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Identifying drug targets plays essential roles in designing new drugs and combating diseases. Unfortunately, our current knowledge
about drug targets is far from comprehensive. Screening drug targets in the lab is an expensive and time-consuming procedure. In
the past decade, the accumulation of various types of omics data makes it possible to develop computational approaches to predict
drug targets. In this paper, we make a survey on the recent progress being made on computational methodologies that have been
developed to predict drug targets based on different kinds of omics data and drug property data.

1. Introduction

In the past decades, the time and cost of developing new
drugs have soared significantly. In general, it takes about 15
years and up to 800 million dollars to convert a promising
new compound into a drug in the market [1]. In the pro-
cedure of drug discovery, the identification of drug targets
is the first and one of the most important steps. With the
therapeutic targets, the optimal compounds with expected
effects can be designed and new indications of old drugs
may be discovered. For example, mitoxantrone was originally
designed as a type II topoisomerase inhibitor. Recently, Wan
et al. [2] found that mitoxantrone can inhibit the PIM1-
mediated phosphorylation in cancer cells by binding to PIM1
kinase. Another example is ellipticine that was designed to
target Top2 protein, but recent in vitro experiments indicate
that ellipticine is able to decrease the proliferation rate in
cancers by selectively targeting Pol-1 [3]. The targets of drugs
also provide insights into the mechanism of actions (MOAs)
of these drugs. Therefore, large efforts have been made to
screen drug targets in lab. Accordingly, the information about
drug targets has been deposited in many public databases

(see Table 1), for example, STITCH [4] and DrugBank [5].
These valuable resources make it much easier to design new
drugs. However, the knowledge about drug targets is far
from comprehensive, which hampers the discovery of new
drugs. Considering the cost and time spent in searching for
drug targets, it is not feasible to screen all possible molecules
targeted by drugs in lab.

Under these circumstances, some computational
approaches have been proposed to identify or predict drug
targets in silico. In particular, the accumulation of various
types of omics data, such as gene expression and protein
structure, makes it possible to develop more efficient
computational methodologies to predict drug targets. For
example, with the assumption that the drugs with the same
MOAs will induce similar gene expressions, Iorio et al.
[6] proposed a new approach to identify drugs that may
target the same proteins. Assuming that drugs with similar
MOA bind to similar pockets on the protein surfaces, some
computational approaches have been developed to predict
drug-protein interactions by investigating the similarity
between binding profiles of candidate ligands and known
drugs [7, 8]. Supposing that proteins with similar functions
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Table 1: Popular drug target databases.

Drug target databases Websites
DrugBank http://www.drugbank.ca/
STITCH http://stitch.embl.de/
ChEMBL https://www.ebi.ac.uk/chembldb/
Superdrug http://bioinformatics.charite.de/superdrug2 /
DGIdb http://dgidb.genome.wustl.edu/
Binding DB http://www.bindingdb.org/bind/index.jsp
CLiBE http://xin.cz3.nus.edu.sg/group/clibe/clibe.asp
The TDR Targets database http://tdrtargets.org/
Comparative Toxicogenomics Database (CTD) http://ctdbase.org/
IUPHAR-DB http://www.iuphar-db.org/index.jsp
PROMISCUOUS http://bioinformatics.charite.de/promiscuous/
KEGG BRITE http://www.genome.jp/kegg/brite.html
Potential Drug Target Database (PDTD) http://www.dddc.ac.cn/pdtd/
Therapeutic Target Database (TTD) http://bidd.nus.edu.sg/group/ttd/ttd.asp

may be bound by same drugs while drugs with similar
chemical structures possibly target same proteins, Yamanishi
et al. [9, 10] proposed a novel model to predict drug-
protein interactions by integrating chemical structure and
genomic sequence information, and they later further took
into account the pharmacological information to improve
prediction accuracy.

In this review, we present the recent progresses on
computational methodologies that have been developed
to identify drug targets. In particular, we focus on those
methodologies based on gene expression data, molecular
networks, and pharmacological information due to the rich
resources of these types of data. As a well studied topic,
those computational approaches that have been developed to
predict drug targets based on protein structures are referred
to in a recent review paper by Tan et al. [8]. Furthermore,
we introduce popular public resources about drug target
information, which can significantly facilitate the discovery
of new drugs. Note that this survey aims to summarize the
recent progress on computational approaches for prediction
of drug targets; however, it is by nomeans comprehensive due
to the rapid evolvement of the field.

2. Predicting Drug Targets Based on Gene
Expression Profiles

A large part of known drugs target certain proteins to exert
their functions after they are administered. Therefore, the
gene expression profiles induced by drugs can provide
insights into the mechanisms of action of these drugs to
some extent, where the transcriptome data is able to mon-
itor the expression dynamics of tens of thousands of genes
simultaneously. Recently, the publicly accessible gene expres-
sion profiles, for example, Connectivity Map (CMap)
(http://www.broadinstitute.org/ccle/home),NCI-60 cell lines
(http://dtp.nci.nih.gov/), LINCS (http://lincs.hms.harvard
.edu/db/), and CCLE (http://www.broadinstitute.org/ccle/
home), make it possible to predict drug targets based on

the transcriptome data. As shown in Figure 1, some com-
putational approaches have been presented to define
expression signatures that are able to characterize the MOAs
of corresponding drugs, and these signatures can in turn be
utilized to predict targets of novel compounds, where it is
assumed that the drugs binding to the same proteins will
induce similar gene expression profiles.

In their pioneering work, Lamb et al. [11] established the
CMap (Connectivity Map) database that is composed of the
genome-wide gene expression profiles induced by more than
one thousand compounds across four cell lines. Furthermore,
they defined gene signatures from these expression data to
characterize the MOAs of those compounds and in turn
utilized these signatures to connect small molecules with
genes and diseases. The new indications of some drugs were
discovered based on the alignment of drug signatures with
the assumption that drugs with similar signatures may have
similar therapeutic effects [12]. Based on the gene expression
profiles from CMap, Iorio et al. [6, 13] constructed a drug-
drug network (DDN), where drugs with similar signatures
were connected. Furthermore, they extracted network com-
munities from the DDN, and drugs with similar MOAs were
found to be enriched in each community. Accordingly, the
drugs in the same community are more likely to target the
same proteins or pathways. They provided a computational
tool, called MANTRA (http://mantra.tigem.it/), to facilitate
the analysis of drug-induced gene expression profiles. Iskar
et al. [14] presented a new strategy to normalize the gene
expression profiles from CMap, which significantly removed
the batch effect inherited in the datasets. With the signature
defined similar to GSEA [15] for each drug, they successfully
identified drugs with similar mechanisms and found new
targets for some drugs. Analysis of characterized modules
constructedwith drug-induced coregulated genes reveals that
zaprinast, a drug that had been previously reported to be
clinically unsuccessful, is refereed interacting with new target
PARA𝛾 and has been experimentally validated successfully
[16].
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Figure 1: A schematic view of identifying drug-target interactions based on drug-induced gene expression profiles. (a) The drug-induced
gene expression profiles across cell lines. (b) Define a gene signature for each compound and calculate the MOA similarity between each pair
of drugs. (c) Predict targets for novel drugs with the assumption that drugs with similar MOAs are likely to target same proteins.

The NCI-60 cell line dataset [17] generated by the
Development Therapeutics Program of the National Cancer
Institute (NCI) is another commonly used valuable resource
that contains expression profiles of genes and miRNAs
induced by ∼400,000 compounds across 60 cell lines. With
the assumption that compounds with similar activity profiles
may target similar proteins, new possible drug-protein inter-
actions can be predicted by clustering analysis of compound
bioactivity profiles across cell lines. To facilitate discovery of
anticancer drugs based on theNCI-60 dataset, Reinhold et al.
[18] developed a web-based tool called CellMiner along with
the expression profiles of 22,217 genes and 360 microRNAs
across 60 cell lines perturbed by 18,549 compounds. They
identified Tdp1 as the new target of indenoisoquinoline that
was originally thought to target Top1 only [19]. Yan et al.
[20] identified thioredoxin reductase as a potential target
of indolequinone by screening drugs in pancreatic cancer
cell line and compared the compounds’ bioactivity profiles
against those from the NCI-60 cell line panel. Cheng et al.
[21] presented a computational approach, namely, BASS, to
calculate drug similarities based on their bioactivity profiles,
which can in turn be utilized to predict new target(s) for
known drugs or targets for novel compounds.

Beyond the above compound-centered large datasets, the
accumulation of huge amount of gene expression profiles
deposited in the Gene Expression Omnibus (GEO) also
significantly facilitates the identification of drug targets.
For example, utilizing the transcriptome profiles treated
with letrozolein, the ER+ breast tumors, Penrod and Moore
[22] proposed an influence network approach that can not
only identify promising targets but also suggest potential
target combinations. The publicly available huge amount
of transcriptome data is making it an attractive field to
predict drug targets and reposition known drugs based on

the gene expression profiles. In addition, the genome-wide
gene expression profiles provide new insights into the drug
MOAs from a systematic perspective.

3. Identifying Drug-Target Interactions from
Molecular Networks

Despite the usefulness of the transcriptome data, most drugs
exert their functions by affecting the activity of proteins,
whereas it is known that there is a gap between the transcrip-
tome and proteome [23]. The biological systems consist of
various molecular interactions, for example, protein-protein
interactions, and these interactions can be represented as
distinct molecular networks depending on the interaction
nature.The molecular networks can provide insights into the
context in which the drug target works and can therefore help
understand the drug mechanisms of action.

Among various types of molecular networks, the protein-
protein interaction network (PPIN) is well studied. Since
the PPIN provides the context in which the target protein
works, the PPIN is also utilized to predict drug targets
with the assumption that the proteins targeted by drugs of
similar MOAs tend to be functionally associated and be
close in the PPIN [24, 25]. As shown in Figure 2(a), if a
protein is close to the one targeted by a drug, this protein
is more likely to be targeted by the drug or a drug with
similar therapeutic effects. Based on this idea, Zhao and
Li [26] proposed a novel method named drugCIPHER to
predict drug-target interactions by integrating drug therapy
information, chemical structure information, and PPIN.
Later, drugCIPHER has been successfully applied to predict
targets of traditional Chinese medicine (TCM). For example,
AKT and SRC were identified as targets of vitexicarpin
[27], CCR2 was identified as the target of three compounds
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Figure 2: A schematic view of identifying drug-target interaction
from molecular networks. (a) Identify drug targets from PPIN
supposing that proteins in close proximity of the PPIN are more
likely targeted by the same drug(s). (b) Predict drug targets based
onmetabolic networks assuming that the targets are able to interrupt
the pathological procedure so that the disease status can be reversed
to normal status.

betulin, fucosterol, and amyrin [28], and IL1R1 was the target
of matrine, a bioactive compound of the herbal formula
Qing-Luo-Yin [29]. Considering that some nodes play more
important roles than others in a complex network, some
computational approaches have been proposed by taking into
account some network attributes, for example, degree and
centrality, to characterize the drug targets. The degree of a
protein in the PPIN is the number of interactions in which
this protein is involved, while centrality indexes quantify
the relative importance of a protein. For instance, Yao and
Rzhetsky [25] utilized the protein betweenness centrality in
a PPIN to predict drug-target interactions (DTIs) with the
assumption that good targets should be of low “betweenness
centrality” since the interruption of those highly connected
nodes in the PPIN may cause broad and often unintended
consequences. Hwang et al. [30] investigated DTIs from
the perspective of bridging centrality. Using degree and
centrality as features, Zhu et al. [31] trained a SVM classifier
to rank potential drug targets and achieved promising results.
Among their top 200 predictions, 94 proteins were validated
as drug targets in DrugBank [5] database while some novel
predictions can find supporting evidences in literature and
other public databases.

Considering that the structure and function of a protein
are generally determined by its component domains, we pro-
posed a novel computational approach to predict drug targets
supposing that drug-protein interactions are dominated by
drug-domain interactions even if the drug-domain interac-
tions are not necessarily physical binding interactions [32].

In our approach, the drug-domain interactions were first
inferred from known drug-protein interactions as below:

𝑃(𝑚
𝑖
𝑑ATC𝑗) =

𝑁 (𝑝 | 𝑚
𝑖
)

𝑁 (𝑝󸀠 | 𝑚
𝑖
)
, (1)

where ATC code is the abbreviation of “Anatomical Thera-
peutic Chemical,” a classification system used for the classi-
fication of drugs, ATC

(𝑗)
means ATC code 𝑗, 𝑃(𝑚

𝑖
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𝑖
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𝑗
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𝑗
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𝑚
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𝑖
) is the number of all humanproteins

that contain domain 𝑚
𝑖
. After obtaining the probability

of drug-domain interactions, we can determine whether a
pair of drugs and domain interact by setting a threshold,
where those drug-domain pairs with probabilities above the
threshold were treated as drug-domain pair interactions.
Accordingly, we can predict drug-protein interactions based
on the drug-domain interactions as follows:

𝑃(𝑝
𝑖
𝑑ATC𝑗) = 1 −∏(1 − 𝑃 (𝑚𝑘 𝑑ATC𝑗)) , (2)
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𝑖
𝑑ATC𝑗) is the probability of protein 𝑝𝑖 interacting

with drugs belonging to ATC
(𝑗)
, 𝑃(𝑚

𝑘
𝑑ATC𝑗) is the prob-

ability that domain 𝑚
𝑘
interacts with drugs from ATC

(𝑗)
,

and 𝑝
𝑖
is a protein that contains domain 𝑚

𝑘
. The results on

benchmark dataset show that our proposed approach can
improve prediction accuracy compared with other popular
methods. Later, with the drug-domain interaction network,
Moya-Garćıa and Ranea [33] found that drugs are organized
around a privileged set of druggable domains, which can help
explain drug polypharmacology.

Except for PPIN, the metabolic networks are also widely
used to predict drug targets. In the metabolic network based
approach, it is assumed that the disruption of pathogenic
pathways or inhibition of certain molecules can help reverse
the disease state to normal state. With flux balance analysis
(FBA) of metabolic networks, Li et al. [34, 35] developed a
new approach to identify potential therapeutic drug targets
by comparing the fluxes of reactions and metabolites in
pathologic and medication states based on linear program-
ming. By simulating the flux distribution in the metabolic
network, Folger et al. [36] successfully identified some targets
of anticancer drugs. With a detailed disease network, Yang
et al. [37] proposed a computational framework to identify
optimal multiple target intervention (MTOI) solution by
simulating the dynamics of the system with mass action
modeling along with simulated annealing.The optimal target
combinations detected by this promising method not only
overcome the compensatory mechanisms in diseases but also
avoid unwanted side effects caused by possible off-targets.
By integrating the gene expression profiles across cell lines
and human metabolic networks, Li et al. [38] identified
new enzyme targets with kernel 𝑘-nearest neighbor (kNN)
classifiers by comparing the reaction flux of novel compound-
reaction against that of known drug-reaction. Furthermore,
utilizing the genome-scale metabolic models (GSMMs),
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Figure 3: A schematic view of identifying drug-target interactions
based on drug effect profiles. (a) Identify drug-target interaction
based on therapy information by assuming that drugs with similar
therapy may target same protein(s). (b) Predict drug targets based
on side effects supposing that drugs with similar side effect have
common target(s).

Yizhak et al. [39] proposed a metabolic transformation
algorithm (MTA) to search for targets that could restore the
metabolism within the cell from the source (disease) state to
the target (healthy) state.

Since the molecular networks are able to provide the
circuit context in which the drug target protein works,
they provide a straightforward way to understand how the
drugs affect or regulate the biological systems. Unfortunately,
our current knowledge about the molecular interactomes
at different levels is far from complete. Even though large-
scale interactomes have been detected or predicted, they are
just static snapshots of the biological systems, whereas the
real biological systems are spatially and temporally dynamic.
Furthermore, little is known about the detailed interaction
kinetics. All these limit the application of the molecular
networks in the identification of drug targets.

4. Identifying Drug Targets with Drug Effects

Except for the omics data from molecular space, a straight-
forward way to understand the drug MOAs is to explore
the drug effects in the pharmacological space, which can in
turn help predict the drug targets. Similar to the approaches
based on gene expression profiles, the drug effect based
approaches assume that the drugs with similar therapeutic
effect may target the same protein(s) (see Figure 3). For
example, Yamanishi et al. [10] found that the drug therapy
information can better characterize drug targets compared

against the commonly used chemical structure information.
With the drug pharmacological information predicted with
chemical structures, they significantly improved the predic-
tion accuracywith a supervised bipartite graphmodel. Cheng
et al. [40] integrated the chemical structure information with
pharmacological information, to predict DTIs, and obtained
promising results, where the drug therapeutic similarity they
used was defined by Xu et al. [41] as shown below:
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∑
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where ATC
𝑘
(𝑑) denotes all the ATC codes at the 𝑘th level of

drug 𝑑. Note that a drug has five levels of ATC codes.
In contrast to the therapy information, little attention

has been paid to the adverse effects caused by drugs when
predicting the drug targets. It is known that the unexpected
drug side effects may be caused because of the off-targets
[42, 43] and these off-targets may help to predict therapeutic
targets. Recently, Campillos et al. [44] proposed a novel
approach to predict the drug targets based on the drug
side effects, where they assumed that the drugs with similar
side effects will share common target proteins. To calculate
the drug similarity based on their side effect profiles, they
first extracted drug associated adverse effects from FDA
adverse event reporting system and formalized them with
theUnifiedMedical Language System (UMLS) ontology [45].
The drug side effect information has been deposited in the
resource of SIDER [46]. With the drug adverse reaction
information, they discovered unexpected connections among
drugs with different chemical structures and therapeutic
indications. By integrating the chemical structures and side
effects, they significantly improved the prediction accuracy
and identified some novel predictions which otherwise will
not be foundwith only chemical structures. In addition, some
of their predictions were experimentally validated, implying
the predictive power of the side effects. With novel targets
identified for old drugs, new potential indications can be
found for these known drugs. For instance, the authors found
that the nervous system drugs pergolide, paroxetine, and
fluoxetine share the same targets with the drug rabeprazole
that is an approved drug for relieving duodenal ulcer symp-
toms and treating ulcerative gastroesophageal reflux disease,
indicating that these drugs may be repositioned for treating
new diseases. Due to the scarceness of drugs’ side effect
information, Takarabe et al. [47] proposed a new approach, to
predict novel drug-target interactions by integrating pharma-
cological information from AERS (adverse event reporting
system) and genomic information for proteins, and found
some novel targets.

The pharmacological information associated with drugs
provides an alternative way to predict drug targets and has
been proved to be complementary with the commonly used
molecular information, for example, genome sequence or
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Figure 4: Functional distribution of human proteins (a), drug targets (b), neighbor proteins of drug targets (c) in the PPIN, and drug
therapeutic targets (d).

transcriptome data. Unfortunately, the scarceness of drug
package and adverse reaction information limits the appli-
cation of above-mentioned approaches to those well studied
drugs. In addition, the drug effects are determined by the
molecular context of their target proteins and those drugs
with similar effects may not share any target proteins in fact.
For example, Brouwers et al. [48] found that the drug side
effects are determined by the neighborhood of their targets in
a PPIN, where the same neighborhood does not necessarily
mean same target proteins.

5. Discussion and Conclusion

The identification of drug targets plays essential roles in
understanding the drugMOAs and designing new drugs with
expected therapy. In this review, we summarized the recent

progress on computational methodologies that have been
developed to identify drug-target interactions. We summa-
rized some recent popular tools or algorithms for drug target
prediction in Table 2. Furthermore, we categorized these
approaches according to the high-throughput data on which
they work. In particular, we focused on those approaches that
explore transcriptome, molecular network, and drug effect
data due to their public availability. The transcriptome data
provides a snapshot of the whole-genome dynamics and can
help understand the mechanisms of action of drugs. The
transcriptome-driven computational approaches assume that
the drugs with similar gene expression signature will target
the same protein. However, it is not easy to define a robust
gene signature due to the noise and batch effects inherited
in the gene expression data. The molecular network provides
the circuit context in which the drug targets work, which
makes the network approaches promising. Unfortunately, the
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Table 2: Popular software/algorithms for identifying drug target.

Reference Data used
Iskar et al. [14] Transcriptome profiles
Reinhold et al. [18] Transcriptome profiles
Cheng et al. [21] Transcriptome profiles
Carrella et al. [49] Transcriptome profiles
Xu et al. [50] Transcriptome profiles
Zhao and Li [26] Molecular networks
Li et al. [35] Molecular networks
Gönen [51] Molecular networks
Wang et al. [52] Molecular networks
Yizhak et al. [39] Molecular networks
Yang et al. [53] Molecular networks
Takarabe et al. [47] Drug effects
Campillos et al. [44] Drug effects
Mizutani et al. [54] Drug effects
Iwata et al. [55] Drug effects

incompleteness of the network knowledge and the network
dynamics induced by drugs limit the application of these
methods. Compared with the molecular data, the drug
therapy and side effect information are more difficult to get.
Therefore, the integration of distinct types and complemen-
tary data will be a promising direction in the future.

Except for the above-mentioned data, the functions of the
proteins targeted by drugs should also be taken into account.
Figure 4 shows the functional distribution of humanproteins,
drug targets, neighborhood proteins of drug targets in PPIN,
and drug therapeutic targets.Thedrug target informationwas
extracted from DrugBank [5] database, the neighborhood
proteins are those direct neighbors of drug targets in the
PPIN that was extracted from Entrez Gene Database [56],
and the therapeutic targets were retrieved from [57]. All the
proteins were grouped according to the molecular function
annotations from Gene Ontology [58]. We can clearly see
that the drug targets have different functions compared with
the human genome background. On the other hand, the
therapeutic targets have different functions from all proteins
that can be targeted by drugs, implying that the off-targets
may have specific functions. What is interesting is that
unlike the drug targets, most of which belong to the GPCR
family, the neighborhood proteins of drug targets belong to
transferase. This information should be utilized to improve
prediction accuracy when developing new methodologies in
the future.
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