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Abstract. Huntington's disease (HD) is an inherited, progressive 
neurodegenerative disease caused by a CAG expansion in the 
Huntingtin (HTT) gene and various dysfunctions of biological 
processes in HD have been proposed. Although monogenic, the 
exact pathogenesis of HD currently remains unclear. To identify 
the synergistic microRNA (miRNA) pattern in HD, the miRNA 
expression profile dataset GSE64977 and the gene expression 
profile dataset GSE64810 were downloaded. Programming 
software R was used to identify differentially expressed genes 
(DEGs) and differentially expressed miRNAs (DEMs). Target 
genes of DEMs were predicted using the TargetScan database. 
Gene ontology (GO) function of DEGs was generated using 
the FunRich and a miRNA‑mRNA interaction network was 
constructed using Cytoscape software. In total, 1,612 DEGs and 
10 DEMs were identified. GO terms mainly included inflam-
matory response and immune response in DEGs. A total of 745 
target genes were predicted from the DEMs and 33 overlaps were 
identified between these target genes and DEGs. The miRNA 
network demonstrated that hsa‑miR‑4488, hsa‑miR‑196a‑5p, 
and hsa‑miR‑549a had a high degree and may be involved with 
the pathogenesis and potential therapeutic targets of HD.

Introduction

Huntington's disease (HD) is a frequent and incurable 
hereditary neurodegenerative disorder that impairs motor 

and cognitive functions (1). With autosomal dominant inheri-
tance, typical mid‑life onset, and unrelenting, progressive 
motor, cognitive and psychiatric symptoms over 15‑20 years, 
the impact of HD on patients and their families is devas-
tating (2). Although caused by a dominantly inherited CAG 
trinucleotide repeat expansion in the HD gene on chromo-
some 4 (3), the pathogenesis of HD has not yet been fully 
elucidated. Previous studies showed the number of CAG 
repeats was associated with the age of onset; however, only 
50 to 70% of the variation can be attributed to repeat size (4). 
In addition, significant variation in clinical phenotypes is not 
well explained (5). Consequently, all these variations indicate 
other pathogenic factors such as heredity affect the disease 
progression. Recently, studies have focused on miRNAs, the 
small non‑coding RNAs that participate in transcriptional 
regulation and translational repression of target genes (6). In 
HD, a neurodegenerative disease caused by a trinucleotide 
repeat expansion, miRNAs can interact with RelA/NFkB, 
p53  (7), Mitofusin2  (8), TBP  (9), REST, or RE1  (10,11). 
Dysregulation of miRNA may also impact CAG length and 
affect the progression or severity of HD (12). Conversely, 
a certain degree of genetic heterogeneity of HD that may 
exhibit different miRNA expression in some cases has also 
been reported (13). In addition to research on the pathological 
mechanism, the role of miRNA in the treatment has been 
a subject of interest. Currently, miRNA‑based Huntingtin 
(HTT)‑lowering therapy is one of the most advanced gene 
strategies (14), silencing the HD gene by injecting artificial 
miRNA into the striatum of Q140/Q140 mice and transgenic 
sheep models and achieving the expected effect  (15,16). 
However, bioinformatics studies focusing on miRNA and 
mRNA expression profiles in HD patients and healthy 
controls have not been published to date. Therefore, iden-
tifying the miRNA‑mRNA interactions, understanding 
their synergistic effects on the pathogenesis, and exploring 
possible therapeutic approaches for HD are important.

To elucidate the miRNAs and associated target genes 
and pathways involved in HD, we downloaded miRNA 
and mRNA expression profiles of HD patients and healthy 
controls from the Gene Expression Omnibus (GEO) 
database. The differentially expressed genes (DEGs) and 
differentially expressed miRNAs (DEMs) target genes 
were identified and a miRNA‑mRNA regulatory network 
established.
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Materials and methods

miRNA and mRNA expression profiles. The mRNA and miRNA 
expression profiles of HD were downloaded from the GEO data-
base (www.ncbi.nlm.nih.gov/geo) and were termed GSE64810 
(https://www.ncbi.nlm.nih.gov/gds/?term=GSE64810; accessed 
August 8, 2017) and GSE64977 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE64977; accessed August 9, 
2017), respectively (6,17). In the GSE64810 dataset, 20 HD and 
49 neurologically normal control samples from post‑mortem 
human subjects were included. In the GSE64977 dataset, expres-
sion profiles were obtained from 28 HD and 36 neurologically 
normal control prefrontal cortex samples. Both mRNA and 
miRNA profiling was performed using the Illumina HiSeq 2000 
(Homo sapiens) platform (Illumina, Inc.,  San Diego, CA, USA).

Differential expression analysis for mRNA and miRNA expres-
sion profiling. Raw microarray data were first preprocessed 
including background correction and normalization. The probes 
corresponding to multiple genes were abandoned and multiple 
probes corresponding to one gene or miRNA were used to 
calculate the average expression level. Limma package (www.
bioconductor.org/packages/release/bioc/html/limma.html) was 
used to identify DEGs and DEMs between HD and control 
samples. A two‑tailed Student's t‑test was used for statistical 
analysis. The DEGs and DEMs were considered significantly 
differentially expressed if the P‑value was <0.05 and the log fold 
change (FC) was >1. The miRNAs were further classified using 
hierarchical clustering analysis.

Prediction of miRNAs associated with DEGs and construction 
of miRNA gene regulatory network. Target genes regulated 
by DEMs were predicted using TargetScan (http://www.
targetscan.org/vert_71/), which is used to predict biological 
targets of miRNAs by searching for the presence of conserved 
8mer, 7mer, and 6mer sites that match the seed region of each 
miRNA (18). In mammals, predictions are ranked based on 
the predicted efficacy of targeting as calculated using cumula-
tive weighted context ++ scores of the sites (19). In the present 
study, the miRNA target gene set with context ++ scores <‑0.4 
were then used for further analysis. A Venn diagram of DEGs 
overlapping with DEM target genes was constructed using 
FunRich (20). Furthermore, Cytoscape was utilized to visu-
alize the miRNA gene regulatory network (21).

Functional enrichment analyses. Functional enrichment 
analyses were performed using the open software FunRich 
(http://funrich.org/faq), which is a stand‑alone software 
tool used mainly for functional enrichment and interaction 
network analysis of genes and proteins (20). Statistical cut‑off 
of enrichment analyses in FunRich software was set to default 
with a P‑value <0.05 after Bonferroni correction.

Results

Differential expression analysis. Based on the gene expression 
analysis, 8 upregulated and 2 downregulated DEMs were iden-
tified in HD compared with the normal controls (Table І). Based 
on the mRNA expression profile analysis, 1,612 DEGs were 
identified, including 945 upregulated and 667 downregulated 

DEGs. The top 10 DEGs are presented in Table II. The hier-
archical clustering heat map of miRNA shows the differences 
between HD and normal controls (Fig. 1).

Functional enrichment analysis. Using FunRich, 48 enriched 
GO terms were obtained for DEGs. The 10 most significantly 
enriched GO terms are listed in Table III, including integral 
components of the plasma membrane, inflammatory response, 
plasma membrane, and immune response. Furthermore, the 
most significantly enriched GO terms including biological 
processes (BP), molecular function (MF), and cellular compo-
nent (CC) were analyzed (Fig. 2).

Synergistic miRNA network construction. Utilizing 
TargetScan, 745 target genes of DEMs and 33 overlaps were 
identified between the target genes and DEGs (Fig. 3). We 
identified 33 possible miRNA‑mRNA target pairs. In the 
network, hsa‑miR‑4488, hsa‑miR‑196a‑5p, and hsa‑miR‑549a 

Table І. Differentially expressed miRNAs between HD patients 
and healthy controls.

miRNA	 Log FC	 P‑value

hsa‑miR‑10b‑5p	 4.175	 9.10x10‑23

hsa‑miR‑196a‑5p	 2.430	 5.85x10‑22

hsa‑miR‑615‑3p	 1.678	 2.12x10‑17

hsa‑miR‑10b‑3p	 1.480	 4.79x10‑14

hsa‑miR‑196b‑5p	 1.439	 6.62x10‑11

hsa‑miR‑144‑3p	 1.045	 2.77x10‑6

hsa‑miR‑549a	 1.111	 2.39x10‑5

hsa‑miR‑483‑5p	 1.256	 2.49x10‑4

hsa‑miR‑10a‑5p	 1.042	 6.0x10‑4

hsa‑miR‑4488	 ‑1.193	 2.54x10‑3

P<0.05 was considered to indicate a statistically significant difference. 
miRNA, microRNA; FC, fold‑change; HD, Huntington's disease.

Table II. Top 10 most differentially expressed mRNAs between 
HD patients and healthy controls.

Gene	 Log FC	 P‑value

PITX1	 4.770	 9.57x10‑39

POU4F2	 3.962	 3.42x10‑23

HAND1	 3.703	 1.46x10‑17

HOXD9	 3.657	 1.22x10‑18

SLC16A12	 3.514	 4.74x10‑18

PITX2	 3.404	 1.66x10‑12

BMP5	 3.149	 5.93x10‑13

OGN	 3.097	 8.20x10‑14

SLC22A2	 3.089	 6.93x10‑11

IL1R2	 3.038	 3.35x10‑12

P<0.05 was considered to indicate a statistically significant differ-
ence. FC, fold‑change; HD, Huntington's disease. 
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had a high degree and may be involved in the pathogenesis and 
used as potential therapeutic targets for HD (Fig. 4).

Discussion

HD is an inherited progressive neurodegenerative disorder that 
usually affects people in midlife (22). Previous studies have 
implicated that gene expression may be altered at more than 
one stage of RNA processing, translation, protein post‑tran-
scriptional trafficking or modifications (23). miRNAs are 
small non‑coding RNAs that can influence diverse ranges of 
cellular processes (24). Recently, dysregulation of miRNAs 
has been reportedly associated with neurological and neuro-
degenerative disorders (25) and several studies have explored 

the functions of miRNAs in HD patients (10,26). Although 
altered expression of miRNAs has been reported in cellular 
models (10) and mouse models of HD (27) using quantified 
microarray technology, a bioinformatics study of miRNA 
and mRNA expression profiles in HD patients and healthy 
controls has not yet been performed. In the present study, we 
elucidated the synergistic effects of miRNAs on the patho-
genesis of HD by constructing a miRNA‑mRNA interaction 
network.

Using a bioinformatics approach to analyze differential 
expression profiles of mRNA and miRNA, HD patients showed 
significant differences in mRNA and miRNA expression when 
compared with neurologically normal controls. In total, 1,612 
DEGs and 10 DEMs were identified. GO function (BP, CC, 

Figure 1. Hierarchical clustering heatmap of 10 DEMs in different datasets.

Table III. Top 10 GO functional annotation of differentially expressed genes.

GO ID	 P‑value	 Term

GO:0005887	 6.55x10‑21	 Integral component of plasma membrane
GO:0006954	 1.54x10‑19	 Inflammatory response
GO:0005886	 4.77x10‑19	 Plasma membrane
GO:0006955	 3.86x10‑19	 Immune response
GO:0005576	 4.51x10‑18	 Extracellular region
GO:0005615	 1.43x10‑17	 Extracellular space
GO:0045087	 1.65x10‑15	 Innate immune response
GO:0009952	 1.61x10‑14	 Anterior/posterior pattern specification
GO:0043565	 1.22x10‑11	 Sequence‑specific DNA binding
GO:0042742	 4.73x10‑10	 Defense response to bacterium

P<0.05 was considered to indicate a statistically significant difference. GO, Gene Ontology. 
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Figure 2. The GO and biological pathway analysis of all DEGs. (A) Biological pathway analysis of DEGs, (B) BP of DEGs. (C) CC of DEGs. (D) MF of DEGs.
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and MF) and biological pathway analysis of DEGs demon-
strated the majority of genes were involved in some processes 
and pathways, such as signal transduction in BP (28), plasma 
membrane in CC (29), transcription factor activity in MF (30), 
and immune system in biological pathway (28). Changes in 
Ca2+ signaling and/or transduction systems and misfolded 
protein‑plasma membrane interactions affected HD initiation 
and progression as reported by Fan and Shrivastava (29,31). 
Many previous studies showed that aberrant transcriptional 
regulations play important roles in the molecular pathogenesis 
of HD. The HTT gene interferes with some important tran-
scription factors (32); among these, Sp1 and TAFII130 were 
shown disrupted in the early stage of HD progression (33). 
Furthermore, both innate and adaptive immune systems have 
been previously suggested to be activated during the progres-
sion of HD (34). Reportedly, HD is characterized by cellular 
and molecular features of inflammation (cytokine expression 
and microglia activation) and HTT mRNA expression in 
immune cells is on average higher than that observed in most 
organs (35). miRNAs may also influence the dysregulated 
production of both type 1 and type 2 cytokines observed at 
different stages of HD. This result is attracting attention as 
pathogenetic mechanism and as possible therapeutic approach 
with immunomodulation (36). Combined with the previous 
research conclusions, the present functional analysis may 
provide novel therapeutic targets or possible pathogenesis to 
be further studied.

Figure 3. Venn diagram of DEGs overlapping with DEM target genes using 
FunRich.

Figure 4. Interaction network of DEMs and target genes in HD. Interaction 
networks for (A) hsa‑miR‑4488, (B) hsa‑miR‑196a‑5p, (C) hsa‑miR‑459A, 
The red and green colors represent upregulation and downregulation, 
respectively.

Figure 4. Continued. Interaction network of DEMs and target genes in 
HD. (D) hsa‑miR‑144‑3p, (E) hsa‑miR‑10b‑3p, (F) hsa‑miR‑10a‑5p and 
(G) hsa‑miR‑483‑5p. The red and green colors represent upregulation and 
downregulation, respectively.
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In the context of the miRNA‑mRNA interaction network, 
hsa‑miR‑4488, hsa‑miR‑196a‑5p, and hsa‑miR‑549a had 
a high degree in this study (Table  IV). Hsa‑miR‑4488 
was downregulated and had 12 target genes in our study. 
Lee et al also found that miR‑4488 was differentially down-
regulated in their HD patients (27). Among the target genes of 
hsa‑miR‑4488 in the present study, SPRED3 (37), IGF2 (38), 
HOXC6 (39), NANOS2 (40), SLC6A3 (41), TLX1 (42), and 
NT5C1A  (43) have been reported to play various roles in 
the pathogenesis or development of HD. Although we could 
not determine the association of FAM167B, ECEL1, OTP, 
C10orf105, or MYLK2 with HD, further experimental studies 
are necessary to elucidate their possible relationships with 
HD. Previous studies also showed hsa‑miR‑196a plays an 
important role in the pathogenesis and progression of HD (44), 
Fu et al suggested that hsa‑miR‑196a altered the RIG‑I‑like 
receptor signaling pathway and the immune system, as well 
as changed the expression of several well‑defined pathways of 
HD, such as apoptosis and cell adhesion (45). A previous study 
showed that HOX is indirectly involved in the neuroprotec-
tive response in HD and increased expression of HOX genes 
can enhance H3K27me3 or impair PcG repression (39). In our 
present study, hsa‑miR‑196a‑5p was found to mainly interact 
with HOX genes, indicating hsa‑miR‑196a‑5p may be involved 
in the neuroprotective response in HD. Reportedly, miR‑196a 
dominantly altered the immune system or adaptive immune 
system (45). During the last decade, a hyperreactive immune 
system has been recognized as an important feature of HD 
pathogenesis. Macrophages in individuals with manifested 
HD and even pre‑manifested HD have been reported to release 
more proinflammatory cytokines such as TNF‑alpha (46) and 
prototypical anti‑inflammatory cytokines such as IL‑10 (47) 
and IL‑13 (48). Similarly, Dobson et al showed that at base-
line, monocytes from HD subjects released more cytokines 
than monocytes isolated from healthy volunteers, and this 
abnormality could be modulated by laquinimod, which exerts 
an immunomodulatory effect on isolated HD monocytes (49).

In addition, we found another miRNA, hsa‑miR‑549a, 
was upregulated in HD patients and could regulate five 
target genes. When reviewing the literature, we found that 
GMNN (50), TNFAIP18 (51), LAPTM5 (52), and RGS18 (53) 
played roles in the pathogenesis of neurodegenerative diseases 
through various mechanisms, including regulation of tran-
scription factors and affecting autophagy and endoplasmic 
reticulum stress pathways and might be involved in the patho-
genesis of HD. Other affected miRNAs found in our study 
including hsa‑miR‑144‑3p, hsa‑miR‑10b‑3p, hsa‑miR‑10a‑5p, 
and hsa‑miR‑483‑5p have been reported as differentially 
expressed in HD samples; hsa‑miR‑10b‑3p showed a signifi-
cant association with CAG length in HD (6). Regarding the 
other three miRNAs, more research is be needed to identify 
their exact relationships with HD.

Although extensive research has identified aberrantly 
expressed miRNAs in HD, the molecular mechanisms under-
lying the pathological implications remain largely unknown. 
Using expression profile datasets, we compared the genomic 
expression status of HD and revealed differentially expressed 
mRNAs and DEMs. We identified DEGs and constructed a 
miRNA‑mRNA regulatory network. We found hsa‑miR‑4488, 
hsa‑miR‑196a‑5p, and hsa‑miR‑549a had a high degree and may 

be involved in the pathogenesis of HD. Studies in this field could 
help improve the understanding of how miRNAs mediate the 
etiopathological mechanisms of HD. Since the neuroprotective 
effects of certain miRNAs have been demonstrated in animal 
studies, the therapeutic potential of miRNAs should be further 
investigated and followed by molecular validation.
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