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Tuberculosis (TB) accounts for disproportionate morbidity and mortality among persons
living with HIV (PLWH). Conventional methods of TB diagnosis, including smear
microscopy and Xpert MTB/RIF, have lower sensitivity in PLWH. Novel high-throughput
approaches, such as miRNAomics and metabolomics, may advance our ability to
recognize subclinical and difficult-to-diagnose TB, especially in very advanced HIV. We
conducted a case-control study leveraging REMEMBER, a multi-country, open-label
randomized controlled trial comparing 4-drug empiric standard TB treatment with
isoniazid preventive therapy in PLWH initiating antiretroviral therapy (ART) with CD4 cell
counts <50 cells/mL. Twenty-three cases of incident TB were site-matched with 32
controls to identify microRNAs (miRNAs), metabolites, and cytokines/chemokines,
associated with the development of newly diagnosed TB in PLWH. Differentially
expressed miRNA analysis revealed 11 altered miRNAs with a fold change higher than
1.4 or lower than -1.4 in cases relative to controls (p<0.05). Our analysis revealed no
differentially abundant metabolites between cases and controls. We found higher TNFa
and IP-10/CXCL10 in cases (p=0.011, p=0.0005), and higher MDC/CCL22 in controls
(p=0.0072). A decision-tree algorithm identified gamma-glutamylthreonine and hsa-miR-
215-5p as the optimal variables to classify incident TB cases (AUC 0.965; 95% CI 0.925-
org June 2021 | Volume 12 | Article 6769801

https://www.frontiersin.org/articles/10.3389/fimmu.2021.676980/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.676980/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.676980/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:skrish25@jhmi.edu
mailto:petros@jhmi.edu
https://doi.org/10.3389/fimmu.2021.676980
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.676980
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.676980&domain=pdf&date_stamp=2021-06-08


Krishnan et al. Multi-Omics Serum Markers of TB/HIV-Coinfection

Frontiers in Immunology | www.front
1.000). hsa-miR-215-5p, which targets genes in the TGF-b signaling pathway, was
downregulated in cases. Gamma-glutamylthreonine, a breakdown product of protein
catabolism, was less abundant in cases. To our knowledge, this is one of the first uses of a
multi-omics approach to identify incident TB in severely immunosuppressed PLWH.
Keywords: tuberculosis, HIV, microRNA, metabolomics, biomarker, multi-omics
INTRODUCTION

In resource-limited countries, human immunodeficiency virus
(HIV) and tuberculosis (TB) account for a large burden of
infectious disease and contribute significantly to morbidity and
mortality. In 2019, there were an estimated 690,000 deaths from
HIV/AIDS, with 33% of deaths attributed to HIV-associated TB
(1). HIV increases the risk of reactivation of latent TB 20-fold,
with escalating risk as CD4+ T cells decline (2). HIV and TB co-
infection subsequently becomes a lethal combination, with each
infection accelerating the progression of the other, as both lead to
deterioration of immunologic function.

There is an urgent need to identify persons living with HIV
(PLWH) at risk of developing TB, as these individuals could
benefit from enhanced monitoring and clinical assessment.
Conventional methods of TB diagnosis have limitations in
PLWH, as sputum smear microscopy is negative in 24-61%
cases of pulmonary TB and HIV co-infection (3). The rapid
molecular assay Xpert MTB/RIF offers enhanced diagnostic
capabilities but, for smear-negative cases, has an estimated
sensitivity of only 55% in PLWH, compared to 67% in HIV-
negative individuals (4, 5). Furthermore, the use of sputum-
based diagnostic assays does not adequately address
extrapulmonary TB, a more common disease in PLWH (6, 7).
Thus, novel rapid molecular assays using other readily available
biospecimens are urgently needed to improve the diagnosis of
both pulmonary and extrapulmonary TB in HIV-
infected individuals.

Increasingly, there has been a shift to using host-based assays
for TB diagnosis. Mycobacterium tuberculosis infection
profoundly alters host metabolism and whole-body energy
consumption, and metabolites have been profiled in plasma
and serum using 1H nuclear magnetic resonance (NMR)
spectroscopy and liquid chromatography with tandem mass
spectrometry (LC-MS/MS) (8–14). In addition to metabolites,
host microRNAs (miRNAs) have been studied as circulating
biomarkers for various diseases, including TB (15, 16). miRNAs
are stable, small, noncoding RNAs involved in the regulation of
gene expression, apoptosis, cell cycle control, and development
(17), and their dysregulation has been implicated in the
pathogenesis of numerous cancers and autoimmune diseases
(18–20), as well as TB and other infectious diseases (21–26).

Previous studies have focused on identifying circulating host
metabolite or miRNA profiles for TB diagnosis, however there
are limited data on the changes of these analytes in the serum of
patients with TB and HIV co-infection. Furthermore, HIV
infection alone leads to changes in host serum metabolites and
miRNAs (27–33), thus the profile of altered metabolites and
iersin.org 2
miRNAs in TB and HIV co-infection may differ compared to
either TB infection or HIV infection. In this study we used a
multi-omics approach to identify metabolites, miRNA, and
cytokines/chemokines associated with the development of
newly diagnosed TB in PLWH, leveraging clinical data and
biospecimens from the AIDS Clinical Trials Group Study 5274
“Reducing Early Mortality and Morbidity by Empiric TB
Treatment” (REMEMBER) (34). We hypothesize that TB
induces changes in the metabolism and inflammatory state of
the HIV-infected host which can be detected in the serum and
can be used for the diagnosis of pulmonary and extrapulmonary
TB. The novel use of a multi-omics approach in HIV/TB co-
infection could further identify contributory pathways in the
development of TB and could highlight future potential
therapeutic targets to aid in the prevention of TB morbidity
and mortality.
MATERIALS AND METHODS

Study Design
We conducted a case-control study from participants enrolled in
REMEMBER, an international, multi-site, open-label
randomized control trial comparing empiric 4-drug TB
therapy with isoniazid preventive therapy in PLWH (34). This
study assessed TB and mortality in adults with HIV and CD4+ T
cell counts <50 cells/µL within 48 weeks of initiating
antiretroviral therapy (ART).

Study Population
REMEMBER trial participants were recruited from 18 outpatient
research clinics in 10 countries (Malawi, South Africa, Haiti,
Kenya, Zambia, India, Brazil, Zimbabwe, Peru, and Uganda)
(34). A total of 850 participants were enrolled from October 31,
2011, to June 9, 2014. All participants were HIV-infected, ART-
naïve individuals, aged 13 years or older, with a CD4+ T cell
count <50 cells/µL, and had no evidence of active TB.
Participants were randomized to receive empiric 4-drug TB
therapy or isoniazid preventive therapy and were all initiated
on ART. At baseline, participants were screened for TB prior to
enrolling, with all 18 sites using symptoms screening,
microscopy for identification of acid-fast bacilli in sputum,
sputum culture, chest radiography, and only 5 sites using
Xpert MTB/RIF assay. Individuals were excluded if they had
confirmed or suspected TB, had received TB therapy within 96
weeks prior to study entry, had received isoniazid preventive
therapy 48 weeks prior to study entry, or had a household
contact diagnosed with multidrug-resistant TB. Other inclusion
June 2021 | Volume 12 | Article 676980
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criteria included liver transaminase (AST or ALT) levels ≤2.5
times the upper limit of normal, a creatinine clearance of at least
30 mL/min, and a Karnosky score of at least 30.

For our case-control study, we randomly selected 23 cases
who developed incident TB, defined as a TB diagnosis within 48
weeks of randomization. Cases were selected from 57 TB events
in the parent trial, based on sample availability. The specimen
used for biomarker analysis was selected from the scheduled
study visit closest to the time of TB diagnosis. Participants
originated from 5 clinical sites in South Africa, India, and
Peru. Incident TB cases were either microbiologically
confirmed or were adjudicated by an external clinical TB
endpoint review committee. For each case, up to two study-
time and site-matched controls were randomly selected by
incidence density sampling, with a total of 32 controls selected.
For controls, a stored biospecimen within +/- 4 weeks of the time
of the corresponding case TB diagnosis was used for biomarker
analysis. Cases and controls were followed for 96 weeks after
study entry.

Sample Collection
Six mL of whole blood was collected in plain vacutainer and was
transported to the processing lab at ambient temperature within
2 hours of collection. Blood was allowed to clot up to 30 minutes
and was spun at 1000-1200 x g for 10 minutes. Serum aliquots
were prepared and stored at -70°C. Each site shipped serum on
dry ice to the United States. Per participant, a total of one aliquot
of 1mL of serum was used to complete miRNA, metabolite, and
cytokine analyses.

miRNA Next Generation Sequencing (NGS)
RNA was isolated using the miRNeasy Serum/Plasma Advanced
K i t (Q IAGEN) acco rd ing to the manu f a c tu r e r ’ s
recommendation. In brief, library preparation was performed
using the QIAseq miRNA Library Kit (QIAGEN). A total of 5 ml
RNA was converted into miRNA NGS libraries. Adapters
containing unique molecular identifiers (UMIs) were ligated to
the RNA. Then RNA was converted to cDNA with amplification
of cDNA using PCR followed by sample purification. Library
preparation quality control (QC) was performed using either
Bioanalyzer 2100 (Agilent) or TapeStation 4200 (Agilent). The
libraries were pooled in equimolar ratios and were quantified
using qPCR. The library pool was then sequenced on a
NextSeq500 sequencing instrument according to the
manufacturer instructions. Raw data was de-multiplexed and
FASTQ files for each sample were generated using the bcl2fastq
software (Illumina, Inc.). FASTQ data were checked using the
FastQC tool. Cutadapt (1.11) was used to extract information of
adapter and UMI in raw reads, and output from Cutadapt was
used to remove adapter sequences and to collapse reads by UMI
with in-house script. Bowtie2 (2.2.2) was used for mapping
the reads.

miRNA Statistical Analysis
The count miRNA expression matrix was examined using the
DESeq2 package from R 4.0.2 to identify differentially expressed
miRNAs following the comparison of cases versus controls based
Frontiers in Immunology | www.frontiersin.org 3
on the metadata (35). We defined miRNA as differentially
expressed when statistical test values (False Discovery Rate
adjusted p-value) were lower than 0.05 and the fold change/
difference was higher than 1.4 or lower than -1.4. A total of 2555
miRNAs were used in the analysis. Candidate differentially
expressed miRNAs were visualized in a volcano plot with
EnhancedVolcano package from R (version 4.0.2). For the
enrichment analysis, the targets from the differentially
expressed miRNAs were retrieved from mirTarBase and
scanned by the REACTOME database using compareCluster
package from R (version 4.0.2) (36, 37). The expression values
from miRNA were normalized with variance stabilizing
transformation with varianceStabilizingTransformation
function, without prior information of samples, and were used
for downstream analysis with a decision-tree algorithm.

Quantitative Metabolomics Analysis
Sample preparation was performed at Metabolon, Inc. (Durham,
North Carolina) using the automated MicroLab STAR system
from Hamilton Company with quality-control analyses
performed as previously described (38, 39). Briefly, for quality
control purposes, numerous recovery standards were added prior
to the first step in the extraction process. Organic solvent was
removed by briefly placing samples on a TurboVap® (Zymark).
The sample extracts were stored overnight under nitrogen before
preparation for analysis by ultrahigh performance liquid
chromatography-tandem mass spectroscopy (UPLC-MS/MS).
All methods utilized a Waters ACQUITY UPLC and a Thermo
Scientific Q-Exactive high resolution/accurate mass spectrometer
(MS) interfaced with a heated electrospray ionization (HESI-II)
source and Orbitrap mass analyzer operated at 35,000 mass
resolution. Sample extract was dried and reconstituted in
solvents for optimization of analysis as previously described
(40). MS analysis used dynamic exclusion to alternate between
MS and data-dependent MSn scans, with scan range covering 70-
1000 m/z. Metabolon’s hardware and software were used to
extract, peak-identify, and QC-process raw data, as previously
described (40). Metabolon libraries of purified standards or
recurrent unknown entities were used to identify compounds.

Metabolite Statistical Analysis
Group comparison analysis was performed with the omu
package in R (version 4.0.2) using a nonparametric test (41).
The fold-change value for each compound was estimated with
the omu_summary function. A total of 621 metabolites were
evaluated. Differentially abundant metabolites were defined
when statistical test values (False Discovery Rate adjusted p-
value) were lower than 0.05 and the fold change was higher than
1 or lower than -1.

Quantification of Serum Cytokines and
Chemokines
Serum samples were thawed from storage at -80°C and were
filtered using a Millipore human cytokine/chemokine magnetic
bead method. Serum levels of epidermal growth factor (EGF),
fibroblast growth factor (FGF-2), eotaxin/CCL11, transforming
growth factor-a (TGF-a), granulocyte colony-stimulating factor
June 2021 | Volume 12 | Article 676980
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(GCSF), FMS-like tyrosine kinase 3 ligand (Flt-3L), granulocyte-
macrophage colony-stimulating factor (GM-CSF), fractalkine/
CX3CL1, interferon-a2 (IFN-a2), interferon-g (IFN-g), growth
related oncogene (GRO), IL-10, monocyte chemoattractant
protein-3 (MCP-3/CCL7), IL-12, macrophage-derived
chemokine (MDC/CCL22), IL-13, IL-15, sCD40L, IL-17/
CTLA8, IL1Ra, IL-1a, IL-9, IL-1b, IL-2, IL-3, IL-4, IL-5, IL-6,
IL-7, IL-8/CXCL8, IP-10/CXCL10, monocyte chemoattractant
protein-1 (MCP-1/CCL2), macrophage inflammatory protein 1-
a (MIP-1a/CCL3), macrophage inflammatory protein 1-a
(MIP-1a/CCL4), tumor necrosis factor-a (TNFa), tumor
necrosis factor-a (TNF-a/LTA), and vascular endothelial
growth factor (VEGF) were measured using Luminex assays
following vendor guidelines and a Luminex 100 apparatus
(Luminex, Oosterhout, Netherlands), according to the
manufacturer’s instructions.

Serum Marker Statistical Analysis
The Luminex data (concentrations in pg/ml) were compared
across the groups using the Wilcoxon-Mann-Whitney U test,
and the results were displayed in box plots.

Combining “Omics” Data for Biomarker
Identification
The variance stabilizing transformation miRNA expression
values, the log-transformed metabolite data, and the pg/ml
values from the serum markers were combined into one
dataset and were used to perform a decision-tree approach for
identification of a minimal variable set to best classify the groups.
The analysis input included 2555 miRNAs, 621 metabolites, and
37 cytokines/chemokines. The best tree was indicated by output
from the analysis using the Complexity Parameter, which
maximizes the tree classification accuracy. The machine-
learning-based decision-tree algorithm, with 1000 leave one
out cross-validations, was applied to identify the minimal
variable (miRNA/metabolite/serum cytokine or chemokine) set
Frontiers in Immunology | www.frontiersin.org 4
which exhibited the highest classification power to describe the
cases and controls with the rpart package (42). Principal
Component Analysis was performed in R 4.0.2, using the
function prcomp, in order to compare and visualize grouping
in the source data (miRNAomics, metabolomics and cytokines/
chemokines). The resulting variables were retrieved from the
dataset and the classification was assessed by receiver operating
characteristic (ROC) curve and the area under the curve (AUC)
values. Subgroup analysis based on microbiological confirmation
of TB status was not performed, as specified a priori, due to small
sample size.

Ethics Statement
Local ethics committees and the Institutional Review Boards at
Johns Hopkins University and participating site institutions
approved this study (IRB00123874). Written informed consent
was provided by all participants (NCT01380080).
RESULTS

Study Population
Among the 23 cases of incident TB, 12 were diagnosed with
pulmonary TB (PTB) and 11 were diagnosed with
extrapulmonary TB (EPTB). Fourteen cases (61%) were
microbiologically confirmed by smear, culture and/or Xpert
MTB/RIF assay and the remaining met criteria for diagnosis of
TB by an external clinical TB endpoint review committee. The
characteristics of cases and controls are shown in Table 1. The
median time to TB diagnosis in the cases was 4.6 weeks following
initiation of ART and TB therapy (either 4-drug empiric therapy
or isoniazid preventative therapy) (Supplemental Figure 1). The
median time from TB diagnosis to specimen collection
(occurring during a scheduled clinic visit) was 0.6 weeks.
Thirty-one of 32 controls were not suspected of having TB and
remained TB-free at up to 96 weeks of observation after study
TABLE 1 | Characteristics of cases and controls.

Study Characteristics TB Case (n=23) Control (n=32) p-value

Sex (n,%) Male 13 (56.5) 13 (40.6) 0.41
Female 10 (43.5) 19 (59.4) 0.41

Age (median, IQR) 34 (31-41) 35 (30.5-41) 0.70
Baseline CD4 (median, IQR) 32 (26-44) 24.5 (14-37) 0.53
Baseline HIV Log Viral Load (median, IQR) 5.69 (5.24-6.22) 5.41 (5.02-5.68) 0.007
WHO Stage 3 or 4 (n,%) 7 (30.87) 7 (21.87) 0.72
TB Therapy Arm (n,%) Empiric 4-drug 12 (52.17) 16 (50) 0.87

IPT 11 (47.83) 16 (50) 0.87
Time to TB Diagnosis in Weeks (median, IQR) 4.6 (2-16.1) —

Type of TB (n,%) PTB 12 (52.17) —

EPTB 11 (47.83) —

BMI < 18.5 kg/m2 (n,%) 6 (26.09) 5 (15.62) 0.67
Albumin (median, IQR) 3.55 (3.1-3.9) 3.8 (3.4-4.3) 0.015
Hemoglobin ≥ 8 mg/dL (n, %) 21 (91.30) 32 (100) 0.09
June 2021 | Volume 12 | Article
IQR, Interquartile range; WHO,World Health Organization; TB, Tuberculosis; IPT, Isoniazid preventative therapy; PTB, Pulmonary TB; EPTB, Extrapulmonary TB; BMI, Body Mass
Index (BMI).
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entry. One control had suspected TB meningitis at week 1 but
was ultimately diagnosed with cryptococcal meningitis based on
the presence of cryptococcal antigen in the cerebrospinal fluid.
Repeating analyses excluding this control did not alter
the results.

Profile of Differentially Expressed miRNAs
Our analysis of differentially expressed miRNAs in serum
resulted in 11 altered miRNA with a log-fold change higher
than 1.4 or lower than -1.4 in cases relative to controls (p<0.05,
Figure 1A). Ten miRNAs (hsa-miR-29b-3p, hsa-miR-30c-2-3p,
hsa-miR-197-5p, hsa-miR-340-3p, hsa-miR-452-5p, hsa-miR-
671-3p, hsa-miR-885-5p, hsa-miR-941, hsa-miR-3127-5p and
hsa-miR-3605-5p) were upregulated and one (hsa-miR-215-5p)
was downregulated (Figure 1A). We performed pathway
enrichment analysis of target genes to investigate potential
pathways predicted to be influenced by these differentially
expressed miRNAs. Twenty-five pathways were found as
probably influenced by the upregulated miRNAs and 4 as
probably influenced by the downregulated miRNA
(Figure 1B). Notable pathways targeted by upregulated
miRNAs include cell cycle regulation (“PI3K-Akt signaling
pathway” and “p53 signaling pathway”), endocrinological
pathways, and pathways related to numerous cancers. The
TGF-a signaling pathway was influenced by the downregulated
miRNA (hsa-miR-215-5p).

Comparison of Serum Metabolite Levels
Our analysis revealed no differentially abundant metabolites
between cases and controls. All differences in serum metabolite
abundance were not significant after the False Discovery Ratio
(FDR) correction (Supplemental Figure 2).
Frontiers in Immunology | www.frontiersin.org 5
Comparison of Serum Cytokines and
Chemokines
Of the 37 cytokines/chemokines measured in serum, we observed
3 with statistically significant differences between cases and
controls: TNFa, IP-10/CXCL10 and MDC/CCL22 (Figure 2).
TNFa was higher in cases (44.2 pg/ml) versus controls (30.25 pg/
ml) (p=0.0072) as was IP-10/CXCL10 (619.9 pg/ml in cases
versus 378.65 pg/ml in controls; p=0.0005). MDC/CCL22 was
higher in controls (978.7 pg/ml) compared to cases (686.2 pg/
ml) (p=0.011).

Combining Omics Data for Identifying a TB
Biomarker Panel in HIV Patients
A decision-tree algorithm identified gamma-glutamylthreonine
and hsa-miR-215-5p as the optimal variables to classify incident
TB cases (Figure 3A). Despite the absence of differentially
abundant metabolites in cases versus controls, the log2 gamma-
glutamylthreonine value was indicated as a classification variable
in the decision tree along with variance stabilizing transformation
values of hsa-miR-215-5p. Gamma-glutamylthreonine and hsa-
miR-215p were less abundant in cases. This metabolite/miRNA
pair was able to classify the samples with only 5 errors (Figure
3B). Of the 5 misclassifications, two were controls and three were
cases. Among the cases, one was cultured-confirmed EBTB, one
was non-microbiologically confirmed EPTB, and the last was
non-microbiologically confirmed PTB. The metabolite/miRNA
pair showed a strong ability to accurately discriminate TB cases
from controls with a sensitivity of 0.81 (95% CI 0.66-0.94), a
specificity of 0.78 (95% CI 0.61-0.96), and an AUC of 0.965 (95%
CI 0.925-1.000) (Figure 3C). Integration of cytokine markers did
not improve the AUC. Leave-one-out cross validation had an
accuracy of 0.907 (95% CI 0.82-0.98), a no-information rate of
A B

FIGURE 1 | Differentially expressed miRNA in cases versus controls. (A) Volcano plot from differentially expressed miRNA identified in cases versus controls based
on adjusted p-value and log fold-change of miRNA expression. Red indicates differentially expressed miRNA with both a log fold change (FC) higher than 1.4 or
lower than -1.4 and a false discovery ratio (FDR) of lower than 0.05. Green indicates miRNA with a log fold change higher than 1.4 or lower than -1.4, and blue
indicates miRNA with a false discovery ratio lower than 0.05. Grey indicates genes without a significant FC or FDR. (B) Enrichment analysis plots from differentially
expressed genes. The dot sizes represent the gene ratio in the pathway while the fill colors are the FDR values. Only statistically significant enriched pathways
are displayed.
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0.544, a sensitivity of 0.869, and a specificity of 0.967 with
Principal Component Analysis shown in Supplemental Figure 3.
DISCUSSION

In this study, we used three different modalities and integrated
omics analysis comparing HIV-infected adults with and
without incident TB to identify serum markers characteristic
of incident TB. Our case-control study was comprised of
Frontiers in Immunology | www.frontiersin.org 6
severely immunocompromised PLWH initiating ART from
geographically diverse regions. Our cases of incident TB
developed despite participants receiving either 4-drug empiric
TB therapy or isoniazid preventive therapy at the time of ART
initiation. We found that 11 miRNAs were differentially
expressed in incident TB cases, as were three serum cytokines
(TNFa, IP-10/CXCL10 and MDC/CCL22), with significant
differences between cases and controls. We found no
differentially abundant metabolites between cases and controls
at the time of TB diagnosis. Finally, a decision-tree algorithm
FIGURE 2 | Boxplot of pg/ml values from serum biomarkers. Red indicates cases and blue indicates controls.
A B C

FIGURE 3 | Decision-tree algorithm results applied in the combined multi-omics data. (A) Decision-tree from the case and control classification. (B) Dot plot from
variables selected by the decision-tree with dotted lines the decision thresholds. The boxplots parallel to X-axis show the hsa-miR-215-5p variance stabilizing
transformation (VST) values by group and the boxplots parallel to the Y-axis show the log2 gamma-glutamylthreonine values by group. Cases are denoted in red and
controls in blue. Circles indicate correctly classified cases and controls whereas triangles indicate misclassifications. (C) Receiver operating characteristic (ROC) curve
from the decision tree variables demonstrating the sensitivity, specificity, and area under the curve (AUC) of hsa-miR-215-5p and gamma-glutamylthreonine to
discriminate participants by TB status.
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approach using the multi-omics data revealed that two variables,
gamma-glutamylthreonine and hsa-miR-215-5p, had the ability
to accurately discriminate incident TB cases from controls with
an AUC of 0.965. To our knowledge, this is one of the first uses of
a multi-omics approach to identify incident TB in a severely
immunosuppressed cohort of PLWH.

Our data contribute to a growing body of literature assessing
the role of miRNAs in TB pathogenesis. Only one miRNA, hsa-
miR-215-5p, was downregulated in incident TB cases versus
controls. hsa-miR-215-5p, a widely studied miRNA found to be
dysregulated in numerous cancers, targets genes in the cell cycle
and signaling pathways, cell migration, cellular metabolism, and
the TGF-b signaling pathway (18). In a case-control study of
HIV-negative TB-infected participants, Wang et al. found that
miR-215 was significantly increased in patients with TB
following two months of treatment, relative to untreated TB
patients (25). Our enrichment analysis showed the TGF-a
signaling pathway as likely influenced by the downregulated
has-miR-215-5p, consistent with previous studies (43, 44). TGF-
a has been implicated in TB pathogenesis, through suppression
of IFN-g and with upregulated TGF-a1 inhibiting cytotoxic T-
cell function in granulomas, leading to promotion of
mycobacterial growth (45, 46).

Some of the pathways targeted by our identified upregulated
miRNAs have been linked to TB pathogenesis, including PI3K/
AKT/mTORC1 and p53. In a study of individuals with culture-
proven pulmonary tuberculosis, Mycobacterium tuberculosis
(Mtb) was found in vitro to inhibit signaling through the
PI3K/AKT/mTORC1 pathway, leading to increased MMP-1,
thus contributing to a tissue destructive phenotype facilitating
granuloma cavitation and TB transmission (47). In an in vivo
murine model of TB, as well as in human peripheral
mononuclear blood cells, pharmacologic inhibition of the
AKT/mTOR pathway also led to blunted cellular responses to
Mtb (48). Tumor suppressor p53, a regulator of DNA repair, cell
cycle arrest, and apoptosis, has also been found to have
antituberculosis activity. Mtb has been found to suppress
apoptosis in alveolar epithelial cells in vitro and this was
associated with increased replication of intracellular bacteria
(49). Furthermore, macrophages deficient in p53 have higher
intracellular survival of Mtb and lower rates of apoptosis
compared to wild type macrophages (50). The 10 upregulated
miRNAs in our study found to be more abundant in the serum of
cases relative to controls have not been associated with TB in
prior studies (23–26, 47). The latter studies, however, did not
assess the abundance of circulating miRNAs in a severely
immunocompromised PLWH cohort, which may account for
some of the differences in our findings.

We found that TNFa and IP-10/CXCL10 were elevated in
cases at the time of incident TB diagnosis, whereas MDC/CCL22
was elevated in controls. TNFa and IP-10/CXCL10 were recently
identified as two biomarkers among a 4-biomarker signature
predictive of incident versus prevalent TB in a less
immunosuppressed cohort of PLWH (51). IP-10/CXCL10, a
chemokine secreted in response to INFg, has been established
as a biomarker of latent and active TB (52–54). IP-10/CXCL10
has also been identified as predictive of incident TB in two
Frontiers in Immunology | www.frontiersin.org 7
additional studies of PLWH (55, 56). High baseline TNFa has
recently been found to be associated with incident TB in an HIV-
negative cohort (57).

The field of metabolomics has been applied to the study of TB
and HIV co-infection, with a recent study finding that precursors
of arachidonic acid and linoleic acid metabolism were altered in a
TB-IRIS group compared to a non-IRIS group (13). While we did
not find any differentially abundant metabolites in our study,
gamma-glutamylthreonine, a breakdown product of protein
catabolism (58), did have the ability to accurately discriminate
incident TB cases from controls when combined with hsa-miR-
215-5p (AUC 0.965). A multi-omics approach has been
increasingly employed to investigate novel mechanisms of
complex diseases, offering insight into genotype-phenotype
relationships (59–61).

Our study has several limitations. There is some degree of
heterogeneity between cases and controls, given the multi-site
nature of the REMEMBER trial and the two treatment arms of
empiric 4-drug anti-TB therapy versus isoniazid preventative
therapy (34). Furthermore, our highly immunosuppressed
cohort of PLWH (CD4+ T cell counts <50 cells/mL) had other
prevalent and incident co-infections in addition to TB, which
likely contributed to further heterogeneity in our results. This
could in part explain the lack of differences in serum metabolites
between our two groups. Since our study was conducted in
participants with advanced HIV, it is unclear if these findings
would apply to an earlier stage of HIV.

Another limitation of the study pertains to the selection of
controls. Given the case-control nature of the study design, one
control was suspected of having TB meningitis but was
ultimately diagnosed with antigen-confirmed cryptococcal
meningitis. The controls remained TB-free for up to 96 weeks
of observation from study entry. Although controls were
screened for TB at baseline by symptoms, chest radiography,
smear, and sputum culture, some controls received empiric
4-drug anti-TB therapy, which could have treated subclinical
TB. However, the effect of such a misclassification would likely
have minimized differences between the two groups.
Nonetheless, future studies evaluating and validating these
markers in participants who did not receive empiric TB
therapy would be beneficial. Furthermore, based on sample
availability, we had access to a relatively small sample size of
cases and controls, limiting our power. We were unable to
validate our findings due to limited existing databases
containing cytokines, metabolites, and miRNAs studied in a
similar cohort of highly immunocompromised PLWH who
develop incident TB. Based on the nature of our case-control
study design, we were able to evaluate markers at the time of
incidentTBdiagnosis butwere not able to extend this to apredictive
model, as we did not evaluate serum markers at baseline.

Our findings could provide the basis for future blood-based
studies of cytokines, metabolites, and miRNAs for validation and
development of a TB diagnostic signature, however further
validation is needed, particularly in geographically and
ethnically diverse HIV seropositive populations with varying
degrees of immune suppression. The WHO Target Product
Profile for TB biomarker diagnostic tests recommends
June 2021 | Volume 12 | Article 676980
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development and testing against a gold standard of confirmed
pulmonary TB, with a goal specificity of ≥98% and a sensitivity
of ≥65% (62). While our model had a sensitivity of 0.81 (95% CI:
0.65-0.93) at a specificity of 98%, it was developed in both
confirmed and adjudicated cases of PTB and EPTB. Future
directions would include testing this miRNA/metabolite pair in
a larger sample of PLWHwith culture-confirmed pulmonary TB.
In the future, integrated omics analysis could be used in
longitudinal cohorts to determine if this miRNA/metabolite
pair (or other profiles) is predictive of TB progression in a
severely immunocompromised HIV cohort, a group that is at
high risk of developing TB and experiencing subsequent
mortality due to TB.

In summary, our data indicate that two variables, gamma-
glutamylthreonine and hsa-miR-215-5p, had the ability to
accurately discriminate incident TB cases from controls in a
severely immunosuppressed PLWH cohort. These data provide
insight into dysregulated disease pathways in individuals with
advanced HIV who developed active TB disease, despite receipt
of TB prophylaxis at the initiation of ART.
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