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Abstract

Despite large individual differences in memory performance, people remember certain stimuli 

with overwhelming consistency. This phenomenon is referred to as the memorability of an 

individual item. It remains unknown, however, whether memorability also affects our ability to 

retrieve associations between items. Here, using a paired associates verbal memory task, we 

combine behavioural data, computational modelling, and direct recordings from the human brain 

to examine how memorability influences associative memory retrieval. We find that certain words 

are correctly retrieved across participants irrespective of the cues used to initiate memory retrieval. 

These words, which share greater semantic similarity with other words, are more readily available 

during retrieval and lead to more intrusions when retrieval fails. Successful retrieval of these 

memorable items, relative to less memorable ones, results in faster reinstatement of neural activity 

in the anterior temporal lobe. Collectively, our data reveal how the brain prioritizes certain 

information to facilitate memory retrieval.
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Although people’s past experiences and overall memory ability tend to vary1, human 

observers consistently remember some stimuli better than others2–4. For example, with just a 

single viewing, some face and scene images are found to be easily remembered while others 

are easily forgotten4–6. This attribute of each visual image has been referred to as its 

memorability, and the memorability of different images can account for as much as half of 

the overall variance in visual recognition performance across individuals4. Notably, the 

memorability of visual images cannot simply be explained by variations in lower-level 

stimulus features such as colour or spatial frequency5. Stimulus memorability also does not 

appear to depend upon an observer’s level of engagement with a memory task, such as their 

attention or level of processing7, or upon their familiarity with or subjective preference for a 

particular item4.

While it is not known why some items are more memorable than others, recent 

neuroimaging studies have demonstrated that activation patterns in the ventral processing 

stream can reliably differentiate memorable from forgettable images even in the absence of 

an explicit memory task5,8,9. Thus, it is possible that the memorability of visual stimuli may 

reflect an intrinsic stimulus property that bridges both perceptual processing and memory 

formation7. In this case, memorable images can be more efficiently perceived, encoded, and 

recognized5,8,9. This framework suggests that stimulus memorability may play a critical role 

in mnemonic representations and processes beyond other factors that have traditionally been 

found to affect memory performance, such as task context10,11 and an observer’s emotional 

state12,13.

Despite these recent findings, however, contemporary studies of memorability have largely 

been limited to investigating the role of memorability in the recognition of single items. This 

raises the question as to whether memorability is only a phenomenon that arises during 

perception. The extent to which stimulus memorability may affect recall, when the to-be-

remembered task content is not explicitly perceived, is less clear14. As opposed to 

recognition, recall critically relies on our ability to form and remember associations between 

items15. Once formed, these associations provide a powerful cue for recalling items from 

memory, even when no perceptual information regarding the to-be-retrieved content is 

provided16. It remains unclear whether stimulus memorability can also affect memory 

retrieval based on this recall process, given that memorability of associative task content has 

received surprisingly little attention in the literature.

Here, we use a paired associates verbal memory task to investigate the role of stimulus 

memorability in associative memory retrieval. Our goal is to investigate whether stimulus 

memorability can sufficiently influence memory retrieval, even when successful retrieval of 

an item occurs in the absence of its perceptual representation and instead is primarily driven 

by the association formed between the item and its retrieval cue. We use verbal stimuli in 

this study to take advantage of the highly associative nature of verbal content17 and to 

additionally ask whether memorability is also a stimulus property of words, and therefore 

semantic concepts, rather than strictly visual images. We examine data captured from 30 

participants with temporal lobe intracranial electrodes placed for seizure monitoring, and 

complement these data with online crowd-sourced findings from 2623 participants recruited 

through the experimental platform Amazon Mechanical Turk. In both cases, we find that 
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certain words are more successfully recalled across participants, and are therefore more 

memorable, even when paired with arbitrary retrieval cues.

We next construct a computational model to characterize the memorability of each word 

based on intrinsic semantic properties of the words themselves. In this model, we 

hypothesize that semantic relationships among words influence how a word is retrieved from 

memory16,18–20. Because some words tend to be semantically more interconnected with 

others, they may serve as prior locations in the semantic network to initiate a more efficient 

memory search during retrieval21. As a result, these words would emerge earlier during the 

memory search process, making them less susceptible to cumulative mnemonic interference, 

and hence more memorable. We test several core predictions that emerge from this 

hypothesis. First, computationally, observed memorability of a word should be predicted by 

a memory search model metric that captures how likely a word would be searched given any 

arbitrary retrieval cues. Second, behaviourally, memorable words should be more rapidly 

reported, as they tend to come to mind more easily. However, this would also imply that 

memorable words can lead to more intrusion errors when retrieval fails. Last, neurally, 

successful retrieval of memorable words should involve rapid reactivation of initially 

encoded memory content recorded by intracranial electrodes in semantically imbued brain 

regions, such as the anterior temporal lobe (ATL)22. Together, by testing these predicted 

effects of stimulus memorability on associative memory retrieval using modelling, 

behavioural, and electrophysiological data, this study adds theoretical and empirical insights 

into the research of human memory and the emerging literature on memorability7.

Results

Memorability of Words in Arbitrary Verbal Associations

Thirty participants (10 females; 32.73 ± 1.93 [mean ± s.e.m] years old; Supplementary Table 

1) with implanted intracranial electroencephalogram (iEEG) electrodes studied lists of six 

arbitrary pairs of words in a paired associates verbal memory task. For each participant, the 

word pairs in each list were constructed by randomly sampling words from a pool of 300 

common nouns23,24, and thus these word pairs were not identical across participants. 

Following each study list and a distraction period (~20 seconds), we presented one word 

from each pair as a retrieval cue in a random order and participants attempted to recall the 

paired word (i.e., retrieval target; Fig. 1A). Participants on average completed 216 ± 16 total 

trials and successfully retrieved the correct word on 30.22% ± 4.15% of trials, while 

vocalizing an incorrect word or intrusion on 17.01% ± 2.89% of trials (also see 

Supplementary Tables 2 to 4).

To evaluate whether certain target words were successfully recalled across participants, we 

examined the split-half reliability of memorability estimates of the words in the current 

study using a resampling procedure4. In brief, in each of 5000 iterations, we split the 

retrieval data across participants into random halves. In each half, we calculated the 

probability of successful memory recall for each target word across participants. This 

provides an estimate of memorability for each word when it is the retrieval target. We 

calculated the Spearman-Brown25,26 corrected rank-order correlations (ρ) of the 

memorability estimates across all words between the two random halves to quantify the 
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split-half consistency in each iteration. If words that were remembered by one half of the 

participants also tended to be remembered by the other half, the split-half consistency 

measure across iterations should be a positive value on average27. We, therefore, used a one-

tailed test to evaluate this prediction by comparing the mean of split-half correlation 

coefficients (Fisher’s Z transformed Spearman correlation) across 5000 iterations against 

surrogate correlation coefficients calculated by shuffling the word ranks in one of the halves 

(Fig. 1B). We found that this mean estimate of split-half correlation coefficients was 

significantly larger than surrogate correlation coefficients in the 30 iEEG participants (ρz = 

0.19, bootstrapped 95% confidence interval, CI: [0.01, 0.40], p = 0.035, one-tailed; Fig. 1B).

We further confirmed that the memorability of individual target words was conserved across 

participants by performing the same analysis using data captured from an online Amazon 

Mechanical Turk study. In this study, 2,623 participants (1556 female; 36.27 ± 0.30 years 

old) performed the paired associates verbal memory task with the same word pairs. They on 

average successfully retrieved the target words on 51.65% ± 0.68% trials. In this online 

sample, we also found that the memorability of the retrieval target words was also consistent 

across split halves of the participants, in that the mean of split-half correlations across 5000 

iterations was significantly larger than the correlations observed using surrogate word ranks 

(ρz = 0.23, bootstrapped 95% CI: [0.06, 0.44], p = 0.011, one-tailed; Fig. 1B). Critically, we 

performed a correlation analysis between the memorability of words in the two datasets and 

found that words that were more memorable as retrieval targets in the iEEG sample were 

also more memorable in the online sample (ρ = 0.20, 95% CI: [0.09, 0.31], p = 0.00047, 

two-tailed, n = 300 words). These data suggest that words, when used as retrieval targets and 

paired with arbitrary retrieval cues from the word pool, reliably vary in their levels of 

memorability. This observation is not limited by the clinical characteristics of a special 

group of participants (patients with epilepsy) in the iEEG sample.

Modelling Memorability of Words in Arbitrary Verbal Associations

To account for the observations above, we modelled the memorability of target words in the 

paired associates memory task. In our model, we assume that associative memory retrieval 

involves a search process, and this process follows a sampling rule based on how 

semantically similar a target word is to a cue word. This semantic similarity property 

between target and cue words is referred to as the matching strength between them in 

previous memory search models16,20. According to these models, the likelihood of searching 

a target word based on a retrieval cue is the ratio of the given cue-and-target matching 

strength relative to the sum of the matching strengths of the cue with all possible search 

targets (Equation 1; see Methods). Building upon this likelihood function, memorability of a 

target word can then be formally defined as the aggregated likelihood of retrieving a certain 

target word given any arbitrary retrieval cues (Equation 3). That is, a more memorable target 

word should have a stronger relative matching strength on average with any other words.

We simulated this model by calculating the semantic similarity between every two words as 

a proxy for their matching strength18,28. To do so, we represented each word as a feature 

vector defined by the Global Vectors (GloVe) for word representation29. Based on 

aggregated global word-word co-occurrence statistics in large text corpuses (e.g., Wikipedia, 
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newspapers, and books), the GloVe uses an unsupervised learning algorithm to estimate 

structures of a word’s vector space in the natural linguistic environment29. The cosine 

similarity between word vectors may then provide an effective method for measuring the 

semantic similarity (Equation 2), hence matching strength, of the corresponding words18. 

Accordingly, a more memorable target word that has a stronger relative matching strength on 

average with any other words should locate more centrally in a semantic space. Based on 

these measures, we modelled the predicted memorability of each target word using the cue 

words that were randomly chosen in the current study (Fig. 2A).

We found that the predicted memorability estimates from our model were significantly 

correlated with the observed memorability values of the 300 words in both the iEEG sample 

(ρ = 0.20, 95% CI: [0.09, 0.30], p = 0.00057, two-tailed) and the online sample (ρ = 0.21, 

95% CI: [0.10, 0.31], p = 0.00029, two-tailed, Fig. 2B). We next evaluated several 

alternative accounts to check whether the observed memorability of words could be better 

explained by other lower-level word features, such as concreteness ratings30 and word 

frequency (ranked in the Corpus of Contemporary American English)31. As shown in 

multiple regression analyses that included all predictors simultaneously in a model (see 

Table 1 and Supplementary Tables 5 and 6 for additional details), the predicted memorability 

estimates explained a significant amount of variance in the observed memorability scores in 

both the iEEG sample (β = 0.19, 95% CI: [0.06, 0.32], t(296) = 2.97, p = 0.003, two-tailed) 

and the online sample (β = 0.18, 95% CI: [0.05, 0.30], t(296) = 2.79, p = 0.006, two-tailed). 

However, we did not observe significant evidence that word frequency and concreteness 

could predict observed memorability of words (see Table 1 for details).

Memorability of Words in Arbitrary Verbal Associations Modulates Memory Retrieval

Given that relative matching strength appears to account for the observed memorability of 

the retrieved target words, we hypothesized that words with higher overall matching strength 

should be more readily available during the retrieval search process. We therefore tested core 

behavioural and neural predictions that directly emerged from this hypothesis.

Memorable Words Are Reported Faster—We first tested the prediction that, if 

memorable items are more readily available during memory search, then those items should 

be retrieved more quickly irrespective of recall accuracy. To test this prediction, we 

correlated participants’ trial-by-trial response times and observed memorability scores of the 

vocalized words in the iEEG sample. We limited this analysis to participants who had 

responded to more than 10 words to obtain a better estimate of the rank-order correlation 

(range of trial counts: 11 to 265 trials, on average 115 ± 13 trials per participants, see 

Supplementary Table 2). Using a resampling test at the subject level (random-effect), we 

found that target word memorability was significantly correlated with shorter response times 

across participants in the iEEG sample (Fisher’s Z transformed Spearman correlation: ρz = 
−0.06, bootstrapped 95% CI: [−0.09, −0.03], p = 0.0004, two-tailed, n = 27; Fig. 3A; also 

see Extended Data Fig. 1). Similar analyses limited to correct trials only (ρz = −0.03, 

bootstrapped 95% CI: [−0.09, 0.02], p = 0.23, two-tailed) or intrusion trials only (ρz = 0.12, 

bootstrapped 95% CI: [−0.01, 0.24], p = 0.06, two-tailed) did not yield statistically 

significant results. Nonetheless, these results suggest that the response time of associative 
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memory retrieval is modulated by the memorability of the vocalized items, and that both 

correctly and incorrectly vocalized items are critical aspects of the overall memory search 

process that reveal this association.

Memorable Words Can Lead to More Intrusion Errors—We next tested the potential 

cost of target word memorability on memory retrieval. If highly memorable verbal content is 

indeed more readily available during memory search, then memorable non-target words 

should more easily intrude into the mind when the retrieval of a target word fails. We tested 

this prediction by comparing the average observed memorability of intruded words in each 

participant to the median observed memorability of all words from the word pool. We again 

limited our analysis to only those iEEG participants who had more than 10 intrusions trials 

to obtain a reasonable estimate of memorability for the intruded items (range of trial counts: 

13 to 93 trials, on average 37 ± 4 trials per participants, see Supplementary Table 3). Using a 

resampling test at the subject level (random-effect), we found that the average memorability 

of the intruded words across participants (0.366, bootstrapped 95% CI: [0.357, 0.373], n= 

21) was significantly higher than the median memorability of the entire word pool (0.353; 

bootstrapped p = 0.0016, two-tailed; complementary one-sample t-test: t(20) = 3.25, p = 

0.0040, two-tailed, requivalent = 0.59 [0.21, 0.81], Fig. 3B). We further confirmed that higher 

memorability also led to greater intrusions in the online participants. To reduce the influence 

of the shorter online experiment (3 study and test lists, ~5 min in duration, see Methods) on 

a lower likelihood of intrusions, we counted the total number of intrusions for each word 

across participants, normalized by the number of times the word was presented in the entire 

study, and correlated this measure with observed memorability of each word. We found that 

the proportion of a word intruding on retrieval was significantly correlated with the 

memorability of the word in the online participants (ρ= 0.13, 95% CI: [0.02, .24], p = 0.026, 

two-tailed).

Memorable Targets Are Reinstated Earlier During Memory Retrieval—Finally, 

we were interested in examining whether the memorability of the target words was related to 

the iEEG data. Previous evidence has demonstrated that successful memory retrieval 

involves reinstating patterns of neural activity that were present during encoding32,33. If the 

memorability of the target word guides memory search, then target word memorability 

should be related to how quickly neural reinstatement arises during memory retrieval. To 

examine this prediction, we first used patterns of iEEG power distributed across five 

frequency bands in all electrodes in the anterior and posterior temporal lobe (ATL and PTL, 

respectively) to compute neural reinstatement between every encoding and retrieval time 

point in every trial (200 ms windows, 20 ms step; Figs. 4A,B; see Methods). Similar to 

previous reports32,33, we observed significantly greater neural reinstatement during correct 

compared with incorrect trials in both the ATL and PTL immediately before recall 

vocalization (Figs. 4C,E). Based on group-level comparisons (corrected for family-wise 

error rate using permutation tests at α = .05 level; see Methods), we identified an encoding 

time region of interest (tROI) that could reliably differentiate correct versus incorrect recall 

trials, separately for the ATL (420 ms to 2460 ms after cue onset) and for the PTL (220 ms 

to 3700 ms after cue onset). We then averaged the measures of neural reinstatement across 

these group-level encoding tROIs to generate a continuous time measure of neural 
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reinstatement across different retrieval time points for each participant (Figs. 4D,F). Post-

hoc comparisons confirmed that these neural reinstatement values averaged across encoding 

tROIs and the retrieval period from the probe onset to the median response time were 

significantly higher in the correct, relative to the incorrect, trials in both the ATL (t(18) = 

3.39, p = 0.0032, two-tailed, requivalent = 0.62 [0.23, 0.84]) and the PTL (t(17) = 4.23, p = 

0.00056, two-tailed, requivalent = 0.72 [0.38, 0.89]).

For correct trials, we then divided all target words into memorable and forgettable words 

based on a median split of memorability values across the entire word pool, and separately 

calculated their continuous time measures of neural reinstatement in the ATL and the PTL 

(Figs. 5A,C). We found that the overall temporal profile of neural reinstatement for 

memorable words, as compared with forgettable ones, emerged earlier during the retrieval 

period in the ATL (Fig. 5A). We computed the latency required to reach 50% of the area 

under each time series of neural reinstatement34, and found that in the ATL, memorable 

items had a 50% fractional area latency that was significantly shorter than that for 

forgettable items (bootstrapped means for 50% fractional area latency: 905 ms vs. 1050 ms, 

n = 19, bootstrapped 95% CI of latency difference: [−300 ms, −20 ms], p = 0.040, two-

tailed; Fig. 5B). Complementing this, we found that the time series of reinstatement also 

exhibited significant differences in the peak latency between memorable and forgettable 

items in the ATL (jack-knife peak latency35: 765 ms vs. 1264 ms, t(18) = 2.26, p = 0.036, 

two-tailed, requivalent = 0.47 [0.02, 0.76]). We, however, observed no evidence for a 

statistically significant difference in the temporal profiles of neural reinstatement in the PTL 

between memorable and forgettable target words (bootstrapped means for 50% fractional 

area latency, 887 ms vs. 897 ms, n = 18, bootstrapped 95% CI of latency difference: [−80 

ms, 60 ms], p = 0.63, two-tailed; jack-knife peak latency: 606 ms vs. 558 ms, t(17) = 0.81, p 
= 0.43, two-tailed, requivalent = 0.21 [−0.29, 0.61]; Figs. 5C,D). Critically, among participants 

who had both ATL and PTL electrodes (n = 18), the differences in latency measures between 

memorable and forgettable target words were significantly greater in the ATL than that in 

the PTL (bootstrapped 50% fractional area latency, p = 0.031, one-tailed; jack-knife peak 

latency, t(17) = 2.47, p = 0.012, one-tailed, requivalent = 0.51 [0.06, 0.79]).

These data suggest that trials with memorable target words demonstrate earlier reinstatement 

of neural activity. We therefore further investigated this relationship between target word 

memorability and neural reinstatement by examining trial-by-trial neural reinstatement 

profiles during an early (between 25% to 50% of response time on a trial) and a late 

(between 75% to 100% of response time on a trial) retrieval time window (Figs. 6A,B). If 

memorable items involve earlier reinstatement, then the difference in neural reinstatement 

between memorable and forgettable items should be more pronounced in the early retrieval 

time window. However, the later retrieval time window may be dominated by other factors, 

such as those related to searching for alternative items, deciding to stop memory search, or 

response preparation. All these factors may be unrelated to the memorability of target words. 

Indeed, across participants, we found that neural reinstatement in the ATL was significantly 

correlated with target word memorability in the early retrieval time window (ρz = 0.07, 

bootstrapped 95% CI: [0.02, 0.13], p= 0.0092, two-tailed, n = 19), but not in the late 

retrieval time window (ρz = −0.03, bootstrapped 95% CI: [−0.14, 0.07], p = 0.60, two-tailed, 

n = 19) across trials (range of trial counts: 14 to 242 trials, on average 76 ± 14 trials per 
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participants, see Supplementary Table 4). Across 18 participants who had PTL electrodes, 

we found no significant evidence for the correlation between target word memorability and 

neural reinstatement patterns in the PTL (see Fig. 6C and Extended Data Fig. 2), either in 

the early (ρz = 0.004, bootstrapped 95% CI: [−0.06, 0.07], p= 0.92, two-tailed) or late (ρz = 

−0.01, bootstrapped 95% CI: [−0.09, 0.06], p= 0.89, two-tailed) retrieval time windows. We 

captured these spatial (ATL vs. PTL) and temporal (early vs. late response time windows) 

distinctions in the relationship between target word memorability and neural reinstatement 

using a focal one-tailed contrast analysis36, which allows us to test only one set of outcomes 

to avoid omnibus arguments and multiple comparisons36,37. We found a significantly 

stronger correlation between target word memorability and neural reinstatement in the early 

retrieval time window in the ATL as compared with all other conditions (see Methods for 

details; n = 18, bootstrapped p = 0.0016, one-tailed; t contrast: t(17) = 2.88, p = 0.0050, one-

tailed, requivalent = 0.57 [0.14, 0.82], see Fig. 6C and Extended Data Fig. 2). These findings 

provide strong evidence that early neural reinstatement in the ATL is related to target word 

memorability as participants successfully retrieve associative verbal content.

Discussion

Using a paired associates verbal memory task across two different samples of participants, 

we find that certain words are more likely to be successfully retrieved, irrespective of the 

arbitrary cues used to initiate memory retrieval. Our computational model, which is 

grounded in semantic similarity among words, well characterizes the memorability of words 

and makes several core predictions supported by behavioural and neural data. That is, more 

memorable items are retrieved faster, can lead to more intrusion errors, and exhibit faster 

dynamics of neural reinstatement in brain regions that are closely involved in semantic 

cognition such as the ATL22. Taken together, these converging findings advance our 

understandings about stimulus memorability and provide insights into how the human brain 

prioritizes certain information to facilitate memory retrieval.

Memorability as a mnemonic phenomenon has been studied throughout the history of 

psychology3,38, but only recently has research leveraged findings from stimulus 

memorability to understand the relationship between memory and perception7. Our results 

advance this line of research in several ways. First, most studies of memorability have 

focused on visual recognition. Here, we show that associative memory recall, which is 

normally dominated by a search process based on a retrieval cue, can also be modulated by 

the memorability of the target item. Second, moving beyond visual recognition, the current 

paired associates verbal memory task offers a clear separation between perceptual input and 

retrieved memory content. Our data suggest that memorability of a target item is relevant for 

memory retrieval even in the absence of any perceptual information regarding the target. 

Finally, extending previous observations in visual memorability, our data suggest that, like 

images, words can also be characterized by their memorability. This memorability property 

of words is governed by their semantic structure, such that memorable words tend to be 

more centrally located within a semantic space. Collectively, our results add to the growing 

literature on memorability7, which may subsequently have broader implications for 

developing better materials used for educational39, commercial40, or clinical41 purposes.
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Similar to previous studies in the verbal domain, we approximated the extent to which a 

retrieval target matches a cue by using the semantic similarity between them18. Based on this 

approximation, our results provide direct evidence that high dimensional patterns of verbal 

features present in the natural linguistic environment29 can give rise to variations in 

memorability of words. Consequently, the memorability of a word is related to the semantic 

similarity between that word and all other words, as opposed to other lower-level verbal 

features of a single word such as concreteness or word frequency21,30,42,43. An important 

theoretical contribution of our work, then, is in providing a formal mathematical model that 

well characterizes the memorability of words that emerges from the natural linguistic 

environment. This model may further provide a stable base for reaching upward towards a 

broader understanding of memorability for other complex and highly associative natural 

stimuli, such as content-rich images and videos44.

An equally important contribution of our work is in providing insights into the process of 

memory search. Models of associative memory posit that retrieval of associative content 

occurs through a search process that is guided by the similarity between a target item and its 

retrieval cue, referred to as the matching strength between them16,18–20. We observed 

converging behavioural and neural evidence that stimulus memorability can influence this 

search process. Rather than using a random walk during the initial period to begin memory 

search as assumed by traditional models45, our findings suggest that memory search begins 

in regions of the search space where memorable items reside. In this manner, memorability 

may be an important phenomenon for supporting optimal foraging during memory 

retrieval18,46. This may be particularly relevant for recall when the to-be-retrieved content is 

not perceptually available, and for other higher cognitive functions that critically rely upon 

information sampling, such as fluid intelligence and memory-based decisions47.

Behaviourally, our mathematical model describing the memorability of words as their 

relative matching strength with any arbitrary retrieval cues provides two core predictions. 

First, if memory search indeed begins with memorable words, it should take a shorter time 

to recall memorable words as compared with forgettable ones48. Considering that both 

correctly recalled items and incorrect intrusions reflect the overall memory search process, 

this predicted relation between word memorability and response time may exist when 

correct and incorrect recall trials are combined. Our behavioural data support this prediction. 

Second, if memory search begins with memorable items, memorable items should also more 

easily intrude into the search process when retrieval fails. Our data showing that intruded 

items have a higher level of memorability support this prediction. These behavioural 

observations, therefore, suggest that memorable and forgettable words indeed differ in their 

retrieval profiles.

Neurally, using iEEG, our data further reveal the fine-scale neural dynamics underlying the 

retrieval search process of memorable words in the human brain. Successful memory 

retrieval entails reinstatement of neural patterns of activity that were present during 

encoding32,33,49. Our model provides a core prediction regarding this process of neural 

reinstatement. Namely, if memory search prioritizes memorable items, memorable target 

words should more rapidly trigger reinstatement of the original memory experience to 

support successful recall. The finding that successful retrieval memorable, relative to 
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forgettable, items show faster neural reinstatement support this prediction. Critically, we 

observed the relationship between target word memorability and the speed of neural 

reinstatement in correct trials only, thus separating stimulus-driven memorability properties 

from generic individual differences in overall memory ability5.

Furthermore, we also found that the observed relationship between neural reinstatement and 

target word memorability was primarily localized to the ATL but not to the PTL. This 

observation is consistent with the prediction from our model that memorability of 

associative verbal content is driven by the structural relationship among interconnected 

semantic representations. According to this prediction, temporal differences in neural 

reinstatement between the retrieval of memorable and forgettable words should be more 

pronounced in semantically imbued brain regions such as the ATL22. However, this does not 

necessarily imply that memorability effects for all associative task content are specific to the 

ATL. For example, our current observation may simply reflect the dominant role of the ATL 

in semantic cognition in general22. Meanwhile, the PTL may be more sensitive to the 

memorability of associative visual content, given the critical role of the ventral stream in 

visual processing5. Alternatively, the ATL may serve a generic role for linking associative 

task content independent of the modality of a stimulus50. In this case, while the PTL may be 

involved in semantic representation at a single item level51,52, the ATL may play a larger 

role in associative representations. Future research can articulate these issues to better 

understand how the human brain processes memorability of relational information from 

different sensory inputs.

Although our data demonstrate that stimulus memorability indeed can modulate associative 

memory retrieval, it should be noted that the focus of our analyses has been on the 

memorability of target words in arbitrary verbal associations. This is fundamentally different 

from the memorability of the arbitrary verbal associations themselves. While the former 

addresses the degree to which certain items can be more successfully remembered in 

associative memory, the latter is directly related to the degree to which pairs of items are 

more memorable. Future research utilizing a smaller, exhaustive set of associative pairs may 

be able to reveal further memorability phenomena in associative memory. It should also be 

noted that the current study has collapsed data across left and right ATLs in the analyses, 

given that two ATLs may act as a coupled bilateral system to support semantic memory53. 

However, this does not preclude the possibility of hemisphere preference in the 

representation of memorability for certain verbal content. Future research with a larger 

sample that has bilateral ATL coverage will be more suitable to address this issue.

In conclusion, our data combine converging evidence from laboratory, online crowd-

sourced, computational modelling, and iEEG methods to provide a mechanistic explanation 

of how stimulus memorability affects associative memory retrieval. We find that 

memorability of associative verbal content is grounded in the semantic similarity structure of 

words, and that memorable words can modulate the retrieval process in the ATL. By 

revealing how our internal experiences are profoundly shaped by intrinsic properties of 

stimuli from the external world, our results shed light on how rich relational information in 

everyday life can be efficiently remembered in the human brain.
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Methods

Participants

Thirty participants (10 females; 32.73 ± 1.93 [mean ± s.e.m.] years old; Wechsler 

Intelligence Quotient [IQ]: 87.65 ± 2.06, all > 70; see Supplementary Table 1) with drug 

resistant epilepsy underwent a surgical procedure at the Clinical Center of the National 

Institutes of Health (NIH, Bethesda, Maryland, USA). In this procedure, platinum recording 

contacts were implanted subdurally on the cortical surface and within the brain parenchyma 

to localize epileptogenic brain regions. In all cases, the clinical team determined the 

placement of the contacts to best localize epileptogenic regions. All participants completed 

the English version of a paired associates verbal memory task. Part of the data from this 

sample (less than 30% overlap samples) has been published in previous studies examining 

other memory related phenomena54. We used the behavioural data from all 30 participants 

for the group-level analysis of memorability estimates. Inclusion criteria for the analysis of 

neural data were more restrictive: 1) each participant should have a structural MRI 

(Magnetic Resonance Imaging) scan to allow proper electrode localization55, 2) each 

participant should have at least 3 electrode contacts in the brain regions of interest (anterior 

and posterior temporal lobes; ATL and PTL) after removal of noisy electrodes (see Pre-

processing steps below); 3) each participant should complete more than 10 correct trials33 of 

the paired associates memory task across experimental sessions to ensure reasonable signal 

stability for the neural reinstatement analysis (see Extended Data Fig. 3); and 4) each 

participant should have no prior resection of brain regions. In the end, data from 19 

participants met these criteria for ATL analyses, among which 18 participants met the 

criteria for PTL analyses (highlighted by an asterisk in Supplementary Table 1). The 

Institutional Review Board at the NIH approved the current study. All participants and/or 

their guardians provided informed consent prior to data collection. Except where otherwise 

noted, all computational analyses were performed using custom written MATLAB codes 

(MathWorks, Natick, MA).

For the online replication study, we recruited 3620 participants (2074 female; 35.68 ± 0.25 

years old) from the online crowd-sourcing experimental platform Amazon Mechanical Turk, 

following guidelines set by the NIH Office of Human Subjects Research Protections. Only 

participants who indicated English as their native language and who provided responses on 

at least three trials were included in the analyses, resulting in a final sample size of 2623 

(1556 female; 36.27 ± 0.30 years old) for further analysis. All participants were 

compensated for their time. Note, no statistical methods were used to pre-determine sample 

sizes. That said, our sample size for the iEEG study is larger than previous iEEG studies 

using the same behavioural task32,49,54 and our sample size for the online study is similar to 

previous online cloud-source studies on memorability4,14.

Paired Associates Verbal Memory Task

iEEG Participants—Each participant performed the paired associates verbal memory task 

using stimuli randomly chosen from a pool of 300 common nouns23,24. This task was 

divided into a set of lists, which included a study phase and a test phase each. During the 

study phase of a list, participants sequentially saw 6 word pairs and were instructed to 
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remember the arbitrary associations between them. On each trial of the encoding period, 

each word pair was preceded by a short fixation period (250–300 ms) with a cross on the 

screen, followed by a blank inter-stimulus interval (ISI) between 500–750 ms. Word pairs 

were presented stacked in the center of the screen for 4000 ms followed by a blank ISI of 

1000 ms. To interrupt participants’ active maintenance of the word pairs prior to the test 

phase, participants were probed to complete an arithmetic distractor task of the form ‘A + B 

+ C = ?’ for about 20 seconds after the study phase. In the subsequent test phase, 

participants were cued with one word from each pair selected in a random order. They were 

instructed to say aloud the associated word, with their responses recorded by a microphone. 

Each cue word was presented for 4000 ms followed by a blank ISI of 1000 ms, making a 

total of 5000 ms as the maximum recall time window. Participants could vocalize their 

response any time during the recall period after cue presentation. They were instructed to 

vocalize ‘PASS’ if they could not retrieve the target word. After the study, trained research 

assistants manually designated each recorded response as correct, intrusion, or pass. A 

response would be designated as ‘PASS’ when no vocalization was made or when the 

participant vocalized the word ‘PASS.’ We also recorded participants’ response times as the 

time lapsed before they made the first vocalization following the probe onset. A single 

experimental session contained 60 to 150 total word pairs, or trials (i.e., 10 to 25 lists), 

depending on how many trials a participant was able to complete in a single recording 

session (no more than 1 hour per session). We included at most two unique sessions from 

each participant to minimize potential practice effects or the influence of over-

familiarization of task content on memorability estimates as the number of tested sessions 

increased. Due to the large number of permuted combinations of word pairs, the likelihood 

that a cue-target pairing is exactly the same across at least two trials within a participant or 

the same across at least 2 participants is very small. In the scenario when there was within-

subject repetition, we averaged the participant’s performance in repeated trials for the target 

word. This only happened in less than 1% of all trials in the current study.

Online Participants—We conducted a replication of the verbal paired associates memory 

task online on the Amazon Mechanical Turk experimental platform with a large sample of 

participants in order to examine whether memorability estimates are consistent across 

different populations and experimental settings. Amazon Mechanical Turk has been shown 

to be a reliable method for collecting large-scale psychological data, usually with broader 

demographic reach and comparable effect size relative to in-lab samples56. The methods for 

the current experiment were nearly identical to the in-lab paired associates memory task 

described above. Participants studied a list of 6 word pairs, performed an arithmetic 

distractor task, and then underwent a test phase. Timing was identical to the experiment for 

the iEEG participants, although the arithmetic distractor task differed slightly in that it asked 

for the summation of sets of 2 numbers and lasted 16 seconds. For the test phase, 

participants saw a cue word and were given as much time as needed to type in the associated 

target word, to accommodate for individual differences in typing speed. For words they 

could not recall, participants were instructed to write ‘PASS’ in order to proceed to 

subsequent trials. Each participant was tested on 3 study-and-test lists each, resulting in an 

experiment time of approximately 5 min. Before beginning the actual study, they underwent 

training using example word pairs that were not used in the main experiment. All word pairs 
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were randomly sampled from the list of word pairs tested with the iEEG participants, so that 

there were 200 responses per target word, with approximately 10 different possible matching 

cue words.

Intracranial EEG Recordings and Pre-processing

We recorded iEEG signals from subdural electrodes (PMT Corporation, Chanhassen, MN) 

sampled at 1000 Hz using a Nihon Kohden or a Blackrock Microsystems (Salt Lake City, 

UT) EEG data acquisition system. These subdural contacts were arranged in both grid and 

strip configurations with an inter-contact spacing of 5 or 10 mm. The raw EEG traces were 

initially referenced to a common subcutaneous contact or to the system reference. 

Localization of electrode contacts was achieved by co-registering postoperative CT and 

preoperative MRI images using established methods55. We then projected the resulting 

contact locations to the cortical surface of a reconstruction of each individual participant’s 

brain and a normalized cortical surface in the MNI space for visualization.

We analyzed data from 880 subdural contacts (range from 10 to 116, on average 46 ± 6 per 

participant, see Supplementary Table 4) in brain regions (ATL and PTL) applicable to our 

study (Fig. 3B). We selected electrode contact for inclusion in analysis through a 

combination of cortical parcellation using FreeSurfer labels and using a customized 

procedure detailed in a previous study57. Specifically, we first identified temporal electrodes 

using subject-specific FreeSurfer labels generated for each electrode location. Next, we 

identified ATL electrodes based on the average surgical cut from participants who had 

received an anterior temporal lobectomy for clinical indications. Hence, the ATL was 

surgically defined as shown in a previous study57. The remaining temporal lobe contacts 

were then designated as PTL electrodes.

For each participant, iEEG data were pre-processed separately for each session in two steps. 

In the first step, we rejected electrodes exhibiting abnormal signal amplitude or large line 

noise58,59. Specifically, we divided each session into one-second epochs and for each 

electrode calculated the amplitude and variance of the continuous time series over each 

epoch. Any electrode with a voltage trace whose average amplitude or variance across 

epochs was more than 3 standard deviations away from the mean across all electrodes was 

flagged for rejection. We iteratively repeated this procedure until no electrode was rejected. 

We then applied a local detrending procedure to remove slow fluctuations from the time 

series of each electrode and used a regression-based approach to remove line noise at 60 Hz 

and 120 Hz. To approximate a reference free montage, we subtracted the common average 

reference, calculated using the retained electrodes in each participant within each session, 

from the voltage trace of each electrode.

In the second step, we rejected additional electrodes and trials that exhibited excessive signal 

kurtosis or variance during epochs of individual trials using a procedure we adapted from 

FieldTrip60. For each electrode channel and trial, we computed the variance of the voltage 

trace during two 8000 ms epochs (−2000 ms to 6000 ms), time-locked separately to the 

onset of study pair and the onset of retrieval cue of the same words, with 1000 ms buffer 

data each included at the beginning and at the end of an epoch. This resulted in a two-

dimensional matrix of variance measures, channels by trials for each epoch, from which we 
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identified the maximum variance for each trial and the maximum variance for each channel. 

We identified trial outliers by setting a threshold, Q3 + w × (Q3 −Q1), where Q1 and Q3 are 

the mean voltage boundaries of the first and third quartiles, respectively. We empirically 

determined the weight w to be 2.354. These two steps aimed to remove iEEG signals 

contaminated by epileptic activity, physical movement of the participant, or external sources 

of transient electrical perturbations.

We quantified spectral power and phase in each temporal epoch (encoding and retrieval 

windows) by convolving the pre-processed iEEG signals with complex valued Morlet 

wavelets (wavelet number 6)54. Specifically, we calculated spectral power using 30 

logarithmically spaced wavelets between 3 and 150 Hz. We then squared and log-

transformed the continuous-time wavelet transform to generate a continuous measure of 

instantaneous power. Next, we z-scored the power values separately for each frequency and 

for each session using the mean and standard deviation of all respective values between 

−700 ms and −500 ms prior to probe onset from that session61. Finally, we removed the 

1000 ms buffered data at the beginning and at the end of each epoch and extracted z-scored 

power traces for each frequency and each electrode during task-related periods for later 

analyses (see Data Analysis).

Modelling Memorability of Associative Concepts based on Word Similarity

We simulated memory retrieval for associative memory based on principles that are in line 

with the Search for Associative Memory model16 and the Adaptive Control of Thought-

Rational model20. These models posit that memory recall is achieved by searching 

associative memory content. Hence, the search process is contingent upon the extent to 

which the search target is similar to the search cue. This can be quantified as the similarity, 

or matching strength, between a cue and its target. In the current cued-recall paired 

associates verbal memory paradigm, each target item Ii (i = 1 to N) in the memory search 

space may be probed, with equal probability, by a set of independent cue items, Qj (j = 1 to 

M). Hence, the likelihood of retrieving Ii given a cue Qj is related to the matching strength 

between them, S(Ii, Qj). We defined the relative matching strength between Ii and Qj by 

comparing their matching strength with the sum of all matching strengths between the same 

cue, Qj and all possible target items in the memory search space16, namely all possible 

words in the current word pool, k ∈ 1 to N:

P Ii |Qj = S Qj, Ii
βj

∑k
N S Qj, Ik

βj (1)

where βj represents the saliency (or attention weight) of a given cue. We set β as 1 for all 

cues, similar to an early memory search model16. We calculated the matching strength for 

retrieving target Ii using cue Qj, S(Ii, Qj), as the cosine similarity of the feature vectors that 

represent the target and cue items:

S Ii, Qj = Ii * Qj
Ii ‖Qj‖

(2)
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where we defined a feature vector to represent each word in the word pool by using the 

GloVe for word representations, trained on Wikipedia 2014 and Gigaword 529.

As the selection of retrieval cues for each memory target is random within session and 

across participants, the probability of retrieving Ii across different retrieval cues can be 

deemed as independent from one another. Hence, an item’s simulated memorability can be 

approximated as the weighted sum of that item’s relative matching strength to all cues:

Mem Ii ≈ ∑j
M P Ii |Qj P Qj (3)

We calculated the simulated memorability of each word as a retrieval target using the actual 

cue words in the current study. Because word pairs were randomly assigned in each 

experimental session using the same word pool, each retrieval target word did not 

necessarily have the same cue across participants. Hence, for each retrieval target word, the 

number of actual cue words used to estimate memorability varies from 7 to 24 (average 18 

cue words for each target). We also calculated the hypothetical memorability of each word 

as a retrieval target in the chosen pool, probed by all other possible cue word (M = 299 

based on the current word pool). These two estimates are highly correlated (ρ = 0.68 [0.61, 

0.73], p < 0.0001, two-tailed), suggesting that the identities of randomly chosen cue words 

may not play a critical rule in the memorability estimates of target words. Hence, the overall 

matching strength structure among words can be approximated by using arbitrary cues from 

the word pool.

Data Analysis

Consistency Analysis for Observed Memorability of Associative Verbal 
Content Across Participants—We calculated the memorability of each target item as 

the probability of successful retrieval across participants for each word when it was used as a 

target item in the task. To evaluate the reliability of this measure, we conducted a split-half 

consistency analysis. First, we split data into random halves that included non-overlapping 

participants. We then separately calculated the memorability of each target word in each 

random half. Finally, we calculated the rank-order Spearman correlation of memorability 

across words between the two different halves, and applied a Spearman-Brown correction to 

obtain the split-half correlation coefficient25,26. We repeated this procedure 5000 times and 

used the mean correlation coefficient of these iterations as the representative split-half 

reliability measure. Before aggregating these bounded correlation coefficients across 

different iterations, we standardized the rank-order correlation coefficients using Fisher’s Z 

transform function36. In principle, this split-half reliability measure across iterations should 

be a positive value on average27. To generate a surrogate distribution for significance testing, 

for each iteration, we calculated an additional rank-order correlation coefficient after 

randomly shuffling the word memorability rank from one of the split-halves. We then 

compared the representative split-half reliability measure, namely the mean, against this 

surrogate distribution to obtain a one-tailed p value that reflects the probability of obtaining 

an average split-half correlation coefficient from the observed data that is greater than the 

null value if the null hypothesis is true (i.e., 0 correlation in the shuffled data).
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Metrics of Neural Reinstatement—We quantified the extent to which patterns of neural 

activity were reinstated between encoding and successful memory retrieval using methods 

established in previous studies32,33,49. Briefly, we binned the continuous time z-scored 

power in each frequency into 200-ms epochs spaced every 20 ms (90% overlap) and 

averaged the instantaneous power over each epoch. For each temporal epoch, we averaged 

the z-scored power across five frequency bands: theta (4–8 Hz), alpha (8–16 Hz), beta (16–

32 Hz), gamma (32–70 Hz), and high-frequency broad band (70–150 Hz). For every 

encoding (Ei) and retrieval (Rj) temporal epoch in each trial, we then constructed feature 

vectors using the average z-scored power values from the five frequency bands for every 

electrode within a chosen brain region:

Ei = z1, 1 i  … z1, K i  … zK,F i

Rj = z1, 1 j  … z1, F j  … zK,F j

Where zk,f(i) is the z-scored power of electrode k = 1 to K at frequency band f = 1 to F in 

temporal epoch i. Hence, each temporal epoch contained K × F features, which represent the 

distributed spectral power across all electrodes and across 5 frequency bands at a single 

moment in time. The reinstatement for a given study-and-test trial, Cn, for each encoding 

epoch I and retrieval epoch j can thus be quantified as the cosine similarity between Ei and 

Rj:

Cn i,j =
Ei   * Rj
Ei ‖Rj‖

Computing reinstatement for every combination of encoding and retrieval epoch generates a 

reinstatement map for each trial. We then computed the average reinstatement map in each 

participant separately for all correct and incorrect trials. We further compared these 

reinstatement maps across participants at each encoding and retrieval time point to identify 

temporal regions exhibiting a significant difference in neural reinstatement between correct 

and incorrect trials (see Statistical Analyses).

Neural Reinstatement Profile for Memorable versus Forgettable Retrieval 
Targets—To account for unbalanced counts of correct trials for memorable and forgettable 

target words, for each participant, we resampled the data with replacement over 5000 

iterations from each trial category (memorable and forgettable targets) based on the same 

trial count that came from the category with a lesser trial count. We then took the average 

neural reinstatement profile across these 5000 iterations as the representative neural 

reinstatement of a given participant for a certain trial type. To obtain group-level measures of 

fractional area latency, we resampled the participants’ data, with replacement, over 5000 

iterations. For each iteration, we calculated the percentage of area under the neural 

reinstatement waveform across different response time points based on participants’ average 

response time within that iteration. Because participants had different response times, we 

normalized the data as the percentage of average response time along the temporal 
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dimension before aggregating the data across participants. We then quantified the time it 

took for the average neural reinstatement profile to reach 50% of its area under the 

waveform from the cue onset until the average response time as the 50% fractional area 

latency. Complementary to this bootstrapping approach, to measure peak latency for neural 

reinstatement profile (Fig. 5), we used a leave-one-out jack-knife approach with proper 

statistical correction recommended by previous studies35,62.

Statistical Analyses—Data collection and analysis were not performed blind to the 

conditions of the experiments. For both behavioural and neural data, we primarily used non-

parametric resampling tests to obtain random-effect p values for effect size measures (e.g., 

correlation or mean difference) that were generalizable across participants. In brief, we 

resampled participants’ data with replacement, for 5000 iterations, to obtain a sampling 

distribution of the estimated effect size for a certain measure along with its 95% confidence 

interval (CI) and p values. This procedure minimized the assumptions imposed on statistical 

tests. In general, p values reported here are two-tailed. When appropriate, we used a one-

tailed p value to test directional significance (e.g., for split-half consistency analysis27, post-

hoc tests, and contrast analysis36), and complemented non-parametric test results with 

parametric test results (e.g., t-tests). In these parametric tests, data distribution was assumed 

to be normal, but this was not formally tested. Based on these parametric test results, we also 

reported a common scale effect size estimate, requivalent and its 95% CI36,63,64.

To identify temporal regions exhibiting a significant difference in reinstatement between 

correct and incorrect trials (Fig. 4), we used a combination of a permutation test and cluster-

wise correction procedure. Specifically, for each pair of epochs in the reinstatement analysis, 

we computed the t-statistic and p-value across participants between correct and incorrect 

trials54. We then randomly permuted the participant-specific averages (correct vs incorrect) 

5000 times to generate the empirical distribution for every epoch. We calculated t-statistics 

for each of the permuted epochs. To correct for multiple comparisons, we identified clusters 

containing epochs that were adjacent in time that exhibited a significant difference between 

trial types (in each epoch, p < 0.01). For each cluster of significant epochs identified in the 

true and permuted cases, we defined a cluster statistic as the sum of the t-statistics within 

that temporal cluster. We retained the maximum cluster statistic during each of the 5000 

permutations to create a distribution of maximum cluster statistics. We assigned p-values to 

each identified cluster of the true data by comparing its cluster statistic to the distribution of 

maximum cluster statistics from the permuted cases. Clusters were determined to be 

significant if the p value calculated at the cluster level was less than 0.05.

To evaluate specific spatial and temporal patterns of neural reinstatement profiles in relation 

to trial-by-trial memorability scores, we performed a focal contrast analysis36,37. In this 

analysis, we predicted that the correlation magnitude between memorability scores and 

neural reinstatement values in the early retrieval time window of the ATL should be higher 

than that in all the other conditions, namely the late retrieval time window of the ATL and 

both the early and late retrieval time windows of the PTL. We thus assigned the contrast 

weights, +3, −1, −1, and −1, respectively to these four conditions. This set of contrast 

weights should sum to be 0, reflecting a theoretical null result. However, if the data follow 

our prediction, then the weighted sum of observed data should on average yield a positive 
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value across participants, and therefore can be tested using a one-tailed test using either a 

non-parametric bootstrap analysis or a parametric one-sample t-test36,37. This focal contrast 

analysis would thus allow us to draw a stronger inference on the particular spatial-temporal 

neural reinstatement pattern predicted by our hypothesis.

Extended Data

Extended Data Fig. 1. Memorable words are retrieved more quickly but lead to more intrusion 
errors across individuals.
(A) Participants’ values for Spearman correlation (Fisher’s z transformed) of the relationship 

between target words memorability and the response times of retrieved words and (B) 

average memorability of intruded words across participants in the iEEG sample. Each dot 

indicates a value from a single participant, with the whiskers indicating the within-

participant standard error estimate across trials. The dot sizes are weighted by the overall 

within-participant standard error, with a larger size indicating smaller variability. The data 

are sorted by participant-specific estimates separately for (A) and (B). The random-effect 

mean estimates (in red) and their standard errors (in green) between participants are plotted 

at the bottom, which are identical to the bars shown in Fig. 3. Although there is a noisy 

estimate in (A) due to a low trial count (11 trials), inclusion or exclusion of this participant’s 

data does not substantially impact the mean estimate and significant testing across 

participants.
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Extended Data Fig. 2. Correlation estimates (Fisher’s z transformed) for the association between 
trial-by-trial memorability of correctly retrieved items and neural reinstatement in the ATL and 
PTL.
(A) Data across participants in the ALT during the early retrieval time window. (B) Data 

across participants in the ALT during the late retrieval time window. (C) Data across 

participants in the PLT during the early retrieval time window. (D) Data across participants 

in the PLT during the late retrieval time window. Each dot indicates a value from a single 

participant, with the whiskers indicating the within-participant standard error estimate across 

trials. The dot sizes are weighted by the overall within-participant standard error, with a 

larger size indicating smaller variability. All data are sorted by participant-specific 

correlation estimates based on (A). The random-effect mean estimates (in red) and their 

standard errors (in green) across participants are marked at the bottom of each plot, which 

are identical to the bars shown in Fig. 6C.
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Extended Data Fig. 3. Neural reinstatement effect stabilizes over around 10 trials.
(A) Resampling without replacement of the current dataset over 100 interactions with 2 

trials per condition (i.e., 2 for correct and 2 for incorrect retrieval) per subject, (B) 4 trials 

per condition per subject, (C) 10 trials per condition per subject (10 trials), (D) and all 

available trials for included subjects. Intuitively, the more trials were included, the less noisy 

the data were. When the number of resampling trials reached to 10, the amount of variance 

in the estimate of mean neural reinstatement pattern for correct responses was similar to the 

data from all available trials from all included participants. This resampling analysis 

provides some analytical support for the trial count criterion we have imposed on the 

analysis.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Memorability of words is consistent across participants.
(A) In the paired associates task, six pairs of words are sequentially presented on the screen. 

After a ~20s distraction period with simple addition math questions, one word from each 

pair is presented as a retrieval cue in a random order. Participants are instructed to vocalize 

(iEEG sample) or type (online sample) the associated word following the onset of the cue 

word. Each iEEG session consisted of up to 25 lists of this encoding-distractor-recall 

procedure, while the online experiment consisted of 3 lists. (B) Split-half analyses 

demonstrate that the memorability of each word is consistent in both the iEEG sample and 

online sample of participants. top The blue lines reflect word recall performance ranked for 

a random split half (Group 1), whereas the orange lines show recall performance of the 

remaining half (Group 2) ranked by data from Group 1 (both averaged across 5,000 

iterations). The grey line shows an estimation of chance, by shuffling the rank orders of 

Group 2 (surrogate data). bottom The mean of the split-half correlation coefficients across 

5000 iterations is significantly larger than the surrogate (null) distributions in both the iEEG 

sample (mean ρz = 0.19, bootstrapped 95% confidence interval, CI: [0.01, 0.40], p = 0.035, 

one-tailed) and in the online Sample (mean ρz = 0.23, bootstrapped 95% CI: [0.06, 0.44], p 
= 0.011, one-tailed). The red lines indicate the mean of the split-half correlation coefficients 

across 5000 iterations, whereas the black dashed lines indicate the mean of the surrogate 

data.
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Figure 2. Modelling memorability of target words in arbitrary verbal associations based on 
matching strength of words.
(A) The likelihood that a cue word, Qj (j = 1 to M), leads to the retrieval of a target word, Ii 

(I = 1 to N), is a function of the semantic similarity, or matching strength between Qj and Ii 

(see Methods). We modelled the semantic similarity between words using the vectorized 

word features based on GloVe values29. Memorability of the target word Ii, Mem(Ii), can 

thus be approximated by the aggregated likelihood of successful retrieval cued by any 

arbitrary words in the available semantic space. (B) The predicted memorability estimates 

based on our computational model correlates with the observed memorability in both the 

iEEG sample (left; ρ = 0.20, 95% CI: [0.09, 0.30], p = 0.00057, two-tailed) and in the online 

sample (right; ρ = 0.21, 95% CI: [0.10, 0.31], p = 0.00029, two-tailed). Solid lines represent 

linear fits of the data, and the dashed lines represent 95% confidence interval of the linear fit.
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Figure 3. Memorable words are retrieved more quickly but lead to more intrusion errors.
(A) Memorability of each responded word is significantly correlated with the response time 

required to vocalize the word across participants (ρz =−0.06, bootstrapped 95% CI: [−0.09, 
−0.03], p = 0.0004, two-tailed, n= 27). Each point represents the Spearman correlation 

(Fisher’s z transformed) observed in each iEEG participant. (B) The average memorability 

of intruded words across participants in the iEEG sample (0.366, bootstrapped 95% CI: 

[0.357, 0.373], n= 21) is significantly larger than the median memorability of the entire word 

pool (0.353; bootstrapped p = 0.0016, two-tailed; complementary one-sample t-test: t(20) = 

3.25, p = 0.0040, two-tailed, requivalent = 0.59 [0.21, 0.81]). Each dot indicates average 

memorability value from a single subject. In both panels, the bar and error bar represent 

bootstrapped mean and standard error across participants (random effect). Extended Data 

Fig. 1 summarizes the same data with within-participant variability shown in a forest plot.
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Figure 4. Neural reinstatement during memory retrieval.
(A) For every temporal window during encoding and retrieval, we construct a feature vector 

using the pattern of oscillatory power across electrodes. We calculate neural reinstatement as 

the cosine similarity between every brain state vector. (B) Electrode coverage in the ATL (n 
= 19) and PTL (n = 18) across participants who met inclusion criteria. (C) and (E) show 

reinstatement patterns for the ATL and PTL, respectively, for correct and incorrect recall 

trials time-locked to recall vocalization. Note the different colour scales used for plotting 

due to different reinstatement levels across brain regions. Significant differences in 

reinstatement between correct and incorrect trials in these regions were evaluated based on 

cluster-based permutation tests (see Methods). (D) and (F) show the average neural 

reinstatement during the temporal region of interest (tROI) in the encoding phase across 

different retrieval time points for the ATL and PTL, respectively. The response time 

averaged from participants’ median response times across trials is plotted as a dashed line. 

Post-hoc comparisons confirmed that the neural reinstatement values averaged across 

encoding tROIs and the retrieval period from the probe onset to the median response time 

were significantly higher in the correct, relative to the incorrect, trials in both the ATL (t(18) 

= 3.39, p = 0.0032, two-tailed, requivalent = 0.62 [0.23, 0.84]) and the PTL (t(17) = 4.23, p = 

0.00056, two-tailed, requivalent = 0.72 [0.38, 0.89]).
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Figure 5. Neural reinstatement is faster for memorable items in the anterior temporal lobe.
(A) Temporal profiles of ATL neural reinstatement during the temporal region of interest 

(tROI) in the encoding phase across different retrieval time points for correct memorable 

(red) and forgettable (blue) target words. The peak timepoints of the average reinstatement 

neural profiles are marked as a dashed vertical line in respective colours and the response 

time averaged from participants’ median response time across trials is plotted as a black 

dashed line. The solid lines at 0 indicate cue onset. (B) Fractional area measured as a 

function of response time (normalized by the average response time of participants) in the 

ATL with the 50% fractional area latency marked by the dashed horizontal grey line. (C) 

PTL neural reinstatement profiles for correct memorable (red) and forgettable (blue) target 

words, similar to (A). (D) Fractional area measured as a function of response time for neural 
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reinstatement profiles in the PTL, similar to (C). All error bars (areas) indicate bootstrapped 

standard errors across participants across 5000 iterations. Note, measures of fractional area 

latency and peak latency are complementary to each other. In general, memorable targets 

tend to be reinstated earlier during the retrieval time window in the ATL (bootstrapped 

means for 50% fractional area latency: 905 ms vs. 1050 ms, n = 19, bootstrapped 95% CI of 

latency difference: [−300 ms, −20 ms], p = 0.040, two-tailed; jack-knife peak latency35: 765 

ms vs. 1264 ms, t(18) = 2.26, p = 0.036, two-tailed, requivalent = 0.47 [0.02, 0.76]).
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Figure 6. Target word memorability correlates with neural reinstatement in the anterior 
temporal lobe during early memory retrieval.
(A) An example reinstatement temporal profile normalized by the trial- specific response 

time. Early and late time windows are respectively defined by the 25% to 50% and the 75% 

to 100% duration of the trial-specific response time. (B) Trial-level correlation between the 

neural instatement pattern and target word memorability from an example subject. Each dot 

represents trial level data, and the lines indicate linear fits of the data. (C) Across 

participants, the spatial and temporal profile of the correlation between the neural 

instatement pattern and target word memorability on average is captured by a contrast that 

predicts the strongest correlation in the ATL during the early time window as compared with 

other conditions (see Results and Methods for details). Each dot indicates the standardized 

correlation value from a single subject. Participants’ data along with within-participant 

variability of the correlation measures can be seen in Extended Data Fig. 2. **Bootstrapped 

p = 0.0016, one-tailed in a focal contrast analysis (complementary t contrast: t(17) = 2.88, p 
= 0.0050, one-tailed, requivalent = 0.57 [0.14, 0.82]) with a set of weights, +3, −1, −1, −1, for 

ATL-early, ATL-late, PTL-early, and PTL-late, respectively.
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Table 1.

Multiple Regression Analyses on Observed Memorability Scores

Observed memorability of 300 words

iEEG Sample (n = 30) Online Sample (n = 2,623)

β [95% CI] p, two-tailed β [95% CI] p, two-tailed

Predicted memorability .19 [.06, .32] .003 .18 [.05, .30] .006

Word frequency
a −.09 [−.21, .03] .16 −.03 [−.15, .10] .68

Concreteness
b −.004 [−.12, .11] .94 .09 [−.02, .21] .11

Notes.

a
Values ranked in the Corpus of Contemporary American English in ascending order. That is, a smaller value means higher word frequency31.

b
Values from a large-scale word rating study, with a larger value indicate more concrete meaning30. A higher value reflects more concrete 

meaning. 95% CI = 95% confidence interval.
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