amines and CILAT-labeled carbonyls was
processed with an in-house-written program.

Data Analysis

Untargeted Positive and Negative Mode. Xcalibur
untargeted data files from each control (n = 5) and diabetic
(n = 6) sample were analyzed using the Scripps Center for
Metabolomics data processing program XCMS Online.22 Each
signal was normalized to aorta mass, and median m/z ratios and
median retention times were obtained. Fold change was
determined by dividing the average db/db signal by the average
db/+ signal. A two-tailed Student’s t test was performed on db/
db and db/+ sample groups. Any peaks with p-value ≥0.05 or

Journal of Proteome Research Article

dx.doi.org/10.1021/pr501030e | J. Proteome Res. 2014, 13, 6121−61346123



fold change ≤2 for increases and ≥0.5 for decreases were
excluded from further analysis. The remaining peaks were
further processed by rejecting peaks with retention times of less
than 5 min (the dead time of unretained species) and signal
intensity below 1E4.
The Scripps Center for Metabolomics database METLIN23

was used to find metabolites (adducts +H for positive mode
and −H for negative mode) that match m/z ratios of the
remaining peaks within ±5 ppm. Nonendogenous metabolites
were excluded from these results on the basis of their origin
classification in the Human Metabolome Database (HMDB);24

ID numbers from the database Kyoto Encyclopedia of Genes
and Genomes (KEGG)25 were obtained where available. Over-
representation and pathway topological analyses were con-
ducted with hypergeometric and relative-betweenness centrality
algorithms using the visualization tool Metabolomics Pathway
Analysis (MetPA).26 Only pathways with two or more
metabolite hits were reported. The overall data analysis scheme
is outlined by Figure 1b.
Each peak with an exact mass identification was further

processed for structural information by comparing MS/MS
spectra using the appropriate scan filter in Xcalibur with
fragmentation patterns of standards in METLIN. Where
database MS/MS spectra were not available, manual MS/MS
identifications were performed. Cases in which MS/MS
structural information did not match the compound proposed
by METLIN were noted; these are potentially unknown
metabolites not previously characterized or detected.
Carbonyl (CILAT) Data. Data sets of pooled db/db

(CILAT 114) and db/+ (CILAT 115) samples (n = 4) were
processed using XCMS Online. The compound masses
obtained from the four data sets were grouped, and masses
within ±0.01 Da that had retention times within 5% RSD were
considered to be the same compound. Only compounds
detected in at least three of the four analyses were marked for
identification. In some cases, peaks were picked multiple times
within the same sample. Average masses of these duplicate
peaks were taken and then averaged against the rest of the
samples to obtain an overall mean compound mass; this leads
to variability in the accurate mass. Of the hits that were
generated, only those compounds with carbonyl groups
matching the number of tags were chosen for identification.
Theoretical masses were determined by adding the exact

mass of the identified metabolite as listed in KEGG to the mass
of the tag (372.237 71 Da) multiplied by the charge. Only
metabolites with a mass tolerance within 60 ppm were
reported. The expanded mass tolerance is due to the increased
variance supplied by the tag as well as m/z averaging over four
sample sets. The tagged carbonyl compounds were fragmented
by data-dependent MS/MS scans to yield the low mass reporter
ion. Ratios of 114:115 signal intensities were obtained for each
peak and averaged among the four samples to give the average
fold change. Fold changes greater than 2.0 or less than 0.5 were
used as the threshold for significant change.
Finally, the masses that had significant fold changes and that

were detected in at least three of the samples were processed
using the database MyCompoundID (MCID). MCID searches
for both human metabolites and their predicted products from
metabolic reactions.27 Because alcohols can be oxidized to form
aldehydes and ketones (Figure 2)28 and oxidative stress is
implicated in diabetes, we chose to analyze the peaks for
dehydrogenation reactions that could produce aldehyde or keto
groups that would subsequently be tagged and detected. Only

compounds with a number of hydroxyl groups greater than or
equal to the number of tags were chosen.

Amine (DiART) Data. db/+ (n = 5) And db/db (n = 6)
aortas were treated with DiART tags and compared using two
sets of reagents in order to accommodate the total number of
samples. Relative fold change and standard deviation were
determined using averaged signal intensity.

■ RESULTS
Metabolomics is capable of revealing metabolic profiles
associated with diabetes.29 This study aims to provide a
comprehensive picture of metabolic dysfunction in diabetic
aortic tissue by highlighting pathway changes using both
functional group tagging and untagged approaches (Figure 1a).
Identifying these changes is crucial to understanding the
pathogenesis of diabetic vascular complications.
Untagged Global Metabolomic Studies

In a discovery-based LC−MS metabolomics experiment,
untargeted or unknown metabolic compounds are surveyed
by analyzing all statistically significant chromatographic peaks
obtained from a sample.30 Aortic tissue from control and
diabetic samples was analyzed using both positive and negative
mode capLC−NSI-MS/MS; 53 986 mass spectral peaks were
uncovered using XCMS data processing. Figure 3a,b depicts
these data in the form of volcano plots.31 For the sake of
feasibility, a subset of the statistically significant untargeted data
was chosen for further analysis, and 8.1% of negative mode
peaks and 10.6% of positive mode peaks fell in the statistically
significant regions (p ≤ 0.05 and fold change ≤0.5 or ≥2).32
The data were further filtered to eliminate peaks with low signal
intensity and retention times before the dead time based on the
criteria outlined in the Materials and Methods section. This
approach reduced the number of features analyzed from 17 248
to 1140 and from 36 738 to 3138 for negative and positive
mode data, respectively (Table 1).
METLIN was used to analyze statistically significant features

based on exact mass within 5 ppm. HMDB and KEGG were
used to identify masses and eliminate compounds not
endogenous to mammals (see Materials and Methods section).
In virtually all cases, multiple database identification hits
obtained from a single mass were attributed to structural
isomers. MS/MS fragmentation patterns were used to eliminate
structural isomers when possible, although many of these
compounds are indistinguishable without further analyses.33 A
total of 174 compounds (72 unique masses) were identified in
negative mode, corresponding to 5.1% of statistically relevant
compounds. In positive mode, 335 compounds, or 152 unique
masses, were identified (4.5% of statistically relevant com-
pounds).
Each compound identified by exact mass was further

investigated for structural information by comparing MS/MS

Figure 2. Mechanism of aldehyde and ketone formation from oxidized
alcohols. This reaction was selected in MyCompoundID for
identification of alcohols that could be oxidized and tagged in the
carbonyl studies.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr501030e | J. Proteome Res. 2014, 13, 6121−61346124



fragmentation patterns to MS/MS spectra of metabolite
standards in the METLIN database. Eight negative mode and
16 positive mode compounds were matched to fragmentation

spectra in METLIN (Tables S1 and S2, Supporting
Information), corresponding to 11.1% and 10.5% of identi-
fications in negative and positive mode, respectively. These
results are consistent with the METLIN compound library
itself, which consists of 240 478 metabolites, 4.9% of which
have MS/MS spectra.34

Untagged Targeted Metabolomic Studies

Negative mode targeted analysis was undertaken for specific
pathways expected to be altered by hyperglycemia. Figure 4
shows the metabolites that were targeted in glycolysis and the
tricarboxylic acid (TCA) cycle. Metabolites increased with
statistical significance through all of glycolysis and the first half
of the TCA cycle before succinate. The targeted compounds

Figure 3. (a) Positive mode volcano plot generated from XCMS data normalized to aorta mass. A total of 36 738 peaks are plotted, with 3346 having
a p-value ≤0.05 and a fold change ≤0.5 or ≥2. p-Values are represented on a log10 scale and fold changes are represented on a log2 scale. (b)
Negative mode volcano plot generated from XCMS data normalized to aorta mass. A total of 17 248 peaks are plotted, with 1401 having a p-value
≤0.05 and a fold change ≤0.5 or ≥2. p-Values are represented on a log10 scale and fold changes are represented on a log2 scale.

Table 1. Number of Untargeted Positive and Negative Mode
Features Resulting from Each Data Processing Step

positive mode negative mode

XCMS Total 36738 17248
p ≤ 0.05 3582 1897
fold change ≤0.5 or ≥2 3344 1401
signal intensity ≥ 1E4 and tR > 5 min 3138 1140
METLIN hits 152 72
pathways activated in MetPA 40 39
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with the largest fold changes included phosphoenol-pyruvate
(P-E-P) and fructose-1,6-bisphosphate (F-1,6-P), with fold
changes of 9.19 and 7.02, respectively. Fructose-6-phosphate/
glucose-6-phosphate (F-6-P/G-6-P), bisphosphoglycerate (Bis-
Phos-Gly), phosphoglycerate, and citrate had fold changes >2.
Six of the targeted metabolites had p < 0.05, with one having p
< 0.01 (Figure 4).

Carbonyl Tagging (CILAT)

Carbonyls were analyzed using a semitargeted approach using
CILAT. CILAT allows for the selective enrichment of carbonyls
from a sample by purification with photocleavable biotin and
ionization enhancement with a tertiary amine tag.15 db/+ (n =

4) And db/db (n = 4) aorta samples were labeled with CILAT
114 and CILAT 115, respectively, pooled, and analyzed by
+NSI-MS/MS. Data analysis was conducted as described in
Materials and Methods. Figure 5a shows a scatter plot of all
peaks (114/115 ratio) found in one of the samples; almost 12-
fold more increases than decreases were detected in this
sample. Using METLIN for identifications, a total of 36
compounds increased (97 including isomers) and 2 compounds
decreased (4 including isomers, see Tables S3 and S4,
Supporting Information).
A carbonyl targeted approach was also taken by selecting

parent masses of seven carbonyl compounds known to be of

Figure 4. Targeted metabolites in glycolysis and TCA pathways based on matching retention time, exact mass, and MS/MS to standards. The y-axis
is a logarithimic scale showing fold changes (db/db:db/+) of each metabolite. Error bars are SEM * denotes p < 0.05, **denotes p < 0.01.

Figure 5. (a) Carbonyl scatter plot showing all peaks detected in CILAT sample B. Dashed lines show cutoffs for fold changes <0.5 and >2. (b)
Targeted carbonyl compounds on the basis of matching retention time and exact mass to CILAT-tagged standards. Fold changes are represented on
a log10 scale (db/db:db/+) of each metabolite. Error bars are SEM.
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importance in diabetes16,35 for fragmentation and matching the
peaks to retention time and mass of CILAT-tagged
commercially available standards. As expected, all but one of
the targeted carbonyl compounds increased in the diabetic
samples, with G-6-P, glyceraldehyde-3-phosphate (Gly-3-P),
and methylglyoxal having fold changes greater than 2 (Figure
5b).
The carbonyl data were also analyzed for alcohols that could

be oxidized to form carbonyls that would subsequently be
tagged and detected (Figure 2). To accomplish this, masses of
untagged compounds were input into the database MyCom-
poundID, which enables the user to search for metabolites that
can undergo various reactions to yield the target mass. In this
study, compounds that could be endogenously oxidized (−2H)
to produce an aldehyde or ketone and also had hydroxyl groups
that matched the number of CILAT tags were chosen for
identification (Figure 2). As shown in Tables S5 and S6
(Supporting Information), this investigation produced 88
metabolites with significant increases (25 unique masses) and
6 with significant decreases (5 unique masses).
Amine Tagging (DiART)

The involvement of amino acid metabolism in diabetes has
been shown but not fully correlated with other pathways,
particularly in tissue. To this end, DiART, an amine specific
isobaric tag, was used.17 db/db (n = 6) And db/+ (n = 5)
samples were tagged with DiART 114−119, pooled, and
analyzed by separate chromatographic runs. Amino acid parent
masses were targeted for fragmentation, and 14 were shown to
increase in diabetes (Figure 6). Of these, tyrosine (Tyr),

methionine (Met), leucine (Leu), and tryptophan (Trp) had
statistically significant p-values. DiART was not performed in
untargeted mode due to the overwhelming number of small
peptides and protein degradation products present in tissue
samples.36

Pathway Analysis

A major benefit of untargeted metabolomics is its amenability
to discover novel pathway aberrations, which provide insight
into disease pathogenesis as well as potential biomarkers and
therapeutic targets. Of the 719 targeted and untargeted
compounds identified with METLIN, 349 had KEGG IDs,
which were input into the metabolomics analysis tool MetPA.
MetPA is capable of conducting both pathway enrichment

analysis and pathway topological analysis of 874 metabolic
pathways.26 The generated data showed at least 2 metabolite
hits in each of 48 pathways (Figure 7a and Table 2), with the
most hits for arginine and proline metabolism (14), followed by
amino sugar and nucleotide sugar metabolism (13) and
galactose metabolism (12). Pathways were also assigned a
pathway impact factor, which is calculated by summing
importance measures of matched metabolites in the network,
with an impact factor of 1 being the maximum. The synthesis
and degradation of ketone bodies pathway had the highest
impact factor (0.7). Figure 7b shows a simplified schematic of
the metabolic pathways listed in Table 2 as well as the number
of metabolites changed in each pathway. The map enables
visualization of the metabolic connections between each
pathway and emphasizes the importance of global metabolic
approaches toward understanding the full picture of pathway
dysfunction in diabetes.

■ DISCUSSION

This study demonstrates a novel approach for identifying a
diverse group of metabolites in diabetic vascular tissue. The
results of this work reveal changes in 48 metabolic pathways,
each with at least two metabolites with p ≤ 0.05 and fold
changes ≥2 or ≤0.5. The majority of these are involved in (1)
carbonyl stress, (2) carbohydrate metabolism, and/or (3)
amino acid metabolism. Propanoate, butanoate, and vitamin B6
metabolism were among the top 20 pathways with the greatest
number of altered metabolites. Few studies have examined the
involvement of these pathways in diabetic vascular tissue. The
implications of these findings in the pathogenesis and as
therapeutic targets for diabetic vascular injury are detailed
below.

Carbonyl Stress

Diabetic carbonyl stress arises due to a buildup of cytotoxic
reactive carbonyl species, particularly α-oxoaldehydes, pro-
duced via lipid or glucose degradation.35 Unregulated lipolysis,
characterized by overproduction of free fatty acids (FFAs), is
one of the hallmarks of type 2 diabetes.37 β-Oxidation of these
FFAs leads to an increase in acetyl-CoA, which is subsequently
converted to ketone bodies (KBs), particularly during TCA
cycle overload (discussed below). As shown in Figure 7a,b and
Table 2, the pathway for the synthesis and degradation of KBs
was ranked the highest impact (0.7) by MetPA pathway
topological analysis. While this pathway consists of only six
metabolites, it is altered dramatically in diabetic vascular tissue.
Although increased production of the three endogenous KBs,
acetoacetate (AcAc), 3-hydroxybutyrate (3HB), and acetone, is
most often associated with low levels of insulin, as in type 1
diabetes, it has been observed in end-stage type 2 diabetes as
well.38 AcAc and 3HB are present in a 1:1 ratio in nondiabetic
individuals, but studies have found 3HB:AcAc levels as high as
10:1 in patients with acute diabetic ketoacidosis.39 In our study,
both 3HB and AcAc were detected with fold changes of 7.48
and 0.37, respectively (Table S2, Supporting Information),
indicative of ketoacidosis. Furthermore, the triglyceride break-
down product glycerol was detected in positive mode with a
fold change of 15.78, (Table S1, Supporting Information),
which is consistent with increased lipolysis. The ketogenic
amino acid leucine, which increased 42% in DiART data
(Figure 6), respectively, may also contribute to higher levels of
acetyl-CoA and thus KBs.40

Figure 6. Fold changes of DiART-tagged amine metabolites (n = 5).
Metabolites were targeted by comparing retention time and exact mass
of DiART-tagged standards. Error bars are SEM; * denotes p < 0.05.
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Reactive carbonyls are also capable of reacting nonenzymati-
cally with amino acid residues to form irreversible advanced
glycation end products (AGEs) or advanced lipoxidation end
products (ALEs). AGEs and ALEs damage cells through several
mechanisms, including increased reactive oxygen species
production, ultimately leading to an inflammatory response
and vascular complications.41 One of the most prevalent AGEs
found in diabetes is methylglyoxal (fold change 2.25), which
can be produced from glycolytic intermediates, including
glyceraldehyde-3-phosphate (G-3-P), and incidentally also
from KBs, which were shown to increase significantly in this
study.35 The polyol pathway has also been shown to contribute
to methylglyoxal production (see the Carbohydrate Metabolism
section).1 As found in the targeted carbonyl study illustrated in

Figure 5b, both G-3-P and methylglyoxal increased consid-
erably in diabetes, with fold changes of 2.88 and 2.25,
respectively. Another reactive carbonyl species of note is
malondialdehyde, which is produced by lipid degradation and
can exacerbate diabetic complications by cross-linking with
collagen, thereby stiffening arterial walls and leading to vascular
damage.42 In this work, malondialdehyde was found to be
elevated 51% in diabetes (Figure 5b). Other compounds related
to carbonyl stress found in this study include the AGE
precursor fructoselysine and the arginine-derived AGE
imidazolone;43 fold changes were 7.11 and 2.81, respectively
(Table S1, Supporting Information). All of these findings
support the role of carbonyls in diabetic pathogenesis of

Figure 7. (a) MetPA analysis pathways. Node size and color indicate the degree of importance. Large red nodes are pathways with the highest level
of change in diabetes. Orange, yellow, and white nodes represent moderate, slight, and zero importance, respectively. (b) Simplified schematic of
some of the pathways identified in MetPA. The notation below each pathway indicates hits in each pathway as the number of increases/number
unchanged/number of decreases.
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Table 2. List of Pathways Found by Qualitative MetPA Analysisa

ranking pathway total expected hits % found raw p impact

(A) Carbonyl Metabolism
2 metabolism of ketone bodies 6 0.66 2 33.3 1.33 × 10−1 0.70

(B) Carbohydrate Metabolism
3 galactose metabolism 41 4.48 12 29.3 9.68 × 10−4 0.34
4 fructose and mannose metabolism 48 5.24 11 22.9 1.21 × 10−2 0.27
5 ascorbate and aldarate metabolism 45 4.92 10 22.2 2.03 × 10−2 0.28
7 pentose phosphate pathway 32 3.5 7 21.9 5.27 × 10−2 0.22
12 glycolysis or gluconeogenesis 31 3.39 6 19.4 1.14 × 10−1 0.21
16 starch and sucrose metabolism 50 5.46 9 18.0 8.80 × 10−2 0.09
18 pentose and glucuronate interconversions 53 5.79 9 17.0 1.17 × 10−1 0.14
21 citrate cycle (TCA cycle) 20 2.19 3 15.0 3.76 × 10−1 0.24
23 amino sugar and nucleotide sugar metabolism 88 9.62 13 14.8 1.57 × 10−1 0.16
27 pyruvate metabolism 32 3.5 4 12.5 4.69 × 10−1 0.19
32 inositol phosphate metabolism 39 4.26 4 10.3 6.31 × 10−1 0.33
33 glyoxylate and dicarboxylate metabolism 50 5.46 5 10.0 6.52 × 10−1 0.04

(C) Amino Acid Metabolism
1 Val, Leu, and Ile biosynthesis 27 2.95 9 33.3 1.53 × 10−3 0.39
6 Lys biosynthesis 32 3.5 7 21.9 5.27 × 10−2 0.17
9 β-Ala metabolism 28 3.06 6 21.4 7.69 × 10−2 0.27
10 Gly, Ser, and Thr metabolism 48 5.24 10 20.8 3.10 × 10−2 0.08
11 Phe metabolism 45 4.92 9 20.0 5.02 × 10−2 0.12
14 Arg and Pro metabolism 77 8.41 14 18.2 3.59 × 10−2 0.27
15 D-Gln and D-glutamate metabolism 11 1.2 2 18.2 3.42 × 10−1 0.00
19 Cys and Met metabolism 56 6.12 9 16.1 1.51 × 10−1 0.10
22 Phe, Tyr, and Trp biosynthesis 27 2.95 4 14.8 3.40 × 10−1 0.01
24 Tyr metabolism 76 8.3 11 14.5 2.01 × 10−1 O.13
25 Lys degradation 47 5.14 6 12.8 4.09 × 10−1 0.11
26 Val, Leu, and Ile degradation 40 4.37 5 12.5 4.48 × 10−1 0.08
28 Ala, aspartate, and glutamate metabolism 24 2.62 3 12.5 4.97 × 10−1 0.06
34 His metabolism 44 4.81 4 9.1 7.25 × 10−1 0.08
37 glutathione metabolism 38 4.15 3 7.9 8.02 × 10−1 0.06
39 Trp metabolism 79 8.63 6 7.6 8.79 × 10−1 0.23

(D) Propanoate and Butanoate Metabolism
17 propanoate metabolism 35 3.82 6 17.1 1.76 × 10−1 0.09
20 butanoate metabolism 40 4.37 6 15.0 2.68 × 10−1 0.19

(E) Metabolism of Cofactors and Vitamins
8 vitamin B6 metabolism 32 3.5 7 21.9 5.27 × 10−2 0.22
29 nicotinate and nicotinamide metabolism 44 4.81 5 11.4 5.35 × 10−1 0.09
30 pantothenate and CoA biosynthesis 27 2.95 3 11.1 5.79 × 10−1 0.06
36 thiamine metabolism 24 2.62 2 8.3 7.56 × 10−1 0.04
43 ubiquinone and terpenoid-quinone biosynthesis 36 3.93 2 5.6 9.18 × 10−1 0.05
47 folate biosynthesis 42 4.59 2 4.8 9.54 × 10−1 0.05

(F) Lipid Metabolism
13 glycerolipid metabolism 32 3.5 6 18.8 1.29 × 10−1 0.35
38 glycerophospholipid metabolism 39 4.26 3 7.7 8.17 × 10−1 0.01
41 fatty acid metabolism 50 5.46 3 6.0 9.24 × 10−1 0.02
48 steroid hormone biosynthesis 99 10.82 3 3.0 9.99 × 10−1 0.00

(G) Nucleotide Metabolism
44 purine metabolism 92 10.05 5 5.4 9.79 × 10−1 0.12
46 pyrimidine metabolism 60 6.56 3 5.0 9.68 × 10−1 0.02

(H) Energy Metabolism
31 sulfur metabolism 18 1.97 2 11.1 6.01 × 10−1 0.04
42 methane metabolism 34 3.71 2 5.9 9.00 × 10−1 0.02
45 nitrogen metabolism 39 4.26 2 5.1 9.38 × 10−1 0.00

(I) Terpenoid Metabolism
35 terpenoid backbone biosynthesis 33 3.61 3 9.1 7.17 × 10−1 0.04

(J) Translation
40 aminoacyl-tRNA biosynthesis 75 8.19 5 6.7 9.26 × 10−1 0.00

aPathways are ranked by percent of compounds found in each pathway, which was determined by dividing the number of hits by the total number of
compounds in the pathway. The number of expected compounds was determined by over-representation analysis in MetPA, which uses
hypergeometric testing to calculate the number of compounds expected to be in each pathway by chance alone. Raw p values were determined on
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vascular tissue, both via the buildup of KBs and by the
formation of AGEs and ALEs.

Carbohydrate Metabolism

As diabetes is defined by chronic hyperglycemia, it follows that
carbohydrate metabolism must be altered in order to
accommodate the high glucose load. Table 2 shows changes
in many pathways related to sugar metabolism, including
galactose, starch and sucrose, fructose and mannose, glycolysis,
TCA, and pentose phosphate pathways. Galactose metabolism,
which had the third-highest percent change of all the pathways
found in MetPA, has been associated with increased oxidative
stress and microvascular complications.44 Likewise, fructose and
mannose metabolism, which shares four of the compounds
found to be altered in galactose metabolism, was ranked fourth
by MetPA with 22.92% of the compounds found. One of the
compounds found in both galactose and fructose and mannose
pathways is sorbitol, which increased 2.55-fold (Table S2,
Supporting Information). Sorbitol is also produced in the
polyol pathway, which is classified as part of the fructose and
mannose pathway in KEGG. In the polyol pathway, glucose is
reduced to sorbitol via aldose reductase, which simultaneously
oxidizes NADPH to NADP+; sorbitol is then converted to
fructose by sorbitol dehydrogenase. The buildup of sorbitol can
cause osmotic stress as well as AGE formation, and lower levels
of NADPH lead to NO and glutathione deficiencies, which
promote oxidative stress.1 Although polyol pathway dysfunc-
tion appears to play a major role in diabetic vascular damage,
over 20 clinical trials using drugs targeting aldose reductase and
sorbitol dehydrogenase have failed to ameliorate these
complications.45,46 Research in this area is further compounded
by the tissue-specific influence of the polyol pathway on
oxidative damage47,48 but continues to hold some promise for
understanding the mechanisms of diabetic complications.
Because glucose is a direct substrate for glycolysis, both

glycolysis and the downstream TCA cycle were selected for
targeted analysis (Figure 4). As detailed in the Results section,
the first eight targeted metabolites increased in diabetes (six
with p < 0.05), and the remainder of the TCA cyclesuccinate,
fumarate, and malateshowed small fold changes and no
statistical significance. The rate-limiting step, which determines
metabolic flux through the TCA cycle, is the conversion of α-
ketoglutarate to succinate via α-ketoglutarate dehydrogenase.49

α-Ketoglutarate dehydrogenase and aconitase, which converts
citrate to isocitrate, are inhibited by reactive oxygen species,
leading to metabolic deficiency in the rest of the cycle.50 α-
Ketoglutarate dehydrogenase or aconitase dysfunction may be
responsible for the halting of significant elevation in later TCA
metabolites. Further isotope flux analyses are needed to
evaluate this phenomenon.
The pentose phosphate pathway (PPP), an offshoot of

glycolysis (Figure 7b), was also found to be elevated. Six
metabolites from the PPPG-6-P, β-D-glucose, gluconic acid,
2-dehydro-3-deoxy-D-gluconate, pyruvate, and glyceric acid
were detected and elevated in diabetic tissue. Since PPP
activation is dependent on G-6-P levels, the elevation/
activation is expected.

Vitamin B6 Metabolism

The most biologically active form of vitamin B6, pyridoxal
phosphate (PLP), is an important cofactor in several enzymatic
reactions, including carbohydrate and amino acid metabolism.51

Deficiencies of PLP are associated with abnormal glucose
tolerance, risk of stroke, and diabetes.52 MetPA analysis showed
seven hits, or 21.9% of compounds involved in PLP catabolism,
to be significantly altered in diabetic aorta (Table 2). Of these,
six of the seven (4- and 5-pyridoxolactone, pyruvate, α-
ketoglutarate, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxy-
late, and 4-pyridoxic acid) were found to be up-regulated. With
the exception of the TCA cycle metabolites α-ketoglutarate and
pyruvate, the remainder of the metabolites are exclusive to the
PLP pathway. Notably, the end product of pyridoxal oxidation,
4-pyridoxic acid, increased 3-fold (Table S7, Supporting
Information), suggesting substantial PLP degradation.52 Some
work suggests that PLP supplementation has therapeutic
potential in managing diabetic neuropathy,53 but these benefits
have yet to be studied in diabetic vascular tissue.
Because of its important role as a cofactor in amino acid

catabolism, the dysfunction of the PLP pathway is likely
connected with aberrant amino acid metabolism.51 The
tryptophan metabolites kynurenine (Kyn) and 3-hydroxykynur-
enine were detected in the carbonyl tagging study at fold
changes of 5.84 and 2.72, respectively (Table S3, Supporting
Information). These findings are consistent with other work
that showed increases in tryptophan metabolites as a result of
the decreased activity of the PLP-dependent enzyme
kynureninase,54 which is involved in their catabolism. As Kyn
metabolites are known to inhibit insulin secretion and reduce
glucose tolerance,51 PLP deficiency may exacerbate diabetic
complications both via the buildup of reactive oxygen species
and by preventing effective degradation of tryptophan. We
hypothesize that the interactions of PLP and Trp-Kyn
metabolism may be a therapeutic route for ameliorating
oxidative stress in diabetes. Future targeted LC−MS studies
may allow for a more thorough investigation of vitamin B6
metabolism in diabetic aorta.

Propanoate and Butanoate Metabolism

Despite limited reports in diabetes literature,48 the fact that
many of the metabolic intermediates in the propanoate and
butanoate pathways (20% and 15% of compounds found,
respectively; Tables S8 and S9, Supporting Information) are
present in other pathways as well (Figure 7b) is an indication of
the importance of these pathways to the overall picture of
diabetic metabolic dysfunction. For example, the ketone body
AcAc (discussed in the Carbonyl Stress section) is involved in
both propanoate and butanoate metabolism; the second major
ketone body 3-HB participates in the butanoate pathway. As
shown in Table S8 (Supporting Information), despite the slight
increase in valine, which is an edge node for the propanoate
pathway, all of the other compounds decrease with the
exception of malonic semialdehyde and hydroxybutyrate.
Malonic semialdehyde is also involved in β-alanine metabolism,
another pathway found to be significantly changed in MetPA
analysis. It produces acetyl-CoA in the propanoate pathway,
and its increase, along with unregulated lipolysis, likely
contributes to the synthesis of KBs (discussed in the Carbonyl

Table 2. continued

the basis of the number of hits and total number of compounds in the pathway. The pathway impact was found using relative betweenness centrality
pathway topology analysis, which calculates metabolite importance measures on the basis of their position in the pathway.
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Stress section). Six compounds involved in butanoate
metabolism were found in this study (Table S9, Supporting
Information). As shown in Figure 7b, because the butanoate
pathway is centrally positioned between pathways involved in
lipid, carbohydrate, and amino acid metabolism, compounds in
the butanoate pathway may be affected by dysregulation in
several other metabolic pathways. For instance, both α-
ketoglutarate and succinate participate in the TCA cycle (see
Carbohydrate Metabolism), and succinic acid semialdehyde,
which decreased 63%, is linked to the metabolism of several
amino acids, including glutamate and tyrosine.55

Although gene expression studies have implicated the
propanoate pathway in the pathogenesis of diabetic nephrop-
athy,56 to our knowledge this is the first report of propanoate
and butanoate metabolic irregularities in diabetic vascular
tissue. We hypothesize that the down-regulation we discovered
in propanoate and butanoate metabolism may be connected to
dyslipidemia as well as insulin resistance. Short-chain fatty acids
including propanoate and butanoate have recently been shown
to reduce food intake and protect against diet-induced obesity
in FFA-receptor-deficient mice.57 Other studies have examined
short-chain fatty acid supplementation as a means to regulate
blood glucose levels, inhibit cholesterol synthesis, and improve
carbohydrate metabolism.58 While these findings have shown
some promise, the application of propanoate and butanoate
pathway regulation as a therapeutic route for diabetic vascular
complications remains to be demonstrated.

Amino Acid Metabolism

Diabetes risk is associated with aberrant metabolism of the
branched-chain amino acids valine, leucine, and isoleucine,
which have been shown to contribute to insulin resistance.10

The highest-ranking amino acid pathway found by MetPA
(Table 2) is valine, leucine, and isoleucine biosynthesis. While
this biosynthesis pathway does not occur in humans, valine,
leucine, and isoleucine degradation pathways are available. The
elevation in biosynthesis is due to the overlap between the
biosynthesis and degradation pathways of these particular
amino acids, as well as the ability of humans to partially
biosynthesize them. For the purposes of this discussion, only
degradation pathways are considered.
The branched chain amino acids play many roles in cellular

function, such as protein and lipid synthesis and cellular
growth.40 Studies show a positive correlation between insulin
resistance and levels of these amino acids, and thus they are
used as biomarkers in predicting diabetes progression.59 Table
2 shows that 12.5% of the compounds in valine, leucine, and
isoleucine degradation was significantly changed, including
elevations in all three amino acids (with p < 0.05 for valine and
leucine, Figure 6). The other compounds found are methyl
malonate, methyl malonic acid semialdehyde, and acetoacetate,
all of which are also involved in propanoate metabolism, as
previously discussed.
The relationship between lysine degradation and diabetes has

yet to be fully understood, although studies suggest that lysine
is relevant to diabetes.17,60 MetPA analysis showed six hits
(12.8% of compounds) in the lysine degradation pathway.
Carnitine, an end product of lysine degradation that is also
involved in β-oxidation of fatty acids, was found to increase 3.9-
fold. The health effects of carnitine are currently under debate,
and several clinical trials have shown a link between carnitine
and diabetic complications.61,62

Metabolism of the aromatic amino acids tryptophan,
tyrosine, and phenylalanine was also found to be disrupted,
with 14.8% of compounds altered in their biosynthesis.
Tryptophan is associated with increased food intake in
diabetes.63 Not surprisingly, MetPA analysis revealed the
greatest change through the part of the tryptophan degradation
pathway that produces acetyl-CoA (hydroxykynurenine, fold
change 2.72; aminomuconic acid semialdehyde, fold change
6.17; and kynurenine, fold change 5.84), which, as previously
discussed, is involved in many other metabolic pathways such as
KB synthesis and the TCA cycle. Tyrosine, which is produced
from phenylalanine either enzymatically via phenylalanine
hydroxylase or through nonenzymatic oxidation by free radicals,
increased 51% in diabetes (Figure 6).
The most MetPA hits (14) out of all the pathways were

found in arginine and proline metabolism. Arginine levels are
depleted in diabetes, possibly due to glycation of arginine
residues in AGE formation.64 It is also a precursor in NO
synthesis and thus plays an important role in vasodilation,
although the underlying mechanism remains unclear. Most of
the compounds involved in arginine metabolism decreased as
expected (e.g., γ-glutamyl-L-putrescine, fold change 0.29;
agmatine, fold change 0.19; spermidine, fold change 0.48; and
spermine, fold change 0.34), but putrescine, a polyamine
involved in diabetic hypertrophy of the kidney,65 increased
3.18-fold.

■ CONCLUSION

Diabetes is a debilitating and complex disorder marked by
alterations to a host of metabolic pathways as well as underlying
biochemical processes, including AGE formation and oxidative
stress. The field of metabolomics has made considerable
progress toward understanding diabetic pathogenesis but
remains inhibited by sensitivity, selectivity, and identification
of relevant species of interest. Here we demonstrated the
application of two different isobaric tags to improve signal and
identification of amines and carbonyls in diabetic vascular
tissue. A global metabolomic study was also conducted to
identify other compounds that change in diabetes. A
tremendous number of spectral features were uncovered in
this work, 1.3% of which were identified following data
processing. Importantly, many of the unidentified compounds
may be undiscovered or uncharacterized metabolites that have
yet to be described in database libraries. Continued expansion
of these databases would almost certainly allow for the
identification of more compounds in future studies.
The findings presented here give credence to the notion that

biomarkers and individual compounds provide only part of the
overall story of diabetic metabolic dysfunction. Pathway
analysis, especially on a group of diverse metabolites with
roles ranging from carbohydrate to amino acid metabolism, can
shed light on underlying mechanisms and interplay between
metabolic networks that would otherwise remain undiscovered.
For example, few reports have described the role of butanoate,
propanoate, and vitamin B6 metabolism in diabetic complica-
tions, but these pathways were among the most substantially
changed in this study. Future experiments that build on this
work include isotope flux analysis and human tissue research,
which would provide more insight into the roles of various
metabolic and nonmetabolic pathways in diabetic vascular
complications.
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