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Introduction

From the molecular to the ecosystem level, a biological system can often be represented as a set

of entities that interact with each other. Recent advances in data acquisition technology (e.g.,

high-throughput sequencing or tracking devices) open up the opportunity to quantify these

interactions and call for the development of ambitious methodology to tackle these data. In

this context, networks are widely used in biology, bioinformatics, ecology, neuroscience, or

epidemiology to represent interaction data [1]. A network contains a set of entities (the nodes

or vertices) that are connected by edges (or links) depicting some interactions or relationships.

These relationships may be either directly observed or deduced from raw data. The first case

encompasses protein–protein interaction (PPI) networks—in which interactions between 2

proteins are experimentally assessed—or plant–pollinator interactions that are directly

observed in the field. Gene regulatory networks reconstructed from gene expression data, co-

occurrence networks inferred from species abundances, or animal social contact networks

deduced from Global Positioning System (GPS) tracks are some examples of the second case.

New kinds of networks are still emerging (for instance, cell–cell similarity networks [2], Hi-C

networks, and image similarity networks [3]).

Networks are very attractive objects, and many methods have been developed to analyze

their structure. However, biological networks are often analyzed by nonspecialists, and it may

be difficult for them to navigate through the plethora of concepts and available methods. In

this paper, we propose 9 tips to avoid common pitfalls and enhance the analysis of network

data by biologists.

Tip 1: Formulate questions first; use networks later

Network theory is well established and truly powerful, but it cannot be used as a "black-box."

Indeed, building a network should not be considered as an end in itself. We recommend (1)

establishing a list of scientific questions and hypotheses before manipulating the data, and

then (2) evaluating whether these questions naturally translate into a series of network analy-

ses, rather than making network analyses first and checking whether they raise questions after

(in agreement with Rule 1 in [4]). Indeed, it is generally immediate to represent and model the

data with a network but much trickier to translate a question into a network-based analysis.

To this end, besides integrating the network formalism, it is important to embrace the net-

work viewpoint. It relies on a cornerstone idea that makes the strength but also the challenge

of network modeling: Any interaction is considered within its context, taking into account the

other interactions that occur (or not). In this viewpoint, any interaction between 2 nodes is

considered not only in the context of other pairs involving these nodes but also in relation to

the global connectivity pattern. For instance, the importance of a particular edge between 2
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genes will be differently assessed if the target gene is or is not a hub (i.e., regulated by many

genes). This viewpoint does not consider interactions as independent objects and is thus the

exact opposite of examining the set of interactions one by one.

Finally, it is obviously recommended to check whether your questions and data really fit the

network viewpoint before performing any analysis. If the number of nodes and/or edges is

very low, network analysis can be applied, but results can be disappointing because there are

not enough observed interactions to identify a structure in the data. On the other hand,

although any matrix can be viewed as a network (1 edge per cell; see next tip), it is often more

adequate to consider using nonnetwork methods dedicated to complete matrices. For instance,

a correlation matrix, possibly viewed as a correlation network, can be naturally analyzed with a

hierarchical clustering or a principal component analysis. In other words, network analysis is

not necessarily the answer when analyzing a data matrix.

Tip 2: Categorize your network data correctly

To grab the cutting-edge concepts and methods in the networks field, learning the appro-

priate vocabulary from graph theory is a prerequisite [5]. In particular, it is important to

categorize your network properly to be sure you apply suitable methods. Different network

categories for different data lead to different approaches. Edges can be directed (from a

source to a target), possibly including self-loops (e.g., a protein interacting with itself or

cannibalism in food webs). Ignoring this information for the sake of simplicity would actu-

ally betray the original data. When dealing with edges embedding a value (a weight), we

advise you to avoid transforming the network into a binary one, disregarding the weights or

keeping only the edges with weight above or below a certain threshold. Indeed, it clears a

significant part of the available information because some aspects of the network structure

might be undetected in the binarized network [6]. It would therefore be naive to consider

that analyzing a binarized network or the original weighted one is roughly equivalent.

Moreover, methods handling weighted networks are generally available and therefore more

appropriate. However, in some instances, it is actually useful to study the weighted and

binary versions separately, to be able to disentangle 2 effects driving network structure:

interaction occurrence (presence or absence) and intensity (weights). For example, some

authors have reported that a nested pattern was frequently observed in binarized ecological

networks but not in weighted ones [7]. Lastly, the data analyst must be very cautious since,

in the literature and in the available methods, weights can be considered as intensity based

(the greater the weight, the stronger the edge is) as well as distance based (the smaller the

weight, the closer the nodes are).

Nodes can belong to different categories, and edges can be allowed only between nodes of

different categories (bipartite, tripartite, and multipartite networks; e.g., nodes as hosts and

parasites, or as plant, fungus, and seed dispersers [8]). It is mandatory to select methods that

handle this particularity. For instance, many statistical approaches rely on the expected num-

ber of edges (e.g., in the computation of modularity, see Tip 5), which is here clearly different

compared to the unipartite case.

Finally, additional information on the nodes is often available. For instance, nodes can have

spatial positions (e.g., nodes as habitat patches or farms in 2D and brain area in 3D) or can be

associated to external attributes (e.g., species traits in a food web). This additional information

can be explicitly considered in the analysis, either to understand whether it contributes to

organize the network [9] or to look for some remaining structure once accounted for its effect

(e.g., spatial [10] or phylogenetic effect [11]). In the former case, a simpler but suboptimal

alternative often consists in using this information a posteriori in the interpretation of results
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(e.g., explaining the structure of genetic networks with spatial information [12] or comparing

network structure with metadata [13]).

Tip 3: Use specific network analysis software

A range of versatile software is dedicated to network analysis. It is therefore a waste of time try-

ing to use unspecific tools. These software tools belong to 2 distinct categories that have pros

and cons: graphical user interface (mouse-based navigation) and software packages (command

line interface or programming). The first category is mainly dedicated to powerful and interac-

tive visualization (see Tip 4). It includes the 2 major open source software tools, Gephi and

Cytoscape, both supported by an active community. They also offer the computation of some

network metrics (the choice of a relevant metric is discussed in Tip 5). The second category is

dominated by the 2 leading general-purpose network packages, NetworkX and igraph, but

there exist plenty more specific packages (for instance, bipartite in R). Browser-based visualiza-

tion [14] recently emerged as an intermediate category, mostly based on a collection of Java-

Script libraries (e.g., Sigma.js).

That said, we strongly suggest that you learn programming and scripting your analysis (in

agreement with papers in the "Ten Simple Rules" collection about computing skills and repro-

ducibility [15, 16]). Dealing with reproducible code enhances network research: You can rerun

with no effort the complete analysis on a modified version of your raw data on different data-

sets and share the code with other colleagues interested in the modeling approach. Finally,

there exists a limited set of common network file formats (e.g., adjacency list in the format

source target) that you should adopt from the very beginning to easily switch between different

software tools.

Meanwhile, the data analyst should avoid a hasty use of the different functions implemented

in these tools. As underlined in Tips 5 and 6, it is crucial to understand the metrics and meth-

ods before running functions and to select the appropriate ones with respect to the questions

and the data at hand.

Tip 4: Be aware that network visualization can be useful but

possibly misleading

One powerful aspect of networks is their ability to depict complex data in a single object. It can

therefore be natural to represent networks graphically in 2 dimensions: Nodes are spread in

the plane and edges drawn accordingly, with the objective to achieve the most aesthetic and

informative design [17]. Before we go any further, as nodes’ positions (called a graph layout)

in such a display are not part of the data but result from a particular choice or method, we

encourage biologists to clearly describe the layout used in any graphical representation of a

network in scientific publications, especially to make it reproducible.

Graphics are usually considered as an important tool for exploratory data analysis [18]. An

active research community proposed a series of heuristics (available in the tools mentioned in

Tip 3) aimed at obtaining a nice network view in a reasonable time, despite the growing size of

available networks. This apparently simple task is in fact a very hard combinatorial problem

and consists of searching for the optimal layout for a given set of objectives that you often

ignore (e.g., maximizing attractions between connected nodes or minimizing edge crossings).

As a consequence, what you see with your eyes can be biased. Indeed, special care is required

to not overinterpret network visualization when exploring the data. For instance, always keep

in mind that the distance between 2 nodes should not be interpreted as an intrinsic measure of

proximity because another display algorithm would result in a possibly very different distance

(see 2 red nodes in Fig 1A–1C). Moreover, it is better to avoid hasty conclusions drawn on the
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sole basis of a network visualization (e.g., Fig 1C could suggest a modular structure with 3 clus-

ters, whereas a rigorous network analysis could conclude 5 clusters as represented in Fig 1D).

On the other hand, if no structure arises from a visual inspection of the network in an explana-

tory step, it does not mean that further network analysis is not necessary (see Fig 2A), espe-

cially when dealing with large networks.

On the other hand, network visualization can be useful as a way to illustrate the results of a

network analysis (as presented in Tips 5 and 6). In this case, a layout should be chosen for its

ability to highlight network properties (degree heterogeneity in Fig 1B) or conclusions drawn

by an analysis (Fig 1D). For instance, nodes can be positioned according to the values of some

particular metrics of interest [19]. However, a network illustration must not only be aesthetic,

it has to be informative about the nodes as well as the edges structure. We therefore encourage

the analyst to carefully consider the messages to be conveyed through a network illustration.

For instance, it is frequent that bipartite ecological networks are illustrated with 2 stacked lay-

ers (e.g., in bipartite package); in some cases, these illustrations only highlight nodes’ informa-

tion (how many edges they are involved in) but usually fail to show any edge’s structure due to

the many crossing edges inherent to this representation.

Lastly, we also advise considering visualizing the adjacency matrix as a heatmap or a col-

ored matrix (see Fig 2 in [20] for an explanation). It allows one to represent the presence or

Fig 1. Four visualizations of the same network modeling interactions between 64 sociable weavers [14, 22]. (a–c)

The same 2 nodes are colored in red to show that their distance varies depending on the layout. (a) Random layout. (b)

Circle layout in which nodes’ size and position are defined by their degree. (c) Fruchterman and Reingold layout,

showing 3 apparent clumps on top and bottom right and left. (d) Kamada and Kawai layout set with weights on edges

(in red) connecting the 5 clusters obtained with the Louvain algorithm (see Tip 6 and [23] for details). The clusters are

delineated by different colours. Performed with the R package igraph.

https://doi.org/10.1371/journal.pcbi.1007434.g001

Fig 2. Synthetic network with 200 nodes and 700 edges generated with an SBM (see Tip 6) with 4 clusters of

intraconnectivity and interconnectivity of 0.1 and 0.015, respectively. (a) Network visualization with Kamada and

Kawai layout does not highlight any modular structure, whereas it exists. (b) Representation of the adjacency matrix

with row and columns ordering consistent with the 4 clusters. Performed with the R package igraph. SBM, stochastic

block model.

https://doi.org/10.1371/journal.pcbi.1007434.g002
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weight of edges (colored cells), but it also has the advantage of highlighting edges’ absence

(blank matrix cells). This is particularly relevant when the matrix rows and columns are reor-

dered in an informative manner (e.g., by increasing value of a metric [21] or according to

some clustering results; see Tips 5 and 6 and Fig 2B).

Tip 5: Avoid blind use of metrics; understand formulas instead

Beside the limitations of network visualization, describing a network can also (and advanta-

geously) consist of computing summary statistics. The beginner will immediately find the path

to a series of network metrics: one number per node or edge (local metrics; e.g., degree) or one

number for the whole network (global metrics; e.g., connectance/density or modularity). Met-

rics have proliferated, and it is strongly advised to take time to read carefully the mathematical

definition of the metrics one has at hand (see also Tip 9): The deeper the mathematical under-

standing, the easier the interpretation is. For instance, the concept of nodes’ centrality goes

with a range of centrality metrics that have different meanings. Moreover, it is so easy to com-

pute any metric with the aforementioned software tools that it can sometimes prevent the ana-

lyst from checking their pros and cons. As an example, reading the definition of the widely

used betweenness centrality, you can understand that it is based on shortest paths. If you

intend to use this measure, it is therefore necessary to check whether the shortest path is a rele-

vant concept associated to the process under study (such as energy fluxes in food webs) or

whether it is more questionable (e.g., paths in functional networks may not actually corre-

spond to information flow [20]; paths in contact networks may not be relevant when informa-

tion or disease diffusion is not studied [24]). Another example consists in the analysis of

directed and/or weighted networks with extensions of metrics to this case. It is important to

note that the formula of the weighted degree accounts for 2 effects: how many neighbors and

how large the weights are, 2 effects that are impossible to disentangle (a weighted degree of 2

can correspond to a single edge of weight 2 or 4 edges of weight 0.5 each). A similar problem

can also be raised for the weighted path (potential pitfalls highlighted in [25]). Lastly, global

metrics are often used to compare networks (networks measured from different data or condi-

tions or simulated networks as mentioned in Tip 7). In this case, special care should be taken

when comparing values because metrics differences can be a side effect of differences in simple

network characteristics such as the number of nodes or edges (see common pitfalls mentioned

in [26] for brain networks and a discussion on covariation of metrics with characteristics of

ecological networks in [27]). For instance, modularity, number of modules, and network size

are known to be intertwined [28].

It is not unusual that authors, instead of choosing a given metric adapted to a particular

question, compute a high number of metrics among the available ones. However, many met-

rics are correlated (see a correlation study in [24]), and it becomes necessary to deal with this

redundancy to interpret the results (e.g., with an ordination method [29]). This approach is

not hypothesis driven as recommended in Tip 1 and can undeniably be replaced by an incre-

mental approach in which metrics are selected one at a time for their ability to check particular

hypotheses associated to the fundamental questions on the data (as for many statistical analy-

ses, see rule 5 in [4]).

Tip 6: Avoid blind use of clustering methods; check their difference

instead

With the data avalanche arising this decade, leading to larger networks, clustering has become

one of the most popular tools to get a comprehensive view of the network structure. Its general

purpose is to aggregate nodes into clusters in order to identify a meso-scale structure in the
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network (i.e., zooming out the network). Choosing a network clustering raises issues similar to

choosing a network metric (Tip 5). It is much more than using one of the functions available

in a software. As for clustering methods on point clouds, the ones constructed on networks

aim at gathering similar objects (i.e., nodes) and thus rely on a specific definition of node simi-

larity. What does the analyst want to be similar in a network? Discussing the pros and cons of

the different methods is beyond the scope of this article, whereas a massive literature on the

topic exists (see Tip 9). However, we illustrate the impact of choosing a specific definition for

node similarity with 3 classical proposals (among others).

A first and natural definition for the similarity between nodes is the existence of a connec-

tion between them. Based on this definition, network clustering consists in finding a modular

structure, i.e., identifying dense clusters of nodes (also called modules or communities) poorly

connected with others. Community detection methods [23] implement this approach, which

implicitly assumes the existence of modules in the network. They were successfully applied in

many studies in biology (for instance, to identify chromatin domains [30]). A second approach

considers that 2 nodes are similar when they tend to be connected (or unconnected) with the

same type of nodes. Hence, species in a food web are considered similar if they have similar

preys and predators [31]. This definition can accommodate networks with nonmodular struc-

ture [32] since it assumes that the nodes are involved in a "diversity of meso-scale architec-

tures" [33]. The stochastic block model (SBM) is a popular method based on this definition

[32, 34], which has shown to be relevant for the analysis of some biological networks (to high-

light the complex architecture of connectomes [33] or functional groups in ecological net-

works [35]). One important feature is that it allows one to model explicitly edge directions and

weights by means of different statistical distributions [11]. A third approach consists in associ-

ating a vector of characteristics to each node and then gathering nodes with similar character-

istics. This includes motifs-based approaches [36] and a wide range of innovative node-

embedding techniques [37, 38]. Nodes are described as points in a space with reasonable low

dimension, which allows one to apply the huge variety of existing clustering methods for mul-

tivariate data. It is important to realize that each of these similarity concepts naturally results

in different nodes clustering. The choice between these alternatives must be driven by biologi-

cal questions, not by their availability in software tools (Tip 1).

Tip 7: Don’t choose the easy way when simulating networks

To highlight the properties specific to an observed network (for instance, a peculiar metric

value), a common practice consists of comparing with simulated networks. These properties

are detected as a significant deviation (or not) from a typical behavior implemented in simu-

lated networks. However, there is no generic definition of a typical network and, as a conse-

quence, the features that can be detected depend dramatically on the null model used to

simulate networks. This null model must be chosen for a given purpose, fitting expected

behaviors, while contrasting those we are interested in. In other words, it must fit the data rea-

sonably well to avoid numerous false discoveries, but not too well so that deviations can

emerge.

A natural option could consist of selecting a null model among the series of random graph

models (e.g., Erdős–Rényi, small-world, scale-free, SBM, exponential random graph, or con-

figuration model). However, we recommend not to use them too hastily because they are often

too general. For example, the Erdős–Rényi model (all edges independent and having the same

probability of occurrence) is often a poor null model to detect nodes having an unexpectedly

high degree. Indeed, it induces a Poisson degree distribution, which is so far from the one

observed in most networks that many nodes appear to be unexpectedly connected. On the
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other hand, no node can display an unexpectedly high degree with respect to the configuration

model, as this null model precisely fits to the degree of each node. Moreover, the analyst is usu-

ally aware of a series of properties that should be displayed by a simulated network: imbalanced

degree distribution, different nodes’ roles associated with available side information, forbidden

interactions (e.g., depending on body mass in food webs [39]), etc. Such expected properties

must be encoded in the simulation process (for instance, a fixed degree sequence [35]), other-

wise they will emerge and be detected as significant or contribute to detecting false significant

effects as side effects. As an example, when assessing whether the number of feed forward

loops is unexpected in a given transcription network, the simulation procedure must rely on a

fixed number of nodes and degrees, whereas the number of these loops remains free.

Lastly, when the network under study is not directly observed but built from raw data inter-

pretation, it can be relevant to simulate the whole construction process. Consider the case of

contact networks inferred from movement data [24]: One can either simulate trajectories

keeping some properties of the original data and then build a contact network or directly sim-

ulate a "realistic" contact network. The former approach will intrinsically account for the

uncertainties and biases induced by the construction steps, which are likely to be overlooked

by the latter approach.

Tip 8: Reconsider the data to build multiple network layers

A network object can be the result of data aggregation. Indeed, interactions are often observed

at different times and locations or in different conditions. You are therefore strongly urged to

keep in mind (and at hand) the different layers of data (time, space, type, etc.) and consider

networks composed of multiple layers, because multilayer networks can provide new insights

compared to an aggregated one [40–42].

A network is called dynamic when it gathers a time series of network snapshots correspond-

ing to successive rounds of data collection (the nodes’ list possibly varying in time). In this

case, the temporal variability of the network structure can be assessed (e.g., rewiring of interac-

tions or changes in network metrics over time), and extensions of the concepts developed in

Tip 6 now exist in the dynamic case [43, 44]. For instance, the dynamics of animal social struc-

ture can be inferred from dynamic networks to enhance the understanding of disease trans-

mission [45]. On the other hand, interactions can be observed at different spatial locations. In

ecology, they are often aggregated in a metanetwork (or metaweb [46]) to study how the local

networks differ from this metanetwork and explain these variations with environmental fac-

tors. In these 2 cases, multiple layers allows one to describe a network as an evolving object,

and the analysis aims to identify the spatiotemporal variations of interactions and their

drivers.

Different kinds of interactions can also be observed between nodes. Stacking layers repre-

senting molecular interactions in different human tissues [47] or mapping extrasynaptic and

synaptic connectomes [48] leads to a multiplex network: Between any 2 nodes, there possibly

exist more than 1 edge, 1 per interaction type at most (often visualized with different colors).

Taking jointly into account the different layers enhances the understanding of the nodes’ inter-

play. For instance, using jointly trophic and nontrophic interactions enhances the definition of

species’ ecological roles compared to the use of single layers independently [35]. Finally, it is

also possible to integrate different layers of information with different sets of nodes for each

layer, such as proteins and chemical compounds [49]. In this case, different kinds of interac-

tions are defined inside and between layers. In all these cases, different information layers are

integrated into a comprehensive network such that they are treated jointly rather than one

after the other.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007434 December 19, 2019 7 / 10

https://doi.org/10.1371/journal.pcbi.1007434


Tip 9: Dive into the network literature beyond your discipline

Network science now involves a hyperactive community of researchers from different domains

such as physics, statistics, computer science, or social science. As a result, a massive literature

on networks exists, and it is challenging for biologists to dive into it. Indeed, we are not used

to exploring the bibliography outside our research domain. Reference books [5, 42, 50, 51] and

reviews [23, 40, 52] are obviously good entry points for developing your network skills. How-

ever, without any doubt, you will highly benefit from a round trip in this literature exogenous

to your field (including the most recent advances in network methodology available in the

arXiv preprint repository), provided that you make the effort to learn the appropriate vocabu-

lary of this area. Concrete examples include the analysis of modularity in biology, which was

borrowed from physics (unlike nestedness, which originates in biogeography), or the recent

use of SBMs (Tip 6) that have been applied in the social science literature since the last

century.

Conclusion

The 9 tips presented here should be a way for the data analyst to get a foot in the door of net-

work data analysis. These tips are not exclusive, and we are aware of other network-based

questions that deserve special interest, including diffusion on networks, for instance. Still, the

network nonspecialist must be confident in his or her ability to learn, step by step, the network

concepts and methods with a productive effect on his or her scientific questions.
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ings in Bioinformatics. 2011; 13(5):627–644. https://doi.org/10.1093/bib/bbr069 PMID: 22155641

20. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neu-

roimage. 2010; 52(3):1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003 PMID: 19819337

21. Bascompte J, Jordano P, Melián CJ, Olesen JM. The nested assembly of plant–animal mutualistic net-

works. Proceedings of the National Academy of Sciences. 2003; 100(16):9383–9387.
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