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Abstract

Accurate assessment of the age-dependent disease risk conferred by germline variants in disease susceptibility genes

is often hampered by the way the data are collected. Cohort-based data sets frequently contain an

overrepresentation of patients (i.e. carriers of the gene variant of interest affected with the associated disease),

and an underrepresentation of disease-free carriers. In order to overcome this problem, penetrance estimates can

be based on family-based study designs, through the evaluation of index patients and their family members. This

approach facilitates the identification of asymptomatic germline variant carriers. By adjusting for the way these family

data are ascertained, an estimate for the penetrance of the pathogenic gene variant can be obtained. However, the

family structure is often incomplete or missing. This complicates the estimation of the penetrance, because full

adjustment of the likelihood is not possible. We present a conditional likelihood for the estimation of the

penetrance of pathogenic gene variants, based on a cohort of multiple families comprising index patients, disease-

free and affected non-index carriers, but with missing information on pedigree structure. The proposed estimator

corrects for the ascertainment in a robust way and is shown to be more accurate than the frequently used Kaplan–

Meier estimator of the penetrance function.
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1 Introduction

Accurate estimates of the age-dependent disease risk (the penetrance) for carriers of germline gene variants
that affect function (hereafter variants) in specific disease-susceptibility genes are important in counseling
carriers and their families and in optimising cascade screening and follow-up protocols (surveillance).
Especially in the case of rare genetic variants and diseases, obtaining data through a population-based
cohort study design is usually not a realistic option, since a large number of individuals is needed in order
to identify enough carriers of the gene variants of interest for an accurate estimation of its penetrance.
Therefore, carriers of specific gene variants are often identified through a family-based study design,
involving genetic cascade screening of the family of index patients (i.e. the first identified individual within
a family carrying a pathogenic gene variant and expressing the associated disease phenotype). Different family-
based study designs have been suggested for penetrance estimations.1 These designs allow for unbiased
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estimates of the penetrance via the maximum likelihood method, provided that adequate adjustment of the
likelihood is applied to the manner in which data are ascertained.2,3 For this purpose, prospective and
retrospective likelihoods are often used. The prospective likelihood can only be applied if the ascertainment
rules are clear, have been followed exactly, and are easy to model. Otherwise the retrospective likelihood
should be used. This likelihood is applicable if the ascertainment is based on the phenotypes only.4,5 A
frequently employed method for the estimation of the penetrance uses the Kaplan–Meier estimator based
on data of the relatives of index patients only (the index patients themselves are left out of the analysis to
correct for the ascertainment bias to prevent overestimation of the penetrance). However, this method still
yields biased estimates as it does not actually correct for the way the data are ascertained. The estimation
procedure ignores the fact that ascertainment is based on the phenotype of the whole pedigree and not on one
particular individual in the pedigree. Moreover, leaving out the index patients from the analysis means
discarding valuable information, especially in rare and low-penetrant disease.

Here we consider the situation where essential pedigree information is missing. This is frequently the case, due
to a plethora of possible reasons: the patient may be unaware of the family history, the hereditary nature of the
disease may not have been recognised during treatment of a single patient, or the data were initially not collected
for research or cascade screening purposes. Usually, pedigree data are obtained via an index patient in a pedigree.
Patients who express the disease phenotype and carry the genetic variant of interest are asked to inform their
family members about their potential risk. Some of these relatives will consent to genetic counseling and DNA
testing. Detected carriers of the germline variant will be followed and regularly screened for the disease. When
aiming to estimate the penetrance of the disease, the follow-up data of all known carriers (the index patients and
their relatives with the variant) are collected from the medical records. However, the relation between the carriers
and the index patient is often lacking. This missing information hampers the correction for the way the data were
ascertained. A frequently used method for penetrance calculations in this setting is the Kaplan–Meier estimator,
because of its simplicity and because up to now, there was no adequate alternative. However, the Kaplan–Meier
estimator is prone to ascertainment bias and discards useful information. Here we describe a novel method for the
estimation of the penetrance function that is designed especially for the situation described above. The
performance of this newly proposed estimator is evaluated by means of simulation studies and compared with
the traditionally used Kaplan–Meier estimator.

Information on the family members at risk that do not consent to clinical surveillance or DNA testing is usually
entirely missing. These data may not be missing at random, as relatives of index patients who experience similar
symptoms are presumably more inclined to undergo surveillance or DNA testing than family members who do
not. This problem is especially poignant in low-penetrant disease, as a relatively large number of family members
who carry the gene variant of interest will be asymptomatic. As it is impossible to account for this missing data in
the estimation method if there is no indication of the number of family members that are missing from the dataset,
the effect of the missing data is quantified with a simulation study.

With the growing availability and accessibility of high-throughput genetic screening techniques such as whole
exome sequencing and whole genome sequencing, our knowledge of the genetic determinants of hereditary disease
is growing rapidly. The advent of these techniques has facilitated the identification of causative genes in rare
diseases, and of gene variants that confer a relatively low disease risk. Accurate estimation of disease risk is
challenging especially in these rare and low-penetrant gene variants. The need for accurate methods for
estimating disease risk that address ascertainment correction will increase with the rising number of individuals
known to harbour a hereditary predisposition to disease.

2 Methods

2.1 Data, model assumptions and likelihood

Here it is assumed that the disease is not lethal. At the end of Appendix 1, it is explained in what way the likelihood
will change if this assumption does not hold and individuals may die from the disease.

Once an individual is diagnosed with the disease of interest and with a function-affecting gene variant that
predisposes for the disease of interest, relatives are often offered genetic testing and clinical surveillance of the
disease in case of identified carriership. When aiming for estimating the disease penetrance the follow-up data of
the carriers is collected from the medical records.

For gene variant carriers, the following notation is used: the age at diagnosis of the disease is denoted by T with
cumulative distribution F and density f, and the age at the end of the study (collection of the data), or the age at
death (whichever occurs first) by C, with distribution G and density g. It is assumed that T and C are independent.
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For every subject it is known whether he or she is an index patient or a relative of an index patient, but
information on the family (structure) is not available. For patients (T � C), T is observed. The age at censoring, C,
is also observed. For the unaffected carriers (T>C), C is always observed, but T is unobserved. The indicator
function � ¼ 1fT�Cg equals 1 if T � C and 0 if T>C. Note that for index patients � ¼ 1. In order to distinguish
between the different individuals, an underscore is used; for individual i, i ¼ 1, . . . , n: Ti, Ci, �i. It is assumed that
the phenotypes (disease status and age-at-onset) of individuals are independent given their carrier status. In total,
data of nmutation-carriers from r pedigrees (r index patients), with n> r, is available. The number of individuals in
family j in the data-set (i.e. index j and its relatives in the data-set) is denoted as nj, j ¼ 1, . . . , r. These numbers
cannot be retrieved from the data due to missing information on the families.

If the estimation method is not corrected for the way the data were ascertained, this would result in
overestimation or underestimation of the disease penetrance. Correction of the likelihood can be done by
conditioning on the ascertainment event (see Appendix 1 for the details) and the corrected likelihood is equal toQn

i¼1 f ðTiÞ
�i ð1� FðCiÞÞ

1��i gðCiÞQr
j¼1f1� ½

R
½1� FðsÞ�dGðsÞ�njg

ð1Þ

In the likelihood, no notation is used (and necessary) to distinguish between families, because it is not known
from the data which individuals are related.

2.2 Estimation

The conditional likelihood in equation (1) contains the unknown distributions F and G with densities f and g, and
the sizes of the families in the data-set nj, j ¼ 1, . . . , r. In the setting discussed in this paper, no family information is
present to retrieve these numbers nj from the data. Therefore, the average family size in the data set is taken
instead: �n ¼

Pr
j¼1 nj=r. This average can be calculated as the number of index patients is assumed to be known.

However, if more information is available for determining the values of nj, this information can also be used.
Inserting these averages into equation (1) yieldsQn

i¼1 f ðTiÞ
�i ð1� FðCiÞÞ

1��i gðCiÞQr
j¼1f1� ½

R
½1� FðsÞ� dGðsÞ� �ng

ð2Þ

This likelihood is used for estimating F and G. As the average �n might deviate from the true values n1, . . . , nr, this
may affect the unbiasedness of the estimators. This is studied in section 3.

An estimator for F is obtained by maximising this likelihood. To make maximisation computationally feasible
within a foreseeable computing time, it is assumed that F ¼ F� belongs to a class of parametric distribution
functions (for instance the class of Weibull distributions with unknown shape and the scale parameter).

Two methods for estimating G are considered. In the first method, it is assumed that G belongs to a class of
parametric distributions. This class could be chosen based on the form of the Kaplan–Meier curve or the empirical
distribution of the observed censoring times C of relatives with or without the germline variant (if data for the
latter is available). Next, the estimates of the unknown parameters that determine G and � (the unknown
parameter of F�) can be found by simultaneous maximisation of the likelihood in equation (2). A confidence
interval for � and a pointwise confidence interval for F� can be constructed using the Delta method.6

A second estimate for G can be constructed as follows. For relatives who turn out to be non-carriers after
genetic testing, there is no follow-up. However, if the age at the time of testing is available, the censoring times can
be determined. Then, G can be estimated by the empirical distribution function of these censoring times, denoted
as ĜNC (NC stands for non-carrier). After inserting ĜNC into the likelihood, it can be maximised with respect to �
to obtain an estimate for F�. The construction of a pointwise confidence interval for F� can be done based on
the likelihood ratio statistic (see Appendices 2 and 3). If the censoring times cannot be determined for non-
carriers, G could be estimated based on the censoring times of all carriers except the index patients, denoted as
ĜC (C stands for carrier). Simulation studies show that this latter estimate gives slightly biased estimates for F� (see
section 3.1).

If people may die from the disease, then C may be right censored by death due to the disease, and the likelihood
that is derived at the end of Appendix 1 should be used in stead. However, the two-step estimation method as
described in this section will yield exactly the same estimate for F� (see Appendix 1 for more information).

R-code for computing the estimates and the confidence interval is available upon request.

2926 Statistical Methods in Medical Research 28(10–11)



3 Results

3.1 Simulation study

In this section, the results of simulation studies are evaluated to study the effect of replacing nj, j ¼ 1, . . . , r by the
average

P
k nk=r in the likelihood and the effect of the way of estimating G (as described in section 2.2) on the

accuracy of the estimate for the penetrance F�. Furthermore, the performance of the Kaplan–Meier estimator for
F� based on simulated data of the carriers excluding the index patient is studied.

The simulation of data is performed in five steps.

Step 1. The number of tested carriers of the genetic variant in, say, pedigree j in the data, nj, is simulated as
described below.

Step 2. For all nj individuals, the age at diagnosis of the disease, T, is simulated from a Weibull distribution with
shape and scale parameters equal to 2.5 and 90 (motivated by the real data example below).

Step 3. The age at time of censoring, C, is simulated from a uniform distribution at the interval [20, 80] (this choice
for G is based on the estimate in the application, but other distributions have been considered as well).

Step 4. If at least one of the individuals has an age-at-onset T with T � C, the pedigree is included in the data-set.

This simulation schedule is repeated 10,000 times. The total number of individuals or pedigrees that are selected
depends on the choice of the distribution for the values nj and the chosen distribution F�.

Step 5. Independently of the simulated data so far, 1000 censoring times C are simulated from the same
distribution as chosen in step 4. These are the simulated censoring times for the non-carriers in the ascertained
pedigrees in step 4. Its empirical distribution function will be used for estimating G (see the settings A and B
below).

In total, three simulation studies are performed. In the first simulation, nj can take the values 1, 2, or 3 with
probabilities 0.5, 0.25, and 0.25. In the second simulation, these values are 1, 2, 3, 4, and 5 and they are sampled
with equal probabilities (probability 1/5) and in the third study the values are 1, 2, 3, 4, 5, and 10 which are also
sampled with equal probability (probability 1/6). This leads to three data-sets of approximately 3500, 5000 and
almost 6000 families. Next, the model parameters are estimated as described in the previous section. Furthermore,
the Kaplan–Meier estimate based on the data of all carriers except the index patients is determined. The whole
procedure, simulation and estimation, is repeated 250 times.

Estimates for F� are obtained by maximising likelihood (1) (i.e. nj is known) or likelihood (2) (i.e. nj is replaced
by �n), after inserting estimate ĜNC or ĜC into the likelihood. These four settings are labeled as:

A: The likelihood in equation (1) with G estimated by ĜNC is maximised.
B: The likelihood in equation (2) with G estimated by ĜNC is maximised.
C: The likelihood in equation (1) with G estimated by ĜC is maximised.
D: The likelihood in equation (2) with G estimated by ĜC is maximised.

Figure 1 shows boxplots of the estimates of F�ð50Þ (left column) and F�ð70Þ (right column) in the different settings
and studies. The true values F�ð50Þ and F�ð70Þ are displayed by the horizontal dashed curves (and are the same in
all simulation studies). The three rows in Figure 1 correspond with the three sets from which is simulated.
The boxplots in the first row present the results from the first simulation (the numbers nj are simulated from 1, 2,
and 3), those in the second row for the second study (nj simulated from 1, 2, 3, 4, and 5), and the boxplots in the
third row for the third study (nj is simulated from 1, 2, 3, 4, 5, and 10). Boxplots based on the estimates of
the Kaplan–Meier curve are missing, because these are far from the other estimates, but the results are given in
Table 1.

In the figure it can be seen that the penetrance function F� is slightly overestimated if the true sizes nj in the
likelihood are replaced by the average �n, but the bias is small. Furthermore, if G is estimated by ĜNC the estimator
of F� seems to be unbiased, whereas the estimators show a systematic bias downwards if G is estimated by ĜC. The
biases in the third simulation (third row) seem to be larger than in the first simulation (first row). This is probably
due to the degree of skewness of the distribution of the sizes nj. By lack of information in the data on the
distribution of nj, more robust alternative estimates for nj are not available.

Table 1 shows the medians of the estimates for every setting as well as for the Kaplan–Meier estimate, denoted
as Fnaive. It can be seen that this estimator strongly underestimates the penetrance function. The amount of bias
depends on the values of nj; it decreases with increasing size nj as can be seen in Table 1. By increasing the pedigree
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sizes even further to nj¼ 50 for all families, the bias of the naive estimator decreases further: F̂naiveð50Þ ¼ 0:193 and
F̂naiveð70Þ ¼ 0:392 while the true values equal 0.205 and 0.413, respectively.

In the application section, the maximum likelihood estimate of F� is plotted together with the Kaplan–Meier
estimates based on data of relatives with and without index patients (left plot in Figure 3). It can be seen that the
Kaplan–Meier estimator that includes the index patients overestimates and the Kaplan–Meier estimator that
excludes the index patients underestimates the penetrance. The figure shows the need for correction for the way
the data were ascertained.

Several more simulations have been performed (see Table 2 in Appendix 4 for the results). From the results in
Tables 1 and 2, it is concluded that the proposed estimation method performs well, whereas the naive
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Figure 1. Boxplots for the results of the simulation studies with F� equal to the Weibull distribution with the shape and scale

parameters equal to 2.5 and 90, at ages 50 (left) and 70 (right).
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Kaplan–Meier estimator based on data of all carriers except the index patients dramatically underestimates the
true penetrance curve. If the distribution of nj is extremely skewed to the right, the penetrance seems to be
systematically overestimated, but performs still better than the naive Kaplan–Meier estimator.

3.2 Application

The development of the method described in this paper was inspired by a study that was aimed at estimating the
risk of developing a paraganglioma or pheochromocytoma (rare, usually benign neuroendocrine neoplasms) in
carriers of germline SDHB gene variant.7 The penetrance calculations were based on the age at detection of a
paraganglioma/pheochromocytoma in affected carriers and the present age in unaffected living carriers or the age
of death in unaffected deceased carriers, of 61 index patients and 133 relatives, 20 of which were affected with the
disease at the end of the study and 113 of which were not. The study population was identified through the clinical
genetics centers in The Netherlands. All individuals had consented to DNA testing, and all included individuals
were identified as carriers of a SDHB gene variant predisposing to paraganglioma/pheochromocytoma. No data
from familial non-carriers were available, nor from family members that did not consent to DNA testing. In the
data analysis, it is assumed that all individuals without a family history of the associated disease at the time of the
DNA screening are index patients; they are the first diagnosed patients in the family. Furthermore, it is assumed
that those individuals with a positive family history at the time of DNA screening are relatives of an index patient.

Three different families of distributions are considered for the penetrance function F�: a Weibull distribution, a
gamma distribution both with unknown shape and scale parameters, and a chi-squared distribution with an
unknown degree of freedom.

The average pedigree size in the data-set �n is equal to (133þ 61)/61¼ 3.2. Since there is no data available of non-
carriers, the distribution G is estimated by the empirical distribution based on the censoring times of the relatives
only (the plot on the right in Figure 2). The straight line in the same plot is the distribution function for the
uniform distribution at the interval [20,80].

The three models (with the different families of distributions for F�) are fitted to the data and their fits are
compared based on their AIC. The models in which F� is assumed to be a Gamma or a Weibull distribution fit
equally well and the estimates for F� overlap, whereas the fit of the model with the chi-squared distribution for F�
performed badly. The maximum likelihood estimate for the penetrance based on likelihood (2) and under
the assumption of a Weibull distribution is shown in Figure 2. The shape and scale parameters equal 2.47 and
90. (The maximum likelihood estimate of the shape and scale parameter under the assumption of a gamma
distribution equal 3.57 and 24.6. The two maximum likelihood estimates of F� overlap on the interval of
interest: up to 75 years.)

As demonstrated in Figure 3 (left), the Kaplan–Meier estimator based on the data including the index patients
without correction for the way the data are ascertained, overestimates the penetrance function, whereas it
underestimates the penetrance if data of non-index carriers is used only.

The maximum likelihood estimator is accurate if no data from relatives is missing and all carriers within a pre-
specified degree have been tested. However, from the available data the number of carriers that have not been
DNA-tested cannot be deduced, and since pedigree structures are not present, it is impossible to include obligate
carriers in the data set manually or correct for family members with uncertain carrier status. The bias introduced
by not including these individuals depends on the number of missing individuals and their genotypic and

Table 1. Median of the estimates of F at the ages 50 and 70 by the estimates in the settings A, B, C and D and in the three different

studies, and the naive estimator F̂naive (the Kaplan–Meier estimator as described before).

Study 1 Study 2 Study 3

age 50 70 50 70 50 70

F 0.205 0.413 0.205 0.413 0.205 0.413

A 0.206 0.414 0.206 0.413 0.206 0.413

B 0.209 0.421 0.209 0.420 0.214 0.429

C 0.196 0.403 0.199 0.405 0.202 0.409

D 0.199 0.408 0.203 0.411 0.209 0.423

F̂naive 0.124 0.260 0.130 0.272 0.142 0.294

Note: The first row yields the true values.
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phenotypic status. It is likely that the missing family members are not entirely missing at random. It is likely that
family members who experience symptoms are more inclined to consent to DNA testing than family members who
are asymptomatic, which may lead to an over-representation of affected family members and thus an
overestimation of the penetrance. To quantify a possible bias, we performed a simulation study for a scenario
of maximal bias. We assumed that 20% of the relatives (33 individuals) are not tested and are therefore missing in
the data set, and that all missing individuals are disease-free carriers (one could also assume that all missing
individuals are affected carriers, but as affected family members are less likely to be missing from the data set, this
possibility is not further evaluated here). From all unaffected carriers in the dataset, 33 are selected at random
(with replacement) and added to the data. Next, the maximum likelihood estimate for the penetrance F� is
computed as before. This procedure is repeated 250 times, leading to 250 estimates of F�. All 250 simulations
resulted in a penetrance function between the two dashed lines in Figure 3 (at the right). The continuous line
represents the maximum likelihood estimate based on our true cohort. As demonstrated, a lack of 20% of the
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Figure 2. Left: Maximum likelihood estimate for F� (black) and confidence interval (dashed). Right: Empirical distribution for G based

on the censoring times of the relatives. Straight line: distribution function for the uniform [20,80] distribution.
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pedigree data leads to an overestimation of the penetrance if all missing individuals are disease-free carriers of the
genetic alteration of interest. This bias increases with age but remains limited even at advanced age (approximately
0.1 at the age of 70).

4 Discussion

In this paper, we present a method for the estimation of the age-related penetrance of pathogenic gene variants in a
cohort of multiple families with missing family data. A conditional likelihood is proposed, corrected for the way
the data were ascertained. Since essential information is missing, full correction is not possible. Simulation studies
show that the proposed estimator is only slightly biased in the simulation settings considered. Moreover, it is able
to correct for the way the data are ascertained in a more accurate and robust way than conventional methods such
as the Kaplan–Meier estimator based on non-index carriers.

The proposed estimator was based on a maximum likelihood method. These estimators are known to be almost
always asymptotically unbiased and have a minimum variance.8 As in any statistical analysis, some assumptions
have been made: the first assumption is that the ages at onset of gene variant carriers are statistically independent.
Environmental or genetic factors other than the gene variant of interest may also affect the age at onset of the
disease and may be shared among family members. As it is unclear which individuals in the data-set belong to the
same family and which do not, it is impossible to address these possible modifiers of disease risk and to correct for
it.

For some diseases the age-at-onset distribution may depend on genetic characteristics, like the variant at the
disease-susceptibility gene or the number of repeat units (for instance for the disease FSHD). To account for these
genetic characteristics, the penetrance function F could be modeled by a (parametric) Cox-regression model that
includes these genetic characteristics as covariates.

The estimation of the penetrance of pathogenic gene variants is ideally based on a large number of affected
pedigrees, collected in a study with clear ascertainment rules, with a high uptake of DNA tests by family members
and detailed descriptions of the phenotype of all variant carriers. However, many factors such as the severity and
actionability of the disease, the availability of clinical or genetic information, familial relationships and dynamics,
and the way the data are ascertained, may cause relevant data to be missing even after considerable effort to
retrieve the information. This is especially true for rare and low-penetrant hereditary disease, as the awareness of
the segregation of the hereditary trait within the family, the clinical characteristics and the perceived disease risk
are generally lower in families with a limited number of affected family members, reducing the inclination to
undergo DNA testing and clinical surveillance. As a consequence, penetrance estimations for rare and low-
penetrant hereditary disease are usually based on cohorts comprising a limited number of affected patients and
their nuclear families. To quantify the possible bias induced by the missing data as just described, simulation
studies can be performed as was demonstrated in the section on the SDHB data.

With the growing insight into the genetic determinants of disease and the growing number of known carriers of
a hereditary predisposition to disease, the need for accurate estimation of the disease risk of pathogenic gene
variants will increase. Especially in rare and low-penetrant disease, current methods are prone to ascertaiment
bias. The method described in this manuscript is aimed at providing more robust penetrance estimates when
pedigree information is incomplete, a common situation in daily practice, and is shown to outperform the
commonly used Kaplan–Meier estimator.
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Appendix 1. Derivation of the likelihood in equation (1)

In the setting of independent observations T and C, the likelihood for a single person is given by

f ðTÞ�ð1� FðCÞÞ1��gðCÞ

like in the standard right censoring case (the indices are left out for simplification of the notation). If the age at
onset of the disease T is observed, then �¼ 1 and the likelihood is equal to f ðTÞ gðCÞ (age at time of censoring is
always observed). Similarly, if the age at onset is not observed, then �¼ 0 and the likelihood is given by
ð1� FðCÞÞ gðCÞ; the product of the conditional probability that T>C given C, and the density g at C.

Remind that nj is defined as the number of individuals in the data-set that are related to index j. Under the
assumption that the ages at onset of the disease and the ages at time of censoring between carriers (within a family)
are independent, the likelihood for the data of the individuals related to index j is given by the productYnj

i¼1

f ðTijÞ
�ijð1� FðCijÞÞ

1��ij gðCijÞ

where the double index (ij) refers to individual i among those related to index j.
If pedigrees are ascertained via affected individuals and their sibships (like the setting we are interested in this

paper), the likelihood must be adjusted for this to obtain unbiased estimates. Let Aj be the event that individuals in
pedigree j are ascertained. Then, the conditional likelihood for the individuals in pedigree j, given the pedigree was
ascertained equals

Lj ¼

Qnj
i¼1 f ðTijÞ

�ijð1� FðCijÞÞ
1��ij gðCijÞ

PðAj Þ

The denominator in the likelihood, PðAj Þ, corrects for the way the data were ascertained. This probability is a
function of the unknown distributions F and G. Often, people get DNA testing offered, once a relative (the index-
patient) expresses the disease phenotype and carries the genetic variant of interest. Those who turn out to carry the
variant will be followed and regularly screened for the disease. When aiming for estimating the penetrance of
the disease, the follow-up data (until that moment) of all known carriers (the index patients and their relatives with
the variant) are collected. So, disease data are collected of families with at least one affected individual (the index
and possibly relatives). Then the ascertainment event Aj is defined as the event that at least one individual is
affected with the disease and PðAj Þ equals the probability that this occurred and is equal to 1 minus the probability
that none of them was affected at the time of collecting the data: PðAj Þ ¼ 1� PðT1j 4C1j, . . . ,Tnjj 4CnjjÞ. This
probability can be rewritten as

PðAj Þ ¼ 1� PðT1j 4C1j, . . . ,Tnjj 4CnjjÞ

¼ 1� PðT1j 4C1jÞ
nj ¼ 1�

 Z
1� FðsÞdGðsÞ

!nj
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by independence and because PðTij 4CijÞ ¼
R
ð1� FÞdG. This yields the likelihood

Lj ¼

Qnj
i¼1 f ðTijÞ

�ijð1� FðCijÞÞ
1��ij gðCijÞ

1� ½
R
½1� FðsÞ� dGðsÞ�nj

for family j.
Then, the full likelihood for all pedigrees and all individuals in the data-set equals

Yr
j¼1

Lj ¼

Qr
j¼1

Qnj
i¼1 f ðTijÞ

�ijð1� FðCijÞÞ
1��ij gðCijÞQr

j¼1f1� ½
R
½1� FðsÞ�dGðsÞ�njg

The numerator can be rewritten so that no distinction in the notation is made between families. To simplify
notation all individuals in the data-set have a single unique index i, i ¼ 1, . . . , n. This yields the likelihood

L ¼

Qn
i¼1 f ðTiÞ

�ið1� FðCiÞÞ
1��i gðCiÞQr

j¼1f1� ½
R
½1� FðsÞ�dGðsÞ�njg

as given in equation (1). Note that for computing this likelihood it is not necessary to know the composition of the
families. This is essential because this information is not available from the data.

In the foregoing it was assumed that T and C are stochastically independent; the disease is not lethal. In the
following, the likelihood is derived in case the disease is lethal.

Define Zi as the age at time of death due to the disease for individual i, with distribution GZ and density gZ.
Moreover, define �i as the indicator function that equals 1 if Ci<Zi and 0 if Ci � Zi. Then, a likelihood can be derived
as described above. This likelihood is very similar to the likelihood in the previous display, with the only exception that
the term gðCiÞ in the numerator of the conditional likelihood should (only) be replaced if �¼ 1; it should be replaced
by gðCiÞð1� GZðCiÞÞ=ð1� GZðTiÞÞ if �i ¼ �i ¼ 1 and by ð1� GðZiÞÞ gZðZiÞ=ð1� GZðTiÞÞ if �i ¼ 1 and �i ¼ 0.
Although the likelihood has got a slightly different form, it will not change the estimate for the penetrance F found
by maximising the likelihood after inserting an estimate for G, since GZ is not present in the denominator and is present
in the numerator only as a multiplication factor (it does not have to be estimated to obtain an estimate for F).

Appendix 2. Construction of the confidence interval

When constructing a confidence interval, ignoring the fact that G is unknown and estimated may yield an interval
with a coverage lower than it should be. An alternative approach for constructing a confidence interval is described
in this appendix. Suppose the distribution function F� is a parametric distribution with unknown parameter � 2 �.
The distribution G, the nuisance parameter, is estimated by the empirical distribution function based on the
censoring times of m non-carriers, so that the estimator, denoted as ĜNC, is independent of the data used for
estimating �. After inserting the estimator ĜNC into the likelihood, an estimate for � is found by maximising this
partially estimated likelihood: �̂ ¼ argmax� logLð�; ĜNCÞ. In the paper9 the asymptotic distribution of the likelihood
ratio statistic for testing the parameter of interest � is derived under the null hypothesis that � equals a value, say �,
after the nuisance parameter in the model, G, is estimated with data from an external independent data-set of size m.
The theorem given in Jonker and van der Vaart9 states that for Y1,Y2, . . . ,Yr independent and identically
distributed, the corresponding likelihood ratio statistic

�r,m ¼ 2 log
max�2� LðY;F�, ĜNCÞ

LðY;F�, ĜNCÞ

is asymptotically distributed as
Pd

i¼1 ð1þ �diÞZ
2
i with � ¼ limr,m r=m and d1, . . . , dd the eigenvalues of the

covariance matrix i�1=2�0,G0
j�0,G0

i�1=2�0,G0
(with �0 and G0 the true parameter values) and Z2

1, . . . ,Z2
d independent

random variables with a chi-squared one distribution. The matrix i�0,G0
is defined as the Fisher information

matrix for � in the model where G¼G0 is known and j�0,G0
is the covariance matrix of the asymptotic

distribution of
ffiffiffiffi
m
p

P�0,ĜNC

_l�0,G0
.
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From the theorem it can be seen that if m is much bigger than r, � will be close to zero and the asymptotic
distribution of �r,m will be close to a chi-square distribution with the number of degrees of freedom equal to the
dimension of �. Then, the distribution of the test-statistic is hardly affected by the fact that the nuisance parameter is
unknown and estimated. However, this also holds if r/m is not close to zero, but the eigenvalues d1, . . . , dd are. It is
not only the sample sizes of the two samples that determines the deviation from the chi-squared distribution, but also
the estimation precision of the estimators (the asymptotic variances) is important. Since the proposed estimator for
G, the empirical distribution based on the m censoring times, converges at a high rate, it is expected that the
eigenvalues will be small (it is known that

ffiffiffiffi
m
p
jjĜNC � G0jj1, the Kolmogorov–Smirnov statistic, converges in

distribution (to the supremum of a Gaussian process), where jj:jj1 is the notation for the supremum norm6).
The likelihood ratio test-statistic can be used to derive a confidence interval for �: the confidence interval for �

equals all values � for which the null hypothesis H0 : � ¼ � is not rejected.8 After constructing an interval for �,
a pointwise interval for F�ðtÞ can be constructed.

In our application, the number of independent observations r equals the number of independent pedigrees (or
index patients). Since the pedigrees do not necessarily have the same size, the data are not identically distributed.
However, under the assumption of equal pedigree sizes the theory holds. The Fisher information matrix can be
estimated as � log €Lð�̂Þ, with €L the second derivative. Once a parametric family for F� has been chosen, this
derivative can be found by straightforward calculations. The calculations that lead to an estimator for j�0,G0

are
tedious and are given in Appendix 3. The theorem just described holds under some assumptions which are summed
up in Jonker and van der Vaart.9 These assumptions have been checked by straightforward calculations
(calculations not shown), and they are satisfied. In the application in this paper, the eigenvalues turned out to
be small (0.02305 and 0.003286), small enough to ignore and to set � equal to zero.

It is appealing to estimate G based on the censoring times of all individuals, relatives with or without mutations,
especially if m is equal to zero (i.e. no data of non-mutation carriers are available) or small compared to the
number of non-index mutation carriers. However, by doing this, the independence assumption (of two
independent data-sets) is violated and the asymptotic distribution of the likelihood ratio statistic may change.
Moreover, the empirical distribution for G based on these data is not asymptotically unbiased, but will show a
small bias, because of ascertainment. However, if data of non-mutation carriers are not available, this is a good
alternative way for finding a confidence interval.

Appendix 3. Computation of the matrix j�0,G

In this appendix, the asymptotic covariance matrix of
ffiffiffiffi
m
p

P�0,ĜNC

_l�0,G, the matrix j�0,G, is computed. Since
P�0,G

_l�0,G ¼ 0, it holds thatffiffiffiffi
m
p

P�0,ĜNC

_l�0,G ¼
ffiffiffiffi
m
p
ðP�0,ĜNC

� P�0,GÞ
_l�0,G

¼
ffiffiffiffi
m
p
ðP�0,ĜNC

� P�0,GÞ ð p� 1Þ �
_f�ðTÞ

f�ðTÞ
� ð1��Þ

_f�ðCÞ

1� F�ðCÞ

 !(

þ
_f�ðTiÞ

f�ðTiÞ
�

d

d�
log

Z
F�ðsÞdGðsÞ

 !)

We compute the terms one by one.

ffiffiffiffi
m
p
ðP�0,ĜNC

� P�0,GÞ�
_f�ðTÞ

f�ðTÞ
¼

ffiffiffiffi
m
p

Z Z
t5c

_f�ðtÞ

f�ðtÞ
f�ðtÞdtd ðĜNC � GÞ

¼
d

d�

ffiffiffiffi
m
p

Z Z
t5c

f�ðtÞdtd ðĜNC � GÞ ¼
d

d�

ffiffiffiffi
m
p

Z
F�ðcÞd ðĜNC � GÞ

¼
ffiffiffiffi
m
p

Z
_F�ðcÞd ðĜNC � GÞ ¼

ffiffiffiffi
m
p

Gm
_F�
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and

ffiffiffiffi
m
p
ðP�0,ĜNC

� P�0,GÞð1��Þ
_f�ðCÞ

1� F�ðCÞ
¼

ffiffiffiffi
m
p

Z Z
t4c

_f�ðcÞ

1� F�ðcÞ
f�ðtÞdtd ðĜNC � GÞ

¼
ffiffiffiffi
m
p

Z
c

_f�ðcÞ

1� F�ðcÞ
ð1� F�ðcÞÞd ðĜNC � GÞ

¼
ffiffiffiffi
m
p

Z
c

_f�ðcÞd ðĜNC � GÞ ¼
ffiffiffiffi
m
p

Gm
_f�

and

ffiffiffiffi
m
p
ðP�0,ĜNC

� P�0,GÞ
_f�ðTÞ

f�ðTÞ
¼

ffiffiffiffi
m
p

Z
c

Z
t

_f�ðtÞ

f�ðtÞ
f�ðtÞdtd ðĜNC � GÞ

¼
ffiffiffiffi
m
p

Z
c

Z
t

_f�ðtÞdtd ðĜNC � GÞ ¼ 0

and

ffiffiffiffi
m
p
ðP�0,ĜNC

� P�0,GÞ
d

d�
log

Z
F�ðsÞdGðsÞ ¼ 0

Taking the results together yields thatffiffiffiffi
m
p

P�0,ĜNC

_l�0,G ¼ ð p� 1Þ
ffiffiffiffi
m
p

Gmð _F� þ _f�Þ

is asymptotically normal with mean zero and a covariance matrix j�. If � ¼ ð�, �Þ is two-dimensional, j� is estimated
as the sample covariance matrix

ĵ
ð1,1Þ
� ¼ ð p� 1Þ2

1

m

Xm
i¼1

ð _̂F�ðCiÞ þ
_̂f�ðCiÞÞ

2
�

1

m

Xm
i¼1

_̂F�ðCiÞ þ
_̂f�ðCiÞ

 !2
8<
:

9=
;

ĵ
ð2,2Þ
� ¼ ð p� 1Þ2

1

m

Xm
i¼1

ð _̂F�ðCiÞ þ
_̂f�ðCiÞÞ

2
�

1

m

Xm
i¼1

_̂F�ðCiÞ þ
_̂f�ðCiÞ

 !2
8<
:

9=
;

ĵ
ð1,2Þ
� ¼ ð p� 1Þ2

1

m

Xm
i¼1

ð _̂F�ðCiÞ þ
_̂f�ðCiÞÞð _̂F�ðCiÞ þ

_̂f�ðCiÞÞ

(

�
1

m

Xm
i¼1

ð _̂F�ðCiÞ þ _̂F�ðCiÞÞ
1

m

Xm
i¼1

ð _̂F�ðCiÞ þ
_̂f�ðCiÞÞ

)

where _̂F� and _̂f� equal the derivative functions of F� and f� with respect to � and the unknown parameters are
replaced by its estimates. The calculations for � can be done analogues..

Appendix 4. Additional simulation studies

Additional to the simulations in Section 3.1, more simulations have been performed to study the performance of
the estimators (proposed in Section 2.2) in different settings. In this appendix, the results of these simulations are
described. The way of simulating the data is exactly the same as described in Section 3.1, but the distributions and
the values of the parameters vary (Study 1, 2, 3 described below).

. Study 1. Lower penetrance function
The penetrance function F� equals a Weibull distribution with shape and scale parameters equal to 1.0 and 300.
The values nj are drawn from numbers 5 to 8 all with probability equal to 0.25. The distribution for the ages at
the time of censoring G equals the uniform distribution at the interval [20,80] as before.

Jonker et al. 2935



. Study 2. Skew distribution for nj
In this simulation study, the penetrance function F� equals the Weibull distribution with shape and scale
parameters equal to 2.5 and 90. The distribution G is chosen as before. The values nj are simulated from
numbers 1 to 5 and 25, all with equal probability. Since pedigrees with size nj¼ 25 have a higher probability
to be ascertained (to have at least one individual with the disease: T � C), these pedigrees will be over
represented in the data set.

. Study 3. Gamma distribution
In the third simulation study, the penetrance function is taken equal to a gamma distribution with shape and
scale parameters equal to 5.0 and 25. The values nj are drawn from numbers 1 to 4 all with equal probability.
The distribution G is as before.

In all different studies, the penetrance function F� is estimated by the five estimators as described in Section 3.1.
For every simulation studies, data are simulated and parameters are estimated 150 times, yielding 150 estimates for
every estimator for F�. For every estimator, the median of the estimates for F�ð50Þ and F�ð70Þ are calculated.
The results are summarised in Table 2.

Table 2. Median of the estimates of F at the ages 50 and 70 by the estimates in the settings A, B, C and D and in the three different

studies, and the naive estimator F̂naive (the Kaplan–Meier estimator as described before).

Study 1 Study 2 Study 3

age 50 70 50 70 50 70

F 0.154 0.208 0.205 0.413 0.0527 0.152

A 0.154 0.208 0.206 0.413 0.0527 0.152

B 0.154 0.209 0.226 0.448 0.0527 0.153

C 0.153 0.207 0.204 0.413 0.0512 0.150

D 0.154 0.208 0.224 0.448 0.0515 0.150

F̂naive 0.0936 0.128 0.169 0.347 0.0281 0.0850

Note: The first row yields the true values.
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