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Abstract

Background: The effect of contact reduction measures on infectious disease transmission can only be assessed
indirectly and with considerable delay. However, individual social contact data and population mobility data can
offer near real-time proxy information. The aim of this study is to compare social contact data and population
mobility data with respect to their ability to reflect transmission dynamics during the first wave of the SARS-CoV-2
pandemic in Germany.

Methods: We quantified the change in social contact patterns derived from self-reported contact survey data
collected by the German COVIMOD study from 04/2020 to 06/2020 (compared to the pre-pandemic period from
previous studies) and estimated the percentage mean reduction over time. We compared these results as well as
the percentage mean reduction in population mobility data (corrected for pre-pandemic mobility) with and
without the introduction of scaling factors and specific weights for different types of contacts and mobility to the
relative reduction in transmission dynamics measured by changes in R values provided by the German Public
Health Institute.
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Results: We observed the largest reduction in social contacts (90%, compared to pre-pandemic data) in late April
corresponding to the strictest contact reduction measures. Thereafter, the reduction in contacts dropped
continuously to a minimum of 73% in late June. Relative reduction of infection dynamics derived from contact
survey data underestimated the one based on reported R values in the time of strictest contact reduction measures
but reflected it well thereafter. Relative reduction of infection dynamics derived from mobility data overestimated
the one based on reported R values considerably throughout the study. After the introduction of a scaling factor,
specific weights for different types of contacts and mobility reduced the mean absolute percentage error
considerably; in all analyses, estimates based on contact data reflected measured R values better than those based
on mobility.

Conclusions: Contact survey data reflected infection dynamics better than population mobility data, indicating that
both data sources cover different dimensions of infection dynamics. The use of contact type-specific weights
reduced the mean absolute percentage errors to less than 1%. Measuring the changes in mobility alone is not
sufficient for understanding the changes in transmission dynamics triggered by public health measures.
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Background
The role of social contacts in the spread of respiratory
infections has been discussed extensively in the year
2020 due to the global outbreak of severe acute respira-
tory syndrome coronavirus type 2 (SARS-CoV-2) [1, 2].
As of March 2021, over 100 million confirmed cases and
over 2.5 million deaths have been recorded worldwide
[2]. SARS-CoV-2 is primarily transmitted via droplets
and aerosols, so person-to-person contacts are a strong
determinant of transmission dynamics [2–4]. Non-
pharmaceutical interventions (NPIs) focusing on the re-
duction of person-to-person contacts are one of the cor-
nerstones of the pandemic response. In the middle of
March 2020, Germany mandated school and kindergar-
ten closures, postponed academic semesters, prohibited
visiting of nursing homes and restricted the number of
people allowed at public and private gatherings in an at-
tempt to protect the vulnerable groups [5]. In the follow-
ing weeks, contact reduction measures were
implemented on a population level by regulating the
maximum number of close social contacts outside one’s
household and by closing non-essential shops as well as
places for leisure activities [5]. After a considerable re-
duction in reported case numbers, federal governments
decided to ease these restrictions gradually starting at
the beginning of May 2020.
Social contact patterns are known to be a critical fac-

tor for the transmission dynamics of respiratory infec-
tions [4, 6–10]. However, empirical social contact data
have been scarce before the emergence of SARS-CoV-2
[11–13]. One exception is the POLYMOD study, a
large-scale survey that described social mixing patterns
in eight European countries [12]. In 2005/2006, POLY-
MOD measured contacts of more than 7000 participants
across eight European countries [12]. Contact patterns
observed in POLYMOD have been widely used to

parametrize various mathematical models of infectious
disease dynamics [3, 4, 12, 14].
During the SARS-CoV-2 pandemic, contact surveys

were initiated in several countries to understand the ef-
fect of contact precaution measures on social contact
patterns [3, 4, 10, 15–19]. While contact surveys offer a
direct approach to social contact patterns, they are time-
and cost-intensive and need to be initiated actively. Mo-
bile phone-based mobility data offer a complementary
approach to infer changes in contact patterns in a popu-
lation. Google and Apple granted free access to anon-
ymized mobility data in a global attempt to provide
insights into the change of mobility during the pandemic
given different physical distancing policies [20, 21]. Sev-
eral SARS-CoV-2 modelling studies assumed that aggre-
gated mobility data can be used as a proxy for the actual
number and intensity of contacts of individuals in a de-
fined population, although mobility data measure only
certain dimensions of contact behaviour. In this article,
we present survey-based social contact data for the first
wave of the pandemic in Germany and assess their abil-
ity to reflect transmission dynamics 10 days later (mea-
sured by reported reproduction number (R estimates))
when compared to open source population mobility data
from Google and Apple [20–22].

Methods
Contact surveys
Pandemic contact survey—COVIMOD
The contact survey COVIMOD was initiated in April
2020 based on participants of the online panel i-say.com.
To ensure the samples’ broad representativeness of the
German population, participants were recruited by send-
ing email invitations to existing members of the panel
based on age, sex and regional quotas. To gain informa-
tion on children’s social contacts, a defined subgroup of
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adult participants with under-aged children (< 18 years
of age) living in their household were invited to provide
information as a proxy for their children. This approach,
however, resulted in the sample being no longer repre-
sentative of the German population as we under-
sampled the middle-aged participants who instead filled
out the questionnaire for their children. The first COVI-
MOD survey wave was launched on 30/04/2020 corre-
sponding to the time of the strictest contact reduction
measures in Germany. Survey waves 2 to 4 were
launched during a time of a gradual easing of the con-
tact reduction measures in May and June 2020. For wave
1, a sample of 1500 participants was recruited with an
expected response rate of 85% for the next survey waves.
Before the launch of survey wave 4, the sample was in-
creased by 1000 additional participants.
The COVIMOD questionnaire is based on the ques-

tionnaire of the CoMix study and includes questions on
demographics, current behaviours, attitudes towards
SARS-CoV-2 and the social contacts of participants [3].
Participants were asked to provide each social contact
between 5 am the preceding day and 5 am the day of the
survey, the age and sex of the contact, the duration they
spend with each contact, the setting where the contact
occurred and if the contact was a household member or
not. The questionnaire can be found in Additional file 1.
We defined a contact in COVIMOD in line with the

POLYMOD study’s definition as “people who you met in
person and with whom you exchanged at least a few
words, or with whom you had physical contact” [12].
During survey waves 1 and 2, participants were asked to
provide each contact separately. Instead of providing
each contact one by one, some participants included a
group of contacts as one contact (e.g. “customers”). For
these groups, we assumed a specific number of social
contacts (Additional file 2). From survey wave 3 on-
wards, participants were offered the opportunity to pro-
vide a number of additional contacts (group contacts)
they were not able to list individually in case they had
too many contacts.
As participants were offered to enter these additional

contacts separately, we used different analysis ap-
proaches to work with these contacts (sensitivity ana-
lyses). The main scenario includes all reported contacts
plus group contacts weighted for the German population
for COVIMOD and POLYMOD. Unweighted results
and those without group contacts can be found in Add-
itional file 3.

Pre-pandemic contact survey—POLYMOD
The European contact survey POLYMOD was used as a
baseline pre-pandemic comparison. In Germany, POLY-
MOD was conducted paper-based with the help of a
market research company in 2005/2006. Further details

about POLYMOD can be found elsewhere [12]. As in
COVIMOD, participants in POLYMOD were also
allowed to enter the number of additional contacts
(group contacts) they had if participants had too many
contacts to report them separately.

Mobility data
We obtained publicly available aggregated mobility data
from the Google COVID-19 Community Mobility Re-
ports and from the COVID-19 Apple Mobility trends for
the times corresponding to the COVIMOD survey waves
[20, 21].
Google COVID-19 Community Mobility Reports pro-

vide the percentage change in mobility from February
2020 onwards compared to the median of the corre-
sponding weekday between 03/01/2020 and 06/02/2020.
Google COVID-19 Community Mobility Reports use ag-
gregated information about true individual movement
histories to provide location-specific changes in mobility
over time. Data are stratified by the destination of the
movement, i.e. retail and recreation, grocery and phar-
macy, transit stations, workplace, residential and parks.
COVID-19 Apple Mobility trends provide information
about the relative volume of requests for directions for
all weeks in 2020 compared to a base volume on 13/01/
2020.

Reproduction number estimates by the German Public
Health Institute
R values used in our analysis as the “reference standard”
for infection dynamics were obtained from the German
Public Health Institute (Robert Koch Institute (RKI))
[22, 23]. The method applied by the RKI to obtain
current R values is based on the reported numbers of in-
dividuals notified for being newly infected with SARS-
CoV-2 and includes a nowcasting approach taking into
account the delay in diagnosis, reporting and data deliv-
ery. If possible, incident cases are attributed to the day
of first symptoms (an information available for the ma-
jority of cases in the German notification system). If this
information is not available, it is imputed taking into ac-
count measured delays from the day of the first symp-
tom to the notification date, age of the case and day and
week of notification. Based on this nowcasting, RKI esti-
mates the time-dependent reproduction number [24].
The 4-day reproduction number calculated by the RKI
provides information on the transmission dynamics 8 to
13 days prior [23]. The R values are continuously cor-
rected retrospectively for delayed notifications. We used
R values provided by the RKI for 10 days after the timing
of our survey waves as a reference for the comparison of
infection dynamics. Since we extracted R values more
than 1 year after the day they were calculated for, all de-
layed notifications were already accounted for. The R
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values based on case numbers as reported by RKI reflect
both changes in transmission dynamics due to contact
reduction measures as well as due to developing immun-
ity in the population, while contact survey and mobility
data cannot take into account population immunity. For
this analysis, we assumed that SARS-CoV-2 immunity in
the population is negligible for our analyses as this study
only includes the first wave of the SARS-CoV-2 pan-
demic in Germany, and seroprevalence estimates for this
period are below 1% in representative studies [25].

Data management and statistical analyses
Contact surveys
As the COVIMOD sample is not fully representative of
the German population, we used data from the 2011
census to apply survey weights based on the participants’
age, sex, household size and region of residence [26].
The region of residence was not available for POLY-
MOD, so the POLYMOD data were only weighted ac-
cording to the participants’ age, sex and household size
using the R package “survey” [27]. As the COVIMOD
data collection was not always started on the same day
of the week and the duration of the survey waves did
vary slightly, we also weighted both COVIMOD and
POLYMOD for weekdays/weekends.
We calculated the mean number of social contacts per

participant per day as well as the 95% confidence inter-
val of the bootstrapped mean of 1000 samples. We
stratified social contacts by age group, sex, household
size and the day of the week. Additionally, we assessed
setting-specific contacts, i.e. home, childcare/school/uni-
versity, work, public transport and others; childcare/
school/university contacts were assessed in the subgroup
of participants who reported to attend childcare, school
or university, and work contacts were assessed in the
subgroup of participants who worked full- or part-time.
We calculated social contact matrices for the age-
specific mean number of direct social contacts using the
“socialmixr” package in R [28]. To obtain the final con-
tact matrices, the age-specific mean number of daily
contacts were adjusted, so that the total number of con-
tacts of one group with another was the same as vice
versa [28]. For the calculation of the contact matrices,
participants who reported more than 100 group contacts
were excluded from the analysis (COVIMOD: wave 3, 6
participants; wave 4, 13 participants; POLYMOD, 10
participants).
To assess how changes in infection dynamics are

reflected by contact survey data, we applied two different
approaches. First, we performed a simple analysis for
which we calculated the mean relative reduction in con-
tacts for each COVIMOD wave when compared to pre-
pandemic data. For this, we translated the number of the
mean contacts and the corresponding 95% confidence

interval values into a mean relative reduction from base-
line, i.e. in this case, the number of mean contacts before
the SARS-CoV-2 pandemic as estimated in the POLY-
MOD study.
Second, we performed a more complex analysis by

using additional information from the contact survey for
calculating the next-generation matrix. We assumed that
the next-generation matrix for SARS-CoV-2 is a func-
tion of the age-specific effective contact rate, given by
the number of age-specific contacts multiplied by the
probability of transmission per contact, and the duration
of infectiousness [29]. Hence, the basic reproduction
number (R0) is proportional to the dominant eigenvalue
of the contact matrix [30]. To be able to calculate R as
the result of a relative reduction in R0, we assumed that
the social contact patterns before the implementation of
the contact reduction measures were similar to the
POLYMOD contact patterns and that the duration of in-
fectiousness and the per-contact transmission probability
remained constant. Additionally, we assumed that the
transmission probability did not depend on age. Under
these assumptions, the relative reduction of R compared
to R0 is equivalent to the reduction in the contact matri-
ces’ dominant eigenvalue allowing us to estimate the
reproduction number corresponding to contacts re-
corded in COVIMOD. We assumed R0 during the first
wave in Germany to follow a normal distribution with a
mean of 2.6 and a standard deviation of 0.54 [3]. We
drew 10,000 bootstrap samples from POLYMOD and
COVIMOD to assess uncertainty.
Similar to the first approach, we then translated the R

estimates from the COVIMOD study into a mean rela-
tive reduction from baseline, i.e. in this case, the basic
reproduction number (assumed as R0 = 2.6).

Mobility data
We used mobility data collected for the same time inter-
vals as the COVIMOD waves’ timings and compared it
to the pre-pandemic data available from the respective
data sources. In addition to assessing the distinct move-
ment types provided by Google, we also composed an
indicator for overall mobility by averaging across all the
movement types separately for both the Google mobility
data and the Apple mobility data (with the exception of
movements to parks as this is expected to vary consider-
ably during seasons).
We calculated the mean relative change compared to

pre-pandemic data within the time intervals correspond-
ing to the COVIMOD waves as well as the 95% confi-
dence interval of the bootstrapped mean of 1000
samples for Google and Apple mobility. In line with the
approach we applied for COVIMOD and POLYMOD,
we weighted the population mobility data for weekdays/
weekends.

Tomori et al. BMC Medicine          (2021) 19:271 Page 4 of 13



RKI reproduction number estimates
We calculated the mean R estimates for the correspond-
ing time intervals 10 days after the COVIMOD waves as
well as 95% confidence interval of the bootstrapped
mean of 1000 samples based on the daily R estimates
provided by the RKI, the German Public Health Insti-
tute. We then translated the mean and 95% confidence
interval value into a relative reduction from baseline, i.e.
in this case, the basic reproduction number (assumed as
R0 = 2.6 during the first wave in Germany), to provide a
reference standard for infection dynamics against which
the changes in social contact data and population mobil-
ity data could be compared.

Weights by contact type and calibration of scaling factors
As the probability that a contact leads to a transmission
varies according to the setting, we performed additional
analyses using two different concepts to take this into
account. First, we assigned different but specific weights
to home contacts/home mobility and non-home con-
tacts/non-home mobility (i.e. all other contact settings
combined) based on setting-specific secondary attack
rates (SAR) from a systematic review by Thompson
et al. [31]. Based on Thompson et al., the household
SAR was estimated to be 21.1 and the SAR in a health-
care setting, at the workplace and with casual close con-
tacts to be 3.6%, 1.9% and 1.2%, respectively. We used
normalised weights based on household SAR and the
average of the healthcare, workplace and casual close
contacts (SAR = 2.23%) and applied the household
weight to the home contacts/home mobility and the
non-household weight to the non-home contacts/non-
home mobility. We then allowed for an additional scal-
ing factor per contact survey approach, i.e. simple ap-
proach—mean relative reduction in contacts, complex
approach—contact data with next-generation matrix,
google mobility data; the same scaling factor was used
within each approach for all waves as well as for all types
of contacts in the contact survey approaches and all
types of mobility, in the mobility approach. We used this
scaling approach with the aim to obtain the minimum
residual sum of squares across the four survey waves
when compared to our reference standard, i.e. relative
reductions estimated based on R values reported by the
RKI. For a better understanding of the effect of contact/
mobility-type weights, we also performed an analysis in
which we fitted the scaling factor with the same weight
for all types of contacts and mobility. In the second con-
cept, we did not apply pre-defined weights for home/
non-home contacts and for home/non-home mobility
but fitted them from the data by allowing independent
scaling factors for home contacts and home mobility
and non-home contacts and non-home mobility per ap-
proach, i.e. simple approach—mean relative reduction in

contacts, complex approach—contact data with next-
generation matrix, google mobility data. By doing so, we
estimated the relative weights for both contact/mobility
types based on the data collected for this study and did
not take into account external information for transmis-
sion probabilities in different settings. The optim func-
tion in R was used for the fitting/scaling. Apple mobility
data could not be used for these analyses as there is no
differentiation in home/non-home mobility available.

Comparison of the results of the different approaches with
the reference standard
For all analyses, we calculated the mean absolute per-
centage error of the estimates obtained by the ap-
proaches for the COVIMOD contact data as well as for
the Google and Apple mobility data when compared to
the reference standard of relative changes in infection
dynamics based on R estimates from RKI. We did this in
the base case concept without scaling factor and contact
type-specific weighting, as well in all three concepts with
scaling factors. Moreover, we applied repeated measures
ANOVA to assess the differences between error rates
provided by the different data sources.
R version 4.0.2 was used for all analyses [32]. Further

specifications of the analyses can be found in Additional
file 4.

Results
Participant characteristics of POLYMOD and COVIMOD
During POLYMOD, 1341 participants were surveyed in
Germany; they recorded a total of 27,154 contacts. In
the first COVIMOD wave, we surveyed 1560 partici-
pants who recorded a total of 3256 social contacts; this
changed to 1356 participants with a total of 4852 con-
tacts in the second survey wave, 1081 participants with a
total of 6344 in the third wave and 1890 participants
with a total of 13,471 contacts in the fourth wave.
The youngest participants in all COVIMOD waves

were younger than 1 (the parents were surveyed as a
proxy), and the oldest was 91 years of age. Between 47%
and 50% of all COVIMOD participants were female
(Table 1). In POLYMOD and all COVIMOD waves, the
median household size of the participants was 3 (POLY-
MOD IQR 2–4, COVIMOD wave 1 IQR 2–4, wave 2
IQR 2–3, wave 3 IQR 2–3, wave 4 IQR 1–3). In COVI-
MOD survey waves 1, 2 and 3, most participants re-
ported their social contacts on a Thursday, whereas in
wave 4, most contacts were reported on a Monday; less
than a quarter of participants reported the contacts dur-
ing the weekend (Table 1).
A comparison of the characteristics of the German

population and the POLYMOD and COVIMOD partici-
pants can be found in Additional file 3, Table 1. Partici-
pant characteristics after weighting can be found in
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Additional file 3, Table 1.1a. The analyses hereafter are
based on the weighted data including group contacts.

Number of social contacts
The mean number of contacts measured per participant
during all COVIMOD waves (wave 1, 2.0 contacts (SD
1.9); wave 2, 3.3 contacts (SD 4.7); wave 3, 6.2 contacts

(SD 18.4); wave 4, 6.9 contacts (SD 326.3)) was consider-
ably lower in comparison with the 18.9 contacts (SD 24.6)
measured in POLYMOD in the pre-pandemic period (Fig.
1C; Additional file 3 Table 1.2a). The reduction in the
number of overall contacts between POLYMOD and
COVIMOD was consistent across age, sex, household size
and weekday (Fig. 1; Additional file 3 Table 1.2a).

Table 1 Participant characteristics in the COVIMOD survey waves one to four compared to the POLYMOD survey

POLYMOD COVIMOD

Wave 1 Wave 2 Wave 3 Wave 4

30/04 to 06/05/2020 14/05 to 21/05/2020 28/05 to 04/06/2020 11/06 to 22/06/2020

N Percent N Percent N Percent N Percent N Percent

1341 1560 1356 1081 1890

Age category

0–4 89 6.9 46 2.9 36 2.7 21 1.9 56 3.0

5–9 92 7.1 48 3.1 41 3.0 30 2.8 62 3.3

10–14 110 8.5 73 4.7 63 4.7 45 4.2 87 4.6

15–19 121 9.3 95 6.1 66 4.9 45 4.2 108 5.7

20–24 117 9.0 83 5.3 60 4.4 28 2.6 109 5.8

25–34 132 10.2 173 11.1 148 10.9 96 8.9 219 11.6

35–44 156 12.0 137 8.8 124 9.2 91 8.4 164 8.7

45–54 184 14.2 235 15.1 209 15.4 174 16.1 275 14.6

55–64 160 12.4 265 17.0 244 18.0 237 21.9 321 17.0

65–69 74 5.7 270 17.3 245 18.1 199 18.4 313 16.6

70–74 33 2.5 89 5.7 73 5.4 79 7.3 118 6.2

75–79 14 1.1 35 2.2 34 2.5 29 2.7 48 2.5

80+ 13 1.0 11 0.7 11 0.8 7 0.6 10 0.5

Missing 46 – 0 – 2 – 0 – 0 –

Sex of participants

Female 722 55.4 748 48.1 638 47.1 536 49.6 901 47.8

Male 581 44.6 806 51.9 717 52.9 544 50.4 985 52.2

Missing 38 – 6 – 1 – 1 – 4 –

Household size

1 250 18.6 232 14.9 256 18.9 268 24.8 487 25.8

2 411 30.6 412 26.4 351 25.9 270 25.0 439 23.2

3 339 25.3 514 32.9 447 33.0 343 31.7 544 28.8

4 or more 341 25.4 402 25.8 302 22.3 200 18.5 420 22.2

Weekday for which contacts were reported

Monday 227 17.2 50 3.2 60 4.4 128 11.8 642 34.0

Tuesday 237 18.0 63 4.0 89 6.6 143 13.2 246 13.0

Wednesday 222 16.8 54 3.5 293 21.6 87 8.0 172 9.1

Thursday 179 13.6 914 58.6 613 45.2 489 45.2 320 16.9

Friday 186 14.1 144 9.2 117 8.6 132 12.2 196 10.4

Saturday 152 11.5 88 5.6 63 4.6 66 6.1 81 4.3

Sunday 117 8.9 247 15.8 121 8.9 36 3.3 233 12.3

Missing 21 – 0 – 0 – 0 – 0 –

Missing in COVIMOD included participants who preferred not to answer the question
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While the mean number of home contacts was stable
across all COVIMOD waves (and just a little bit lower
than in POLYMOD, Fig. 1, Additional file 3 Table 1.2b),
contacts at work and in educational settings were dra-
matically reduced during the first COVIMOD wave.
Contacts at work increased gradually thereafter but
remained much lower than in POLYMOD even for sur-
vey wave 4; educational contacts started to increase only

at survey wave 4 as schools were closed before (Fig. 1,
Additional file 3 Table 1.2b). Moreover, the distribution
of contacts observed changed considerably over the dif-
ferent COVIMOD waves. While the maximum number
of contacts reported overall and in specific settings was
clearly reduced in the first COVIMOD wave, it approxi-
mated the one reported in POLYMOD already in waves
2 and 3 and reached it in wave 4 (although the mean

Fig. 1 Number of all contacts during the POLYMOD and COVIMOD surveys. Displayed are the number of contacts A stratified by household size,
B stratified by age and C according to the settings in which the contact took place. Boxes represent the 25th, 50th and 75th percentiles, the
whiskers represent the 10th and 90th percentile and the white dots represent the mean. Note: the displayed educational contacts are based
only on the group of participants who attended an educational facility (kindergarten, school, university), and work contacts are based only on the
group of participants who reported to work full-/part-time. Participants with no contacts are displayed as 0 on the log-scale of the y-axis
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and median contact numbers were still clearly reduced).
The number of contacts in different settings for the
other analyses can be found in Additional file 3 Tables
2.2b, 3.2b and 4.2b.
POLYMOD and COVIMOD participants in all age

groups shared the majority of their contacts with indi-
viduals of similar age, demonstrating the expected age-
assortative pattern (Additional file 3 Figure 1.5; Add-
itional file 5). Contact matrices derived from the first
two COVIMOD waves were dominated by contacts at
home, revealing mainly contacts with life partners and
children. This changed slowly through survey waves 3
and 4 due to the gradual increase in work and leisure
time (“other”) contacts, which resulted in a broader dis-
tribution of the age of potential contact persons (Add-
itional file 3 Figure 1.5).

Representation of transmission dynamics by contact
survey and mobility data
In the base case approach without scaling factors and
contact type-specific weighting, the mean R estimated
based on the next-generation matrices of COVIMOD
data was smaller than 1 in all COVIMOD waves (repre-
senting a mean relative reduction in contacts of at least
75%); we observed the highest mean relative reduction
with 91% at the end of April (survey wave 1), which cor-
responds to the time of the strictest contact reduction
measures. Subsequently, the mean relative reduction de-
creased with time as the contact reduction measures

were loosened (wave 2, 87%; wave 3, 80%; wave 4, 74%;
Figs. 2 and 3; Additional file 3 Table 1.3b).
A very similar pattern both in the lowering of the

mean relative reduction and in the level of the relative
reduction was seen with the simple approach based only
on the reduction of the number of contacts itself. We
observed a mean relative reduction between 89% at the
end of April and 63% in the middle of June 2020 (survey
wave 4; Figs. 2 and 3).
Compared to the relative reductions estimated based

on R values reported by the RKI, relative reductions in
contacts measured by COVIMOD both in the simple
and the more complex approach were higher during the
first survey wave but fit quite well during waves 2 to 4.
Mobility reduction estimates based on Google and Apple
data were considerably smaller than relative reductions
estimated based on R values reported by the RKI
throughout the entire study (Figs. 2 and 3; Additional
file 3 Table 1.3a and b). Both mobility data sources
found mobility patterns similar to pre-pandemic data
already during the time of survey waves 1 and 2, while
reported R values 10 days later were still considerably
below 1.
The mean absolute percentage error of the relative re-

duction measured in COVIMOD based only on the re-
duction of contacts itself (the simple approach) was 19%
(SD 12), measured in COVIMOD based on the more
complex derivation of the next-generation matrix was
28% (SD 12), measured based on Google mobility data
was 75% (SD 8) and measured based on Apple mobility

Fig. 2 Comparison of the relative reduction in transmission dynamics based on different input data. Displayed are the mean and bootstrapped
95% confidence interval of the relative reduction of the R estimates from the RKI compared to the basic reproduction number, the relative
reduction in the number of social contacts of the COVIMOD study for the simple and the more complex approach compared to the contacts
before the SARS-CoV-2 pandemic as well as of the mobility data (Google and Apple) compared to the mobility before the SARS-CoV-2 pandemic
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data was 87% (SD 33). The mean absolute percentage
error (MAPE) of the simple and more complex COVI-
MOD approach were smaller than the ones obtained via
Google (p < 0.001 for both approaches) and Apple mo-
bility data (p = 0.010 and p = 0.015). The introduction
of a scaling factor reduced MAPE values considerably,
especially for both COVIMOD approaches (Fig. 4).
According to the systematic review of Thompson et al.

[31], the SAR for the healthcare/workplace/casual close
contacts is around 10% of that of household contacts.
When we fitted the reduction in social contacts based
on the simple approach to the relative reductions esti-
mated based on R values reported by the RKI, the best
fit for the relative transmission risk for non-home con-
tacts compared with home contacts was obtained with a
very similar estimate of around 8% compared to around
20% in the mobility data. The mean absolute percentage
error decreased to 5% (SD 0.7%) based on COVIMOD
and to 18% (SD 14%) based on Google when we used
this approach to derive contact/mobility type-specific
weights and scaling factors. Applying the estimates from

Thompson et al. [31], the mean absolute percentage
error was very similar for COVIMOD (5%, SD 0.25%)
but larger for estimates based on Google mobility (27%,
SD 17%). An even lower mean absolute percentage error
was obtained by using the more complex contact survey
data approach based on the next-generation matrix
(mean absolute percentage error of 1% (SD 1%) for both
weighting based on estimates by Thompson et al. [31]
and fitting of home/non-home contacts (Fig. 4).

Discussion
In this study, we quantified the relative reduction in con-
tacts based on contact survey data and publicly available
mobility data. We found that both data sources repre-
sent different dimensions of transmission dynamics;
changes in contact patterns measured in survey data
represented transmission dynamics (measured as R) bet-
ter than the changes measured in aggregated mobility
data independently of the introduction of contact- and
mobility type-specific weights and the use of scaling fac-
tors. Non-pharmaceutical interventions introduced in

Fig. 3 Comparison of the relative reduction in transmission dynamics by settings based on different input data. Displayed are the mean and
bootstrapped 95% confidence interval of the percentage reduction of the R estimates from the RKI and R estimates obtained from COVIMOD (the
complex approach) compared to the basic reproduction number, the percentage reduction in the number of social contacts of the COVIMOD
study (simple approach) compared to pre-pandemic times and the percentage reduction of the Google and Apple mobility data
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Germany during the first wave of the SARS-CoV-2 pan-
demic were, however, associated with both a consider-
able reduction in social contacts reported in contact
surveys as well as with reductions in mobility patterns.
The results of our study indicate that deriving contact
behaviour from mobility data alone, as it was often the
case in political decision-making during the first and
second wave, is not suitable for making real-time infer-
ences on the effects of public health measures on the
transmission dynamics in a population. Mobility data
used in this study suggested that contact behaviour went
back to normal almost instantly after the contact reduc-
tion measures were relaxed, which did not reflect the
observed R values. A reason for that might be that
people still tried to minimise close contacts outside their
own households and maximised distance to the contacts
they had, although their mobility, e.g. back to work,
already reached almost pre-pandemic levels. Therefore, a

complementary approach including both aspects, i.e. so-
cial contact behaviour as well as mobility behaviour, is
necessary to fully reflect transmissions dynamics. Al-
though repeated contact surveys need considerable in-
vestment in terms of time and costs, the potential
benefits and financial savings if used as a near real-time
proxy for transmission dynamics on a population level
are likely to outweigh the efforts needed. Benefits in-
clude a better preparedness towards expected case num-
bers as well as earlier information on the effect of newly
introduced contact reduction measures, which allows
timely adaptation if needed.
In our study, we found a 73% mean reduction in con-

tacts across the first four waves of COVIMOD (i.e. from
April to June 2020) which is consistent with studies from
other European countries [3, 4]. Even though the re-
ported number of daily contacts increased over the sur-
vey waves, it was still considerably lower than in

Fig. 4 Comparison of the estimates of the relative reduction in transmission dynamics by scaling/weighting approach. In each figure, the mean
and bootstrapped 95% confidence interval of the percentage reduction of the reference standard, i.e. the R estimates from the RKI compared to
the basic reproduction number is displayed; the mean and bootstrapped 95% confidence interval of the percentage reduction in the social
contact data of the COVIMOD study for the simple and the more complex approach are displayed as well as the mean and bootstrapped 95%
confidence interval of the percentage reduction in the mobility data (Google and Apple) compared to the mobility before the SARS-CoV-2
pandemic. Displayed is the base case approach without scaling/weighting applied (A) and with a scaling factor but without separate weighing
for home/non-home contacts (B). (C) shows the estimates relative reduction in transmission dynamics with fitted weights for home/non-home
contacts/mobility and (D) with normalised weights for home/non-home contacts/mobility by [31] as well as allowing a scaling factor
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POLYMOD, indicating sustainable behaviour change
even after the end of the strictest contact reduction mea-
sures. We found an increased variance in the reported
daily number of contacts as the COVIMOD waves pro-
gressed, with the maximum number of contacts increas-
ing from 16 in survey wave 1 to 674 in wave 4, while
median contact numbers were not affected similarly.
Since SARS-CoV-2 has been shown to be associated
with a high variance in the number of transmissions
arising from one infectious individual [33], this sharp in-
crease in the maximum number of contacts has huge
implications for the risk of superspreading events as the
direct aftermath of the end of public health interven-
tions. Participants aged 60 and above reported fewer
contacts in all COVIMOD waves as well as a larger re-
duction to pre-pandemic values when compared to chil-
dren and middle-aged persons. This should be taken
into account when assessing the effects of vaccination
prioritisation strategies in combination with NPIs, as
people in this age group are known to be more vulner-
able to SARS-CoV-2 infections [15].
We further observed a smaller and more stable reduc-

tion in home contacts than in work, educational and
leisure time contacts, which confirms that reduction in
contacts is location-specific [3]. This is reasonable as
most of the social distancing measures implemented at
that time had their main impact outside the household.
We confirmed that the majority of remaining contacts
under strict contact reduction measures happens be-
tween life partners and parents and children, which mir-
rors the huge role of this transmission setting under
contact reduction measures [7, 34].
When introducing contact- and mobility type-specific

weights representing different transmission probabilities
for home and non-home contacts/mobility, we were able
to considerably reduce the differences in estimates for
transmission dynamics when compared to the reported
R values 10 days later, even if scaling factors had been
fitted to the different data source models before. How-
ever, the remaining differences were in all analyses much
smaller for estimates based on contact survey data than
for mobility data. These results show that the presented
approach might be suitable for a near real-time estima-
tion of transmission dynamics based on contact survey
data alone or in combination with mobility data. A data-
driven estimation (based on contact survey data) of the
relative transmission risk at home compared to non-
home transmission resulted in estimates very similar to
those derived from setting-specific secondary attack
rates reported in the literature. Our results indicate that
the differentiation in home and non-home contacts
based on contact survey data supports the representation
of the true role of different types of contacts for trans-
mission dynamics.

Our analyses suggest that the use of contact survey
data, especially after weighing for home and non-home
contacts together with an additional scaling factor, can
indeed be used as an early marker of current transmis-
sion dynamics, especially if they are mainly determined
by contact reduction measures. We show that aggre-
gated mobility data offer a different behavioural perspec-
tive but can also contribute to a better understanding of
how transmission dynamics might develop in near real-
time. The analyses performed in this study were rather
simplistic by nature, as they aimed to provide an overall
estimate of transmission dynamics without differentiat-
ing by too many different factors and without a formal
dynamic mathematical model. In reality, the information
provided about changes over time in contact settings, in-
tensities and frequencies with contact partners offers es-
pecially for contact survey data but also for mobility data
much wider perspectives. Since these analyses require a
dynamic modelling approach taking into account various
other assumptions not necessarily available in the early
phases of an epidemic, they might not be as suitable for
near real-time communication with decision-makers as
the simpler approaches presented here. However, future
analyses should focus on using the available contact and
mobility data to construct and validate multi-layer math-
ematical models which take into account mobility data
for large scale movements and contact survey data for
small scale effect contacts, and this combines the
strengths of the different data sources.
Our study has several limitations. COVIMOD data are

not fully representative of the German population since
some adult participants with under-aged children living
in their households were invited to provide information
as a proxy for their children. Moreover, the elderly (> 70
years) and the very young (< 10 years of age) are under-
represented in COVIMOD. We tried to correct for that
by introducing weights for sex, age and household size;
however, there were no relevant differences in the re-
sults of the unweighted and weighted analyses. Partici-
pants in COVIMOD were asked to record their contacts
retrospectively so that different forms of information
bias could have been introduced. For example, it might
be challenging to remember a higher number of con-
tacts, or the participants’ willingness to report high
numbers of contacts individually might be lower as this
is quite tedious and time-consuming. We tried to min-
imise this by allowing the participants to record group
contacts. We also cannot rule out that COVIMOD
attracted specifically participants who adhered to social
distancing rules as these individuals might be more likely
to respond to health surveys. This could have led to an
overestimation of the relative reduction of contacts and
could explain the gap between relative reductions in so-
cial contacts and reported R values. We tried to
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minimise this bias by using an established online panel
not focusing on healthcare questions as the platform for
COVIMOD. Even though contact-related questions were
similarly phrased between POLYMOD and COVIMOD,
POLYMOD was paper-based, and COVIMOD surveys
were web-based. Previous research suggested that par-
ticipants might report more contacts in paper-based
surveys than in web-based surveys [11, 35]. Future re-
search will be conducted on the differences between
web- and paper-based contacts during the pandemic.
However, our findings are consistent with other stud-
ies that examined social contact patterns under strict
contact reduction measures [3, 4, 15, 36]. We used
aggregated mobility data in our study that were freely
available and have been discussed as a potential real-
time proxy for SARS-CoV-2 transmission dynamics.
Although we took advantage of two different data
sources representing complementary ways to define
mobility, our results cannot be automatically general-
ised to other ways of measuring mobility (e.g. based
on individual movement patterns). The R values de-
rived from RKI represent the changes in transmission
dynamics based on contact reduction measures as
well as population immunity, while contact survey
data and mobility data can only assess the former.
Since population immunity was below 1% in the study
period, this is unlikely to have played a major role in
this analysis but needs to be taken into account for
future studies. Application of scaling factors, which
include information on developing population immun-
ity, might be a useful tool for later phases of an
epidemic.

Conclusions
In summary, our study provides a comprehensive quan-
tification of social contacts and mixing patterns as well
as aggregated mobility information relevant to the
spread of SARS-CoV-2 during spring and summer 2020
in Germany. Our results indicate that population-based
contact surveys provide a suitable platform for near real-
time assessment of transmission dynamics for respira-
tory infections in a population in the absence of popula-
tion immunity. Aggregated mobility data as a proxy for
effective contacts did not show the same degree of per-
sistent reduction. The introduction of contact and mo-
bility type-specific weights led to a considerable
improvement in the reflection of reported changes in
case numbers 10 days later. Mobility data and social con-
tact data provide information on different dimensions of
human behaviour. A complementary approach including
both aspects, social contact behaviour and mobility be-
haviour might be needed to reflect transmission dynam-
ics best.
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