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Chronic Fatigue Syndrome (CFS) is a debilitating condition estimated to impact at least

1 million individuals in the United States, however there persists controversy about

its existence. Machine learning algorithms have become a powerful methodology for

evaluating multi-regional areas of fMRI activation that can classify disease phenotype

from sedentary control. Uncovering objective biomarkers such as an fMRI pattern is

important for lending credibility to diagnosis of CFS. fMRI scans were evaluated for 69

patients (38 CFS and 31 Control) taken before (Day 1) and after (Day 2) a submaximal

exercise test while undergoing the n-back memory paradigm. A predictive model was

created by grouping fMRI voxels into the Automated Anatomical Labeling (AAL) atlas,

splitting the data into a training and testing dataset, and feeding these inputs into a

logistic regression to evaluate differences between CFS and control. Model results were

cross-validated 10 times to ensure accuracy. Model results were able to differentiate

CFS from sedentary controls at a 80% accuracy on Day 1 and 76% accuracy on Day 2

(Table 3). Recursive features selection identified 29 ROI’s that significantly distinguished

CFS from control on Day 1 and 28 ROI’s on Day 2 with 10 regions of overlap shared with

Day 1 (Figure 3). These 10 shared regions included the putamen, inferior frontal gyrus,

orbital (F3O), supramarginal gyrus (SMG), temporal pole; superior temporal gyrus (T1P)

and caudate ROIs. This study was able to uncover a pattern of activated neurological

regions that differentiated CFS from Control. This pattern provides a first step toward

developing fMRI as a diagnostic biomarker and suggests this methodology could be

emulated for other disorders. We concluded that a logistic regression model performed

on fMRI data significantly differentiated CFS from Control.

Keywords: functional magnetic resonance imaging (fMRI), Chronic Fatigue Syndrome (CFS), logistic regression,

machine learning, recursive feature elimination (RFE)
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INTRODUCTION

Chronic Fatigue Syndrome (CFS) is a debilitating condition
estimated to affect at least 1 million individuals in the
United States that causes $9.1 billion in annual losses
in productivity (Centers for Disease Control Prevention,
2006). CFS is characterized by chronic persistent fatigue
that is not alleviated with rest as well as pain, cognitive
dysfunction, sleep abnormalities, and symptom relapse after
minimal exertion (post-exertional malaise) (Fukuda et al.,
1994; Carruthers et al., 2003; Centers for Disease Control
Prevention, 2006; Committee on the Diagnostic Criteria for
Myalgic Encephalomyelitis/Chronic Illness, 2015).

Controversy persists about the underlying etiology and
pathophysiology of CFS, and there remains a need for objective
measures of dysfunction to distinguish CFS from psychosocial
etiologies like neurasthenia and depression (Pichot, 1994;
Pearce, 2006; Committee on the Diagnostic Criteria for Myalgic
Encephalomyelitis/Chronic Illness, 2015). Functional magnetic
resonance imaging (fMRI) of the brain has shown to be
a promising diagnostic tool because CFS subjects may have
reduced gray matter thickness and cortical volume losses
compared to age-matched controls (Okada et al., 2004), utilize
more frontal and parietal regions during cognitive tasks than
age-matched controls (cognitive compensation) (Lange et al.,
2005), and have different activation patterns when making
mistakes (De Lange et al., 2004). CFS subjects are less responsive
than age-matched controls on tasks of auditory responsiveness
(Tanaka et al., 2006) and demonstrate additional dysfunction
following a light exercise task that may provide evidence for
post-exertional malaise (Cook et al., 2017). Performance on n-
back tasks indicated dysfunction on working memory (Caseras
et al., 2006). The results of these studies provided a rationale to
investigate if fMRI and the post-exertional malaise experienced
by subjects with CFS could differentiate CFS subjects from a
sedentary control.

Standard fMRI analysis seeks to compare univariate regions
of brain activation at rest or during a task between CFS and
control groups. However, multivariate classification methods
have become an increasingly popular tool for identifying patterns
of brain activity that can differentiate disease physiology (Cox
and Savoy, 2003; Kriegeskorte et al., 2006; Haynes et al., 2007;
De Martino et al., 2008; Ryali et al., 2010). Machine learning
algorithms such as logistic regression, support vector machines,
and random forests combined with feature selection can be
applied to clustered voxel data to determine patterns of brain
regions that may characterize a disorder (Mourão-Miranda et al.,
2005; Pereira et al., 2009). We hypothesized that an acute
physiology stressor such as a light exercise task combined with
the implementation of a machine learning algorithm would
allow us to identify a pattern of predominant behavior during
fMRI scanning of CFS subjects while performing the n-back
memory paradigm.

Subjects underwent fMRI scans on consecutive days while
performing the continuous version of the n-back working
memory test before (Day 1) and after (Day 2) a bicycle
exercise stress test (Rayhan et al., 2013). Blood oxygenation

level dependent (BOLD) signals were compared between groups
on both days. We followed a standard approach of predictive
model building for fMRI data involving feature extraction, model
build, validation, and evaluation of performance (Sen et al.,
2018). Voxel maps of activations from each subject were mapped
to the Automatic Anatomical Labeling (AAL) atlasAAL using
SPM12SPM. Predictive model features were created from the
number of significantly activated voxels for each AAL region for
each subject run through a recursive features selection algorithm
to identify importance. Data points were iteratively split into
training and testing sets to create a logistic regression model
(training set) and then validate the results (testing set). Model
results were cross-validated to ensure performance. The output of
this model was a multivariate pattern of activation that signified
the cognitive differences between groups of CFS and sedentary
control subjects. This strategy differs from the traditional fMRI
analysis technique that quantify significant BOLD differences
on voxel-by-voxel and regional basis. The outcomes provide a
proof of concept for the implementation of a machine learning
algorithm on fMRI data to create a diagnostic tool for CFS.

METHODS

Ethics
Subjects gave written informed consent for participation
and use of all data for publication purposes. Studies were
approved by the Georgetown University Institutional Review
Board (IRB 2009-229, 2013-0943, 2015-0579) and U.S. Army
Medical Research and Material Command (USAMRC) Human
Research Protection Office (HRPO A-155547.0, A-18749), and
registered on clinicaltrials.gov as NCT01291758, NCT03560830,
and NCT03567811. All clinical investigations were conducted
according to the principles expressed in the Declaration
of Helsinki.

Subjects
Data was collected from candidates who responded online or
by phone or personal contact. Telephone screening after verbal
informed consent was performed with 216 subjects, but 105
declined to participate or were excluded from participation after
protocol explanation and assessment of chronic medical and
psychiatric disease (Jones et al., 2009; Nater et al., 2009). Chronic
Fatigue Syndrome was assessed by 1994 Fukuda CDC criteria
by having 6 months of debilitating fatigue without medical or
psychiatric cause plus at least for of the following eight criteria:
problems with memory or concentration, sore throat, sore lymph
nodes, myalgia, arthralgia, headache, sleep disturbance, and post-
exertional malaise (Fukuda et al., 1994). Veterans with Gulf War
Illness were examined by the same process and were excluded
(Steele, 2000; Haynes et al., 2007).

Subjects were admitted to the Georgetown Howard
Universities Clinical Translation Science Clinical Research
Unit and were tested for the N-back working memory task in a
3TMRI scanner on two separate days. They underwent their first
fMRI scan and N-back working memory task after overnight rest
and then performed a submaximal exercise stress test. Subjects
cycled at 70% of age-predicted maximum heart rate (220-age)

Frontiers in Computational Neuroscience | www.frontiersin.org 2 January 2020 | Volume 14 | Article 2

https://www.clinicaltrials.gov
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Provenzano et al. Characterization of CFS by Machine-Learning

for 25min, the ramped up their effort to reach 85% of predicted
heart rate. On the next day they had that same submaximal
exercise test followed by the second fMRI scan with n-back
testing. This study reports on 38 subjects with Chronic Fatigue
Syndrome and 31 sedentary controls.

N-Back Task
Subjects practiced the complete n-back task with blocks of 0-back
and 2-back loads in a mock scanner until they felt satisfied with
their performance. fMRI data were collected on the non-exercise
day (Day 1) and about 1 h after the second submaximal bicycle
exercise stress test (Day 2).

The continuous version of the verbal N-back task is a
challenging test of subject attention, memory, retrieval, and
updating (Owen et al., 2005; Rayhan et al., 2013). Each 1min
long block had three components: 0-back task, 2-back task, and
fixation between tasks. Subjects began each block with fixation by
viewing a blank screen for 8 s. They proceeded to 0-back testing
by viewing a string of nine letters (A, B, C, D) presented in
random order for 2 s per letter. Subjects used both hands to press
the button on a fiber-optic button box (ePrime software) that
corresponded to the letter being viewed1. After another fixation
period, they viewed a second string of nine letters for the 2-
back task. Subjects had to remember the 1st and 2nd letters.
When the 3rd letter was presented, they had to press the button
corresponding to the letter seen “2-back” (the 1st letter seen 4 s
before). The task was designed such that subjects orient, reorder,
and engage their working memory to focus their attention in
preparation for the next letter. Subjects used individual strategies
to remember single letters in series (e.g., A-B-C-D) or through
“chunks” (AB-BC-CD, or ABC-BCD). The 1-min blocks were
repeated five times which produced time-series scans for 45
letters for 0-back stimulus response measurements (five blocks×
nine responses) and 35 responses for the 2-back task (five blocks
× seven responses each).

Functional Magnetic Resonance Imaging
(fMRI) Data Acquisition
fMRI acquisition was performed in a Siemens 3T Tim
Trio scanner equipped with a transmit-receive body coil
and a commercial 12-channel head coil array. Structural
3D T1-weighted Magnetization Prepared Rapid Acquisition
Gradient Echo (MPRAGE) image parameters were: TR/TE =

1,900/2.52ms, TI = 900ms, field-of-view(FoV) = 250mm, 176
slices, slice resolution = 1.0mm, and voxel size 1 × 1 × 1mm.
Functional T2∗-weighted gradient-echo planar imaging (EPI)
parameters were: number of slices = 47, TR/TE = 2,000/30ms,
flip angle = 90◦, matrix size = 64 × 64, FoV = 205 mm2, and
voxel size= 3.2 mm2 (isotropic).

Data Pre-processing
BOLD data was pre-processed through the default pipeline
of the CONN version 17 toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012). Data underwent processing and spatial
smoothing with a spatially stationary Gaussian filter of 6mm

1http://www.pstnet.com/eprime.cfm

full-width half maximum (FWHM) size through the SPM12
software (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
SPM12 was used to account for movement artifacts between
scans and functional anatomic differences not otherwise
already compensated for. Spatially normalized images were
converted into the Montreal Neurological Institute (MNI)
standard stereotactic space (Mazziotta et al., 1995). Pre-
processing included a slice-timing correction, outlier detection
for Framewise Displacement based on Artifact Detection Tools,
and realignment and unwarping of functional images. Spatial
normalization resulted in a voxel size of 2.0 mm3 (isotropic).

Preprocessed EPI data from individuals were modeled with
the following events: instruction, fixation, 0-back, and 2-back.
The 2-back > 0-back contrast was analyzed by one-sample t-
test with motion parameters as covariates of no-interest. The
residual 2-back > 0-back condition identified voxels that were
significantly more activated during the high cognitive load 2-
back than the low cognitive load 0-back periods. The optimal
threshold t-value to identify significantly activated voxels was
determined by plotting the number of significant voxels per
subject as a function of T-values. The T value of 3.17 (p < 0.001
uncorrected) was selected.

Voxel data from the T-statistic maps were charted to MNI
coordinates and grouped into regions defined by the Automated
Anatomical Labeling Atlas (AAL) (Tzourio-Mazoyer et al., 2002)
using a custom MATLAB program and functions from SPM12
and xiView 9.62. The AAL atlas was chosen due to its widespread
use and recognizability in SPM12, python, and the general fMRI
community. The catalog of AAL regions with centers of mass and
voxels per region was shown in Table S1 and Figure S13. The
numbers of significant voxels per AAL region for each individual
were the independent input variables that were fed into the
feature selection process and logistic regression learner model.
Our approach utilized a machine learning algorithm applied to
the 3-D matrix of voxel data split using the binary outcome
variable of CFS vs. control status.

Feature Extraction
Model features (AAL regions with total activated voxels) were
selected by a multistep feature reduction process.

Pearson’s correlation coefficients were used as a preliminary
variable selection methodology to determine highly correlation
regions of brain activity. The number of significant voxels in
every AAL region in the entire dataset (Testing + Training)
was compared to every other AAL region to determine
multicollinearity or which regions, if any, could be linearly
predicted from the others with a substantial degree of accuracy.
This created a matrix of correlations depicting Pearson’s
Correlation Coefficient for every region. When regions have
a Pearson’s Correlation Coefficient (R) of ≥0.9, it can be
assumed that multicollinearity exists and that these regions
should be removed or combined. Multicollinearity may not
affect the overall predictive power of a model, but can impact

2http://www.alivelearn.net/xjview/
3https://figshare.com/articles/_Abbreviations_and_MNI_coordinates_of_AAL_/

184981
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the residual calculations of individual predictors and render
the overall coefficients invalid (Belsley, 1991; O’Brien, 2007).
Perfect multicollinearity causes the design matrix to have one
less full rank and does not allow the ordinary least squares
estimator to be inverted (Farrar and Glauber, 1967). Eliminating
multicollinearity prevents against inaccurate machine learning
algorithms, excessive standard errors for coefficients, and
overfitting of models (Kumar, 1975; O’Hagan and McCabe,
1975). Multicollinearity was tested for three times on the training
set, testing set, and training and testing set combined due to the
small number of samples to ensure no multicollinearity existed
for any combination of variables and that ordinary least squares
(OLS) estimators could be obtained. The matrix depicting the
training and testing set is depicted in the results.

Next the list of variables for model inputs was reduced
using recursive feature elimination (RFE). Only data from the
training set was fed into RFE and later, the logistic regression
model. RFE is a feature selection method that fits a model by
removing the weakest model input (feature) until a specified
number of attributes remains or total accuracy level is reached.
By eliminating a small number of inputs per loop in an iterative
process, RFE attempts to reduce variable dependencies and
collinearity that could otherwise impact a model. This data
reduction step used the default recursive feature elimination
(RFE) algorithm in the scikit-learn python package4. The
principle of Occam’s razor governs that the simplest set of
inputs into a machine learning algorithm often leads to the most
accurate result, as such this process attempted to whittle down the
variables to as few as possible while still controlling for accuracy
(Gauch, 2003).

Recursive feature elimination is a greedy feature elimination
algorithm similar to sequential backward selection as found in
a stepwise logistic regression. It was ultimately determined to
use recursive feature elimination to remove excess inputs rather
than use stepwise logistic regression to decrease bias in R2 values,
increase standard errors of the parameter estimates, increase
confidence intervals, increase p-values, and unbias parameter
estimates. Stepwise logistic regression can also exacerbate
collinearity problems, which was especially important to account
for given the small sample size.

Predictive Model Build
Multiple predictive models were initially tested and evaluated
before final presentation of results. These included a Support
Vector Machine (SVM), Random Forest, Decision Tree, and
Neural Net. Logistic Regression was the algorithm ultimately
selected as it fast to build, repeatedly produced the most
accurate and generalizable results, and is easy to implement in
practice. Logistic regression is an algorithm used to determine
the probability of a binary response to be dependent on one or
more independent input variables (Walker and Duncan, 1967).
A logistic regression works by attempting to fit a model that
minimizes coefficients assigned to model inputs and maximizes
total differentiated subgroups that fall into the classification
region. Coefficients estimate the logarithm of the odds (log-odds)

4http://scikit-learn.org/stable/modules/feature_selection.html#rfe

for a dependent variable based on the independent variables
(Biondo et al., 2000). Corresponding coefficients for input
variables are “regressed” from the data (Freedman, 2009). The
model fits the data to the logit equation:

p(x) = 1/
(

1+ e−(β0+β1x1+β2x2...+βixi)
)

where β0 is the intercept (constant term), and β1 and β2 are the
coefficients for variables x1 and x2, and βi represents coefficients
for all subsequent variables (http://www.alivelearn.net/xjview/).
Features fed into the model are assigned a coefficient that is
reduced according to stochastic gradient descent until the best
possible model (highest accuracy) remains. Stochastic gradient
descent is a first order optimization algorithm that seeks to find
the minimum of a function by taking steps proportional to the
negative gradient of the function at every point (Barzilai and
Borwein, 1998). The model was trained on a subgroup of the
total dataset that was split into a stratified sample of disease
and control subjects and tested on the remaining subgroup. This
created a designated “training” and “testing” set. Each testing
set was a distinct validation set created for each training set
that did not overlap with the training set used to build the
predictive model. Recursive feature elimination was run before
each predictive model build on each respective training set. The
ratio of training to test subjects was varied from 50:50 to 90:10
with the grouping of 70:30 selected to give the optimal model
validation. This optimal ratio was determined by evaluating the
final predictive power on the model. For example if a model
rebuilt twice on two overlapping separate samples with a 90:10
ratio resulted in 89% accuracy and subsequent 15% accuracy on
each respective 10% testing set, it was determined that this ratio
resulted in overfitting and lack of generalizability once validated
on the testing set. In contrast, the final selected ratio of 70:30
gave similar accuracies upon testing set validation across multiple
re-sampled training and testing sets and multiple predictive
model rebuilds.

Validation and Evaluation of Performance
Model accuracy was tested by examining the total false positive
rates, specificity, sensitivity on the designated testing set. Model
generalizability was tested by cross validation on the testing
set. Cross validation is a resampling method used to evaluate
machine learning models such as logistic regression on limited
data samples. Cross-validation seeks to understand the model’s
ability to predict new data that was not used in creation of the
model. Cross-validation helps identify common problems such
as overfitting and selection bias to evaluate how the predictive
model might perform in practice. The model was cross validated
10 times using 10 subgroups (k-cross validation with k = 10)
randomly drawn from the 30% test set (out-of-sample testing)
to ensure generalizability. This cross-validation was done only
within the testing set and included no data from the training
set. Although for each partition the same training data and
model is used, the 10 subgroups sampled from the test set are
non-overlapping. Cross-validation was done for every predictive
model rebuild on every ratio of training:testing set data and
every re-sampled training set. The average results from the

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2020 | Volume 14 | Article 2

http://scikit-learn.org/stable/modules/feature_selection.html#rfe
http://www.alivelearn.net/xjview/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Provenzano et al. Characterization of CFS by Machine-Learning

cross-validations was used to estimate the model’s predictive
performance on future datasets. The averaged set of cross-
validated outcomes provides a more accurate estimate of a
model’s predictive capability (Grossman et al., 2010).

The predictive model was iteratively re-built until the best set
of inputs and model coefficients remained to allow for a high
rate of accuracy and generalizability, or ability to be applied
to new populations and maintain the same result. This means
that the predictive model was built on multiple different re-
sampled ratio’s of training: testing set samples. For each training
to testing split, the training set was also re-sampled from the
original sample and subsequently validated and cross-validated
on its respective testing set. The final result and model outcome
was the ability of the combination of independent variables
(model features) to predict the dependent binary variable (CFS
vs. control status).

To test the significance of model accuracy, the models were
then subjected to a “Shuffle Test.” The labels on the subjects (CFS
or SC) were shuffled in python using the built in sample function
and passed through the model process 1,000 additional times to
test if the original accuracy could be incurred by random chance.
Each of the 1,000 runs trained the original model coefficients on a
randomly selected stratified sample of 70% of each respective new
shuffled sample (training set) and then tested the resultant model
on a 30% randomly selected stratified sample (testing set) from
this shuffled set tomimic the original conditions. The process was
repeated on the entire shuffled sample 1,000 times. This process
was repeated an additional 10,000 times if no accuracy greater
than or equal to the original model accuracy could be obtained.
If the Shuffle Test produced the model accuracy greater than or
equal to the original model accuracy <5% of the time, it was
determined the model was significant at the p < 0.05 level.

Logistic model coefficients must be treated with care. The
logistic coefficient quantifies the rate of change in the “log odds”
of the dependent variable as the input variable changes. The y-
intercept term (β0) is the log-odds of an outcome variable when
all predictors are 0. In a multivariate model, the coefficients
represented by β1 to βi show the increase in log-odds relative
to each other. For example, a coefficient of βi = 1 multiplies
the odds of xi by 101 = 10, while a coefficient of 2 multiples
the odds by 102 = 100. These coefficients are highly dependent
on other variable inputs to the model. A negative coefficient
could indicate a negative relationship with the outcome variable
and surrounding variables just as a positive coefficient could
indicate a positive relationship, however one cannot ascertain
the direction of correlation between any pair of variables in
the outcome due to the nature of multivariate models and
interactions between multiple variables.

Visualization
The Wake Forest PICK ATLAS was used to select the AAL
regions that contributed to each significant model and then data
were imported intomarsbar. These were displayed as color-coded
axial slices (MRIcron).

Pearson’s correlation coefficient was used to visually examine
differences between CFS and sedentary control on Days 1 and 2
(Before and after exercise).

RESULTS

Demographics
All subjects had a sedentary lifestyle with <40min of active
aerobic work or exercise per week. The subjects spanned a similar
age and BMI range, however due to the wider range of ages in
the control group, age and gender were controlled in the final
model build. CFS had significantly worse symptoms (Baraniuk
et al., 2013) and quality of life (Ware and Gandek, 1998; Table 1).

Selection of Threshold
Significant voxels were identified by calculating the number of
voxels per brain scan at different levels of significance. Ultimately
it was determined to use a threshold of T ≥ 3.17 (p ≤ 0.001)
(Figure 1) due to its ability to allow a workable number of voxels
while preserving significance.

Feature Selection
Pearson’s correlation coefficients were calculated between all
AAL regions in the combined CFS and control dataset. All
correlation coefficients were below 0.8 indicating that there
was no collinearity between AAL regions or no significant
dependency within model parameters on Day 1 and Day 2 for the
groups (Figure 2). All regions were retained in themodel because

TABLE 1 | Demographics (mean ± SD).

Group SC CFS

N 31 38

Age 43.9 ± 16.3 47.74 + 16.46

BMI 28.4 ± 4.5 26.20 + 4.52

Male 19 (61.3%) 10 (26.3%)†

White 23 (74.2%) 34 (89.4%)†

CFS symptom severity scores

Fatigue 1.2 ± 1.0 3.4 + 0.8**

Memory and concentration 1.0 ± 1.2 2.9 + 0.9**

Sore throat 0.2 ± 0.6 1.0 + 1.0*

Sore lymph nodes 0.1 ± 0.4 1.0 + 1.1*

Muscle pain 0.6 ± 0.9 2.5 + 1.3**

Joint pain 0.8 ± 1.0 1.8 + 1.4*

Headaches 1.0 ± 1.3 2.0 + 1.3*

Sleep 1.7 ± 1.4 3.2 + 0.9**

Exertional exhaustion 0.5 ± 1.0 3.5 + 0.8**

MOS SF-36

Physical functioning 88.8 ± 21.1 46.2 ± 26.3**

Role physical 86.8 ± 31.5 9.2 ± 25.0**

Bodily pain 85.9 ± 19.2 46.7 ± 26.7**

General health 73.8 ± 21.9 34.6 ± 23.4**

Vitality 64.9 ± 20.8 18.9 ± 15.7**

Social functioning 85.3 ± 22.1 32.6 ± 27.0**

Role emotional 90.2 ± 27.9 70.2 ± 44.4

Mental health 76.1 ± 16.9 67.6 ± 16.8

Chalder fatigue score 12.1 ± 4.5** 22.8 ± 6.4**

*Scale: 0 = none, 1 = trivial, 2 = mild, 3 = moderate, 4 = severe. Mean ± SD.

*p < 0.001 and **p < 0.000001 by 2-tailed unpaired Student’s t-tests with Bonferroni

corrections; †p < 0.001 by Fisher’s Exact Test.
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R was less than the cutoff point of 0.9 needed to justify removal.
Although all regions were included, ultimately many of the 117
AAL regions were later removed in the recursive feature selection
step and logistic regression.

Model Results
Significantly Activated Regions
Region of interest analysis identified areas that were significantly
activated in each group (Figure 3). BOLD patterns for the 2-back
> 0-back residual condition (2 > 0-back condition) were similar
between CFS and controls and between Days 1 and 2 (Figure 4).
Bilateral dorsolateral prefrontal cortex extending to the anterior
insulae, dorsal anterior cingulate cortex, lateral parietal, and

FIGURE 1 | Number of significant voxels plotted vs. T-values for each group.

The number of significant voxels decreases at higher T-values and more

rigorous p-values. T of 3.17 indicated p < 0.001.

dorsal medial precuneus were activated. These match frontal
parietal executive control, anterior salience, and dorsal attention
networks (Laird et al., 2011; Rottschy et al., 2012). Exercise did
not cause significant changes in BOLD of these regions.

Differentially Activated Regions Found by Predictive

Model Build
Logistic regression and recursive feature elimination identified
three general patterns for regions that were differentially
activated between CFS and controls. Ten AAL regions were
selected by the logistic regression models on both days (Table 2),
suggesting these ten regions may represent persistent indicators
of CFS pathologies. In addition, 19 were significant only on Day
1, and 18 only on Day 2.

These 10 AAL regions were the right caudate, left and right
putamen, left supramarginal gyrus (SMG), right postcentral
gyrus (POST), right parahippocampus (PHIP), left inferior
frontal gyrus orbital (F3O), right middle temporal gyrus (T2),
left temporal pole; superior temporal gyrus (T1P), and the right
cerebellum 8.

The 19 regions significant on Day 1 only were the left superior
frontal gyrus; dorsolateral (F1), right superior frontal gyrus;
dorsolateral (F1), right superior frontal gyrus; medial (F1M),
right middle frontal gyrus; orbital (F2O), right gyrus rectus
(GR), left middle frontal gyrus; orbital (F2O), right temporal
pole; middle temporal gyrus (T2P), right supramarginal gyrus
(SMG), left cerebellum 4 5, right vermis 6, left cerebellum 6, right
supplementary motor area (SMA), left paracentral lobule (PCL),
right rolandic operculum (RO), right cuneus (Q), right lingual
gyrus (LING), left superior occipital lobe (O1), right middle
occipital lobe (O2), right fusiform gyrus (FUSI).

The 18 regions significant onDay 2 only were the left and right
pallidum (PAL), left and right calcarine fissure and surrounding
cortex (V1), left middle occipital lobe (O2), left inferior occipital

FIGURE 2 | Heat maps depicting Pearson’s correlation coefficients (R) for all AAL regions in CFS and control datasets. The diagonal white line indicates R = 1. The x

and y axis correspond to different regions of the brain according to the AAL atlas respectively, such that the diagonal line should be a perfect correlation (One region

measured against itself) and the remaining are the cross product of the rest.
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FIGURE 3 | Significantly elevated BOLD activity during the 2 > 0 back condition in CFS and control groups before and after exercise.

lobe (O3), right superior temporal gyrus (T1), right inferior
frontal gyrus opercular (F3OP), right inferior gyrus triangular
(F3T), right superior frontal gyrus orbital (F10), right superior
frontal gyrus medial orbital (F1MO), left and right precuneus
(PQ), left middle temporal gyrus (T2), left rolandic operculum
(RO), left postcentral gyrus (POST), right cerebellum crus 1, and
left cerebellum 9.

Another indication of significant differences was shown by
looking at the patterns of Pearson’s correlation coefficients
between individual AAL regions between groups and days
(Figure 5). SC on Day 1 had the highest number of correlations
with R ≥ 0.7 suggesting that control subjects were focused on
the task on Day 1. SC subjects had fewer correlations with
R > 0.7 on Day 2 suggesting that they exhibited learning,
automaticity, and required a lower level of focus to complete
the n-back task. CFS had fewer correlations on the pre-
exercise MRI scan, different patterns of correlations from SC
on both days, and poor similarity between Days 1 and 2.
The different patterns of correlations between AAL regions
supported the logistic regression analysis and demonstrated
differences in connectivity between brain regions for CFS and
SC before and after exercise. These outcomes predict that
more advanced measures of functional connectivity (Rubinov
and Sporns, 2010) will differ between CFS and SC before

and after exercise and when depicting changes related to
post-exertional malaise.

The composite multivariate pattern of activation
differentiated CFS from Control with 80.9% accuracy on
Day 1 and 76.1% accuracy on Day 2. Cross validation performed
better than random on both days with a 65% accuracy on
Day 1 and 57.5% accuracy on Day 2 (Table 3). Both the Day
1 and Day 2 models were able to correctly predict CFS from
a SC greater than random chance (>0.5) due to this high
predictive performances, however the Day 1 predictive model
showed greater predictive power than the Day 2 model upon
cross-validation. More samples in a future study would assist in
validating this predictive performance.

The Shuffle Test reproduced an accuracy of 65% on 0 of the
1,000 shuffled test runs for Day 1. The Day 1 Shuffle Test had
an average of 44% accuracy and mode of 37.5% accuracy for the
1,000 test runs. To ensure the statistical rigor of this method, the
Shuffle Test was repeated for an additional 10,000 permutations
on Day 1. A maximum accuracy of 69% was obtained and results
for 65% accuracy or greater were found 11 times of 10,000 runs.
Thus, it was determined the Day 1 model was significant at a p <

0.01 level. The Shuffle Test for Day 2 reproduced an accuracy of
57% or higher on 40 of 1,000 test runs. The Day 2 Shuffle Test had
an average of 46% accuracy and mode of 43.5% accuracy for the
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FIGURE 4 | Overall pattern depicting the difference in brain activation between CFS and sedentary control groups on Day 1 and Day 2. Axial slices show the pattern

of 29 AAL regions that had significantly different numbers of activated voxels (t > 3.17, p < 0.001) in the 2 > 0-black condition based on logistic regression analysis.

The complete pattern reflects the overall changes in all regions. Individual AAL regions are color coded for clarity. The colors do not indicate differences in BOLD signal

intensity, t-values, logistic regression coefficients or Pearson’s correlation coefficients for any single region between the two groups.

1,000 test runs. As both tests reproduced the model accuracy on
<5% of 1,000 shuffled runs, it was determined that each model
was significant at p < 0.05.

DISCUSSION

This machine-learning approach was able to uncover a pattern
of activated neurological regions that differentiated CFS from
control subjects. The results of these two models indicate that
machine learning algorithms combined with the voxel counts
for activated regions grouped into the AAL Atlas was able to
differentiate CFS from sedentary controls with good accuracy.

The outcome indicates that analysis of fMRI data by machine
learning algorithm(s) may lead to their use as part of a diagnostic
tool that relies on cognitive aspects of CFS and their response to
the physiological stressor of exercise. This may provide objective
support for the concept of post-exertional malaise that is a central
tenet of current subjectively defined CFS diagnostic criteria
(Fukuda et al., 1994; Carruthers et al., 2003).

Ten AAL regions were significantly different according to the
predictive model between SC and CFS before and after exercise
and may represent persistent indicators of CFS pathologies. Left
and right putamen and right caudate of the basal ganglia may
be part of the Affective Network that has been identified by
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TABLE 2 | AAL regions and logistic regression coefficients.

AAL ID AAL abbreviation Day 1 Day 2

72 R Caudate_R (CAU) 0.054 0.010

73 L Putamen_L (PUT) −0.375 0.065

74 R Putamen_R (PUT) −0.449 0.010

63 L Supramarginal gyrus (SMG) 0.294 −0.008

58 R Postcentral gyrus (POST) −0.379 −0.161

40 R Parahippocampus (PHIP) 0.092 0.015

15 L Inferior frontal gyrus, orbital (F3O) 0.142 0.214

86 R Middle temporal gyrus (T2) −0.106 −0.153

83 L Temporal pole; superior temporal gyrus (T1P) −0.128 −0.427

104 R Cerebellum 8 0.115 −0.028

3 L Superior frontal gyrus, dorsolateral (F1) −0.117

4 R Superior frontal gyrus, dorsolateral (F1) 0.107

24 R Superior frontal gyrus, medial (F1M) 0.303

10 R Middle frontal gyrus, orbital (F2O) −0.262

28 R Gyrus rectus (GR) −0.081

9 L Middle frontal gyrus, orbital (F2O) 0.193

88 R Temporal pole; middle temporal gyrus (T2P) 0.000

64 R Supramarginal gyrus (SMG) 0.206

97 L Cerebellum 4 5 0.340

112 R Vermis 6 −0.374

99 L Cerebellum 6 −0.278

20 R Supplementary motor area (SMA) −0.145

69 L Paracentral lobule (PCL) −0.176

18 R Rolandic operculum (RO) 0.534

46 R Cuneus (Q) 0.566

48 R Lingual gyrus (LING) −0.292

49 L Superior occipital lobe (O1) 0.290

52 R Middle occipital lobe (O2) −0.262

56 R Fusiform gyrus (FUSI) 0.269

75 L Pallidum_L (PAL) −0.172

76 R Pallidum_R (PAL) −0.062

43 L Calcarine fissure and surrounding cortex (V1) −0.134

44 R Calcarine fissure and surrounding cortex (V1) 0.122

51 L Middle occipital lobe (O2) 0.203

53 L Inferior occipital lobe (O3) −0.209

82 R Superior temporal gyrus (T1) 0.252

12 R Inferior frontal gyrus, opercular (F3OP) 0.139

14 R Inferior frontal gyrus, triangular (F3T) −0.148

6 R Superior frontal gyrus, orbital (F1O) −0.039

26 R Superior frontal gyrus, medial orbital (F1MO) −0.178

67 L Precuneus (PQ) −0.172

68 R Precuneus (PQ) 0.107

85 L Middle temporal gyrus (T2) 0.091

17 L Rolandic operculum (RO) 0.542

57 L Postcentral gyrus (POST) 0.071

92 R Cerebellum crus 1 0.086

105 L Cerebellum 9 0.095

Ten regions were differentially activated between CFS and SC on both Days 1 and 2, with

17 regions only on Day 1 and 16 other regions only after exercise.

meta-analysis of studies in anxiety (Xu et al., 2019). The primary
sensory region (right S1) has been associated with heightened
sensory awareness in panic disorder (Kim and Yoon, 2018). AAL

regions of the ventromedial prefrontal cortex, temporal lobe, and
parahippocampus overlapped with nodes from the default mode
network (DMN) (Fox et al., 2015). Theymay bemore related with
subsets of the DMN related to rest and retrieval than forward
thinking (Bellana et al., 2017). The left cerebellar hemisphere
region eight has motor functions but is adjacent to regions having
cognitive effects (Schmahmann, 2019).

Nineteen regions distinguished CFS from control only
on Day 1 before exercise. They fit into several general
patterns. Ventromedial and dorsomedial prefrontal cortex,
parahippocampus and temporal pole regions are part of the
default mode network (Mazziotta et al., 1995; Fox et al., 2015;
Bellana et al., 2017). Cerebellar regions mediated working
memory and emotional processing, and may have interacted
with supplementary motor areas in pain and interoceptive
dysfunction (Schmahmann, 2019). Occipital regions implicated
visual functions. Bilateral supramarginal gyri suggested a role in
the systemic hyperalgesia found in CFS (Lanz et al., 2011).

These 29 regions were differentially activated in CFS and
controls before exercise. They included six ventromedial and
dorsomedial frontal cortex regions of the anterior division of the
DMN, and the right cuneus, right middle temporal gyrus (T2P),
and right supramarginal gyrus from the posterior DMN (Laird
et al., 2009; Fox et al., 2015). Heightened sensory awareness was
implicated by activation of five regions of the visual network,
right Rolandic operculum, supplementary motor areas (SMA),
and cerebellum. The Rolandic operculum is the “little lid” of the
parietal lobe that folds over the posterior insula. The bilateral
Rolandic operculum integrates exteroceptive and interoceptive
signals that are necessary for bodily self-consciousness and
interoceptive awareness (Wager et al., 2013; Blefari et al., 2017)
and is activated for maintenance of vigilant attention during
simple tasks such as the stimulus-response 0-back task and
discrimination tasks that require continuous decisions about
alternative responses (e.g., go vs. no-go tasks) (Langner and
Eickhoff, 2013).

The right supplementary motor area (SMA) and left
paracentral lobule are functionally connected to cerebellar
regions during pain processing (Coombes and Misra, 2016).
Left cerebellar hemispheres 4, 5, and 6 have been implicated in
workingmemory and generalized aversive processing, while right
vermis six functions in emotional processing (Schmahmann,
2019). Visual regions may be differentially activated for attention
(Vossel et al., 2014) or visual memory (Baldassano et al., 2016)
during the n-back task.

After exercise, 18 other regions were activated. They
included bilateral pallidum, precuneus, and superior frontal
gyri, and visual cortex. These 28 regions were differentially
activated on Day 2. Left and right pallidum joined other
basal ganglia regions of the affective network (Xu et al.,
2019). Bilateral precuneus, anterior insula, and sensorimotor
cortex (Vossel et al., 2014), ventromedial frontal cortex and
temporal regions suggest activation of the rostromedial frontal—
lateral temporal subnetwork of the DMN (Bellana et al., 2017).
Left and right precuneus may indicate DMN activation, or
recruitment for cognitive compensation during the challenging
2-back task. Even though the dorsal precuneus is a node
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FIGURE 5 | Pearson’s correlation coefficients between the BOLD activities in AAL regions that were differentially activated in SC and CFS on Days 1 and 2. AAL

regions were listed in alphabetical order on the x- and y-axes for the 10 regions that were activated on Days 1 and 2 (yellow), on only on Day 1 or Day 2. Correlations

were color coded in orange (R > 0.7), red (R > 0.8) and dark red (R > 0.9). As predicted by the logistic regression, CFS and SC had different patterns of correlations

for the 10 shared regions (green) on Days 1 and 2, and between CFS and SC for the regions that were significantly different on Day 1 and Day 2.

in the DMN, it can be recruited into task systems during
n-back testing (Rzucidlo et al., 2013). This is in contrast
to the ventral precuneus that is only associated with DMN
functions. Sensory activation was suggested by activation of
bilateral postcentral gyri (S1) as found in panic disorder (Kim
and Yoon, 2018). Occipital lobe visual network regions were
particularly noteworthy and may indicate heightened vigilance,
visual and memory analysis, or general sensory hypersensitivity.
The ventral attention network was suggested by activation of

the right ventrolateral prefrontal cortex (Fox et al., 2015).
Attention and vigilance were implied from the activation of
visual regions that can interact with dorsal attention network
nodes in the intraparietal sulcus, and the right temporal
parietal junction of the ventral attention network (Vossel
et al., 2014). The left Rolandic operculum had the highest
coefficient of any region, and was notable for its association
with bodily self-consciousness, interoceptive and pain networks
(Blefari et al., 2017).
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TABLE 3 | Model results for day 1 (pre-submaximal exercise) and day 2 (post

submaximal exercise).

Pre-exercise

(day 1)

Pre-exercise

(day 2)

Accuracy 80.9% 76.1%

10x cross validation frequency 65% 57.5%

Sensitivity 87.5% 76.9%

Specificity 76.9% 75%

PPV 70% 83.3%

NPV 90.9% 66.7%

Significance as determined from Shuffle Test p < 0.01 p < 0.05

Shuffle test average 44% 46%

Shuffle test mode 37.5% 43.5%

The accuracy and 10x cross validation frequency represent the corresponding model

accuracy and accuracy after being ran through 10 smaller sub samplings of the initial

testing set.

The specific AAL regions that were differentially activated
and selected by the logistic regression model were different
between CFS and control on Days 1 and 2, but many of
the regions were closely related because they belonged to the
same functionally defined brain networks. Many belonged to
the default mode network (DMN). Differential activation was
found in the ventromedial and dorsomedial prefrontal cortex,
hippocampus, lateral and temporal poles of the DMN, but with
no significant differences for the medial posterior DMN nodes
in the retrosplenial and posterior cingulate cortex regions (Laird
et al., 2011; Fox et al., 2015). Affective network regions included
basal ganglia, dorsal precuneus, sensorimotor regions, dACC and
anterior insulae (Kim and Yoon, 2018). However, the amygdala
was not differentially activated in CFS vs. control. The logistic
regression included cerebellar and supplementary motor regions
involved in working memory suggesting they were recruited as
cognitive compensation or because of their interactions with
sensorimotor regions during pain processing (Schmahmann,
2019). Cognitive compensation was suggested by the inclusion
of the dorsal precuneus in the logistic regression on Day 2.
Multimodal sensory intergration was suggested by visual and
sensorimotor nodes, and on Day 2 by the addition of the ventral
attention network. The Rolandic operculum, affective, cognitive,
sensory, and attention network changes on Day 2 after exercise
provocations may point to regions involved in post-exertional
malaise in CFS. Involvement of these networks in the logistic
regression was consistent with attention, memory and other
cognitive dysfunction, chronic pain, systemic hyperalgesia and
allodynia, negative emotion, and labile arousal that are part of
the clinical presentation of CFS.

A limitation was the small sample size that created relatively
small training and validation sets. The results of this pilot study
can now be used to power larger studies to test the hypotheses
proposed above. The nature of logistic regression means that
individual regions of activation or deactivation of pathological
significance for CFS cannot be determined from themodel results
alone. The coefficients assigned to input features are the “log
odds” for the statistical models and not actual representations

of increased or decreased BOLD activities. Because the variables
depend on one another, it is the collective grouping of all AAL
regions from the regression that ultimately show the difference
between CFS and control. It is the entire pattern that transforms
the fMRI data into a potential diagnostic biomarker. This
methodology may be generalizable to allow sharing of fMRI data
and creation of a diagnostic tool.

CONCLUSION

The logistic regression model performed on fMRI data
significantly differentiated CFS from control withmodel accuracy
of 80.9% on Day 1 before exercise and 76.1% on Day 2 during
the period of post-exertional malaise. Before exercise, CFS and
control groups were different because of differential activation in
default mode network nodes, and sensory perception networks
involving visual, somatic, supplementary motor areas and
cerebellar regions. These differences suggested dysfunction of
attention and potential distraction by sensory processing in
pain and interoception. Differential activation after exercise may
indicate objective alterations related to post-exertional malaise
involving frontal and lateral temporal nodes of the default mode
network, sensory hypervigilance and attention using the left
Rolandic operculum, visual network and the ventral attention
network, and basal ganglia in the Affective Network.
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