
ORIGINAL RESEARCH ARTICLE
published: 12 September 2014
doi: 10.3389/fphys.2014.00345

Sox2 acts as a rheostat of epithelial to mesenchymal
transition during neural crest development
Nikolaos Mandalos1, Muriel Rhinn2, Zoraide Granchi3, Ioannis Karampelas1,4, Thimios Mitsiadis3,

Aris N. Economides5, Pascal Dollé2 and Eumorphia Remboutsika1*

1 Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre “Alexander Fleming,” Vari-Attica, Greece
2 Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch, France
3 Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, University of Zurich, ZZM, Zurich, Switzerland
4 Department of Neurosurgery, University Hospitals Case Medical Center, Cleveland, OH, USA
5 Regeneron Pharmaceuticals, Tarrytown, New York, NY, USA

Edited by:

Gianpaolo Papaccio, Second
University of Naples, Italy

Reviewed by:

Petros Papagerakis, University of
Michigan, USA
Virginia Tirino, Department of
Experimental Medicine, Italy

*Correspondence:

Eumorphia Remboutsika, Stem Cell
Biology Laboratory, Division of
Molecular Biology and Genetics,
Biomedical Sciences Research
Centre “Alexander Fleming,”
34 Fleming Str., 16672 Vari, Attica,
Greece
e-mail: remboutsika@gmail.com
www.eumorphiaremboutsika.com

Precise control of self-renewal and differentiation of progenitor cells into the cranial neural
crest (CNC) pool ensures proper head development, guided by signaling pathways such
as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential
role in controlling progenitor cell behavior during craniofacial development. A “Conditional
by Inversion” Sox2 allele (Sox2COIN ) has been employed to generate an epiblast
ablation of Sox2 function (Sox2EpINV ). Sox2EpINV /+(H) haploinsufficient and conditional
(Sox2EpINV /mosaic ) mutant embryos proceed beyond gastrulation and die around E11. These
mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal
truncations, which could be attributed to the deregulation of CNC progenitor cells during
their epithelial to mesenchymal transition. This irregularity results in an exacerbated and
aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of
the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator
of the epithelial to mesenchymal transitions (EMT) that are important for the cell flow in
the developing head.
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INTRODUCTION
The head develops from anteriorly located cells of the epi-
blast. These cells form the neuroectoderm that gives rise to
the brain and craniofacial structures stemming via epithelial
to mesenchymal transitions (EMT). Balanced control between
self-renewal of neural progenitors and their differentiation into
cranial neural crest cells (NCCs) ensures proper head devel-
opment. Cranial NCCs (CNCCs) arise from a NCC pool
derived from the neural ectoderm, and give rise to most of
the peripheral nervous system and craniofacial structures. NCCs
are induced by interactions between the neuroectoderm and
adjacent non-neural ectoderm (Dickinson et al., 1995; Selleck
and Bronner-Fraser, 1995). These interactions are orchestrated
by a combination of signaling molecules such as Wnt pro-
teins, bone morphogenetic proteins (BMPs) (Liem et al., 1995),
fibroblast growth factors (FGFs), retinoic acid and proteins of
the Notch pathway (Labonne and Bronner-Fraser, 1998; Aybar
et al., 2002; Aybar and Mayor, 2002; Christiansen et al., 2002;
Endo et al., 2002; Garcia-Castro et al., 2002; Villanueva et al.,
2002; Wu et al., 2003). NCCs delaminate from the dorsal
neural tube, migrate along defined territories of the cranio-
facial complex and finally differentiate into many cell types,
including neurons, glial cells, Schwann cells, melanocytes, and
cells of the connective tissue (Ayer-Le Lievre and Le Douarin,
1982).

Neural crest (NC) development depends on the activation
of NCC-specific genes at the neural plate border (Gammill and
Bronner-Fraser, 2003; Heeg-Truesdell and Labonne, 2004; Huang
and Saint-Jeannet, 2004). A number of these genes belong to
the Sox (Sry HMG-box) family of transcription factors (sub-
divided into A-H groups) harboring an HMG-box as a DNA
binding domain (Pevny and Lovell-Badge, 1997; Wegner, 1999;
Wilson and Koopman, 2002; Bernard and Harley, 2010; Kamachi
et al., 2013; Karnavas et al., 2013). Whereas all SoxE genes show
expression in NCC progenitors at some point following NC
induction, differences exist in the onset and sequence of events.
Induction of NCC formation is triggered by the expression of
SoxE genes (Gammill and Bronner-Fraser, 2002), such as Sox8,
Sox9, and Sox10 (Bowles et al., 2000). These genes are already
expressed in all premigratory NCCs, while later their expression
becomes restricted to distinct NCC-derived subpopulations (Stolt
et al., 2004; Betancur et al., 2011). Sox8 expression occurs before
NCC migration from the neural tube, followed by Sox9, and
shortly after Sox10 (Cheng et al., 2000). Sox9 expression over-
laps with that of a number of NCC determinant genes, such
as FoxD3, Bmp4, cadherin 6b, Slug, and RhoB (Liu and Jessell,
1998; Briscoe et al., 2003). BMP signaling drives the induction,
formation, determination and migration of CNCCs (Nie et al.,
2006). Cadherin 6b establishes the premigratory NCC domain
in the neural tube (Taneyhill, 2008). Slug induces premigratory
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and migratory CNCC behavior (Del Barrio and Nieto, 2002).
Foxd3 induces the segregation of NCC from the neural tube (Kos
et al., 2001). Rho is involved in delamination of NCC from the
dorsal neural tube (Rutishauser and Jessell, 1988; Cordero et al.,
2011). As migration starts (Nakagawa and Takeichi, 1995; Jessel
and Weiss, 1998), Slug, RhoB, N-cadherin, and cadherin 6b are
down-regulated at the trunk level (Akitaya and Bronner-Fraser,
1992; Monier, 1995), while FoxD3 expression persists in all migra-
tory NCCs (Cheng et al., 2000; Dottori et al., 2001). On the other
hand, Sox10 persists only in the trunk NCC populations (Cheng
et al., 2000; Remboutsika et al., 2011).

Amongst SoxB genes (Sox1,2,3,14, and 21), Sox2 has been
reported to play a cell-autonomous role in NCC development
(Pan and Schultz, 2011). Sox2 is one of the early-activated genes
in the developing neural plate (Graham et al., 2003; Wen et al.,
2008; Hutton and Pevny, 2011), and its expression is reduced in
the dorsal neural tube as NCCs segregate and migrate. Thereafter,
Sox2 expression is upregulated in a subset of cells that arrived
at their final destination, and gradually becomes restricted to
the glial sublineages (Aquino et al., 2006). Sox2 prevents ter-
minal differentiation of Schwann cells (Wakamatsu et al., 2004;
Le et al., 2005) and represses the melanocyte fate (Laga et al.,
2010). Ectopic expression of Sox2 in embryonic ectoderm and
neural plate explants reveals that Sox2 is sufficient to inhibit
NCC formation both in chick and mouse embryos (Papanayotou
et al., 2008; Remboutsika et al., 2011). It has been postulated
that Sox2 counteracts NC development (Scherson et al., 1993;
Placzek and Briscoe, 2005; Remboutsika et al., 2011), as the NCC
marker Slug is only expressed at regions of low Sox2 expression
in premigratory and migratory NCCs (Wakamatsu et al., 2004).
Despite evidence that points to an involvement for Sox2 in mul-
tiple steps of NCC development in mouse embryo, its role is yet
elusive.

Homozygous Sox2-null mouse embryos die around implan-
tation (Avilion et al., 2003b; Mandalos et al., 2012). We have
developed a conditional ablation strategy, using a “Conditional by
Inversion” Sox2 allele (Sox2COIN ) (Mandalos et al., 2012), in order
to study the role of Sox2 in epiblast-derived multipotent lineages.
Here, we show that Sox2 plays an essential role in controlling the
behavior of the progenitor cells during head development. EMT
is affected in mutant embryos during CNCC development, result-
ing in hydrocephaly and frontonasal defects. These results suggest
a novel role for Sox2 as a rheostat of the EMTs that influence head
development in mice.

MATERIALS AND METHODS
EXPERIMENTAL ANIMALS
Generation of Sox2COIN mice was described elsewhere (Mandalos
et al., 2012). All animals were handled in strict accordance
with good animal practice as defined by the Animals Act
160/03.05.1991 applicable in Greece, revised according to the
86/609/EEC/24.11.1986 EU directive regarding the proper care
and use of laboratory animals and in accordance to the Hellenic
License for Animal Experimentation at the BSRC “Alexander
Fleming” (Prot. No. 767/28.02.07) issued after protocol approval
by the Animal Research Committee of the BSRC “Alexander
Fleming” (Prot. No. 2762/03.08.05).

GENOTYPING
Tail, yolk sack or embryonic tissues were isolated and pro-
cessed according to previously described methodology (Mandalos
et al., 2012). PCR amplification conditions and primers used are
described elsewhere (Mandalos et al., 2012).

EMBRYO PROCESSING AND HISTOLOGICAL ANALYSIS
For staging of the embryos, midday of the vaginal plug was
considered as embryonic day 0.5 (E0.5). All embryos were har-
vested in cold 0.12 M phosphate-buffered saline (PBS, pH 7.5).
For histological analysis, embryos were fixed with 10% forma-
lin for 24 h at room temperature and then washed several times
with PBS, placed in embedding cassettes and sectioned in a Leica
RM2125RT microtome. Paraffin sections (10 µm) were stained
with hematoxylin and eosin and mounted with xylene based
mounting medium, according to standard procedures (Fischer
et al., 2008; Cardiff et al., 2014).

Embryos were harvested and fixed with 4% paraformalde-
hyde (PFA) in PBS overnight at 4◦C and thoroughly washed
with PBS. Fixed embryos were incubated with 20% sucrose
overnight at 4◦C for cryoprotection before they were embed-
ded with O.C.T. compound (VWR International), snap-frozen
in dry ice and stored at −80◦C. Sagittal sections were pre-
pared using a Leica cryostat. Cryosections (10–12 µm) were col-
lected on Superfrost Plus microscope slides (VWR International)
and stored at −20◦C before analysis. For in situ hybridization,
embryos were fixed overnight in PFA 4% in PBS then rinsed
three times in PBS/Tween (0.1%) followed by three times wash in
methanol before storage at −20◦. Conventional bright field and
fluorescence microscopy was performed under a Leica MZ16FA
stereoscope.

RNA IN SITU HYBRIDIZATION
RNA probes for in situ hybridization reactions were prepared
by in vitro transcription as previously described (Knuchel et al.,
2000; Chotteau-Lelievre et al., 2006; Rhinn et al., 2011) The
probes used were: Hoxa2 and Hoxb1, kindly provided by Robb
Krumlauf; Sox2, kindly provided by Robin Lovell-Badge; Sox10,
kindly provided by Benoît de Crombrugghe. Whole-mount in situ
hybridization (ISH) was performed using an Intavis InSituPro
robot (detailed protocol available at http://empress.har.mrc.ac.
uk/, gene expression section).

IMAGE ANALYSIS
Embryo dissections, conventional bright field and fluorescence
microscopy were performed under a Leica MZ16FA stereo-
scope, equipped with a Leica 350 camera and Leica Software.
Sections were photographed under a Leica M420 macroscope
and DMLB/DM4000B microscopes equipped with Photometrics
digital cameras and the CoolSnap imaging software (Roger
Scientific).

RESULTS
EPIBLAST DELETION OF Sox2 RESULTS INTO LETHALITY AROUND E11
The epiblast is destined to derive all multipotent lineages in
the mouse embryo. Previously generated, null alleles of Sox2
(Sox2βgeo/βgeo and Sox2βgeo2/βgeo2) are responsible for an early

Frontiers in Physiology | Craniofacial Biology September 2014 | Volume 5 | Article 345 | 2

http://empress.har.mrc.ac.uk/
http://empress.har.mrc.ac.uk/
http://www.frontiersin.org/Craniofacial_Biology
http://www.frontiersin.org/Craniofacial_Biology
http://www.frontiersin.org/Craniofacial_Biology/archive


Mandalos et al. Head development is fine tuned by Sox2

embryonic lethal phenotype (Avilion et al., 2003a; Ekonomou
et al., 2005), masking any subsequent role of Sox2 in the gen-
eration of epiblast-derived multipotent lineages during develop-
ment. Taking into account the challenges of the Sox2 locus, in that
its proximal promoter and coding region are entirely contained
within a CpG island, and are also spanned by an overlapping
transcript, Sox2Ot, which contains mmu-miR1897 (Amaral et al.,
2009; Shahryari et al., 2014), we developed a novel conditional
by inversion Sox2COIN allele (Mandalos et al., 2012). The inverted
COIN Sox2 allele (Sox2INV ) is functionally null (Mandalos et al.,
2012), as Sox2INV/INV mutants recapitulate the phenotype of
Sox2βgeo/βgeo (Avilion et al., 2003a), Sox2βgeo2/βgeo2 (Ekonomou
et al., 2005) and Sox2EpINV/βgeo2 (Mandalos et al., 2012) embryos,
which die around implantation.

We generated epiblast inverted Sox2EpINV/+ mice, making
use of the Tg(Sox2-CRE) mouse line that exerts efficient Cre-
mediated recombination in the epiblast, but not in extraembry-
onic tissues (Hayashi et al., 2002a,b, 2003; Vincent and Robertson,
2003). Excision of the floxed sequences by Tg(Sox2-CRE) mice
efficiently results in the visualization of eGFP in the epiblast at
E6.5 (Figures 1A–D).

As Sox2 is known to function as a cell fate determinant (Kondo
and Raff, 2004; Yamaguchi et al., 2011; Karnavas et al., 2013),
we harvested embryos from various intercrosses at the onset
of organogenesis (E11.5). Initially, we performed Sox2EpINV/+
x Sox2+/+ intercrosses and found that heterozygous E11.5
Sox2EpINV/+ embryos do not show any obvious abnormalities and
are indistinguishable from control Sox2COIN/COIN and Sox2+/+

FIGURE 1 | Sox2 inversion in the epiblast leads to embryonic lethality at

E11.5. Generation of the epiblast-inverted Sox2EpINV allele. Sox2EpINV /+
embryos at E6.5 show normal morphology compared with Sox2+/+ control
embryos. eGFP expression indicates that Sox2 is highly expressed in the
epiblast, but not in the extraembryonic tissue (A–D). Sox2EpINV /+ embryos
obtained from Sox2EpINV /+ × Sox2+/+ intercrosses are normal. At E11.5,

Sox2COIN/COIN and Sox2EpINV /+ embryos are indistinguishable from Sox2+/+
littermates (E–J). Sox2EpINV /+ intercrosses generate normal (Sox2EpINV /+)
(K,L,O,P) and haploinsufficient (Sox2EpINV /+(H)) embryos (M,N,Q,R). 50% of
the haploinsufficient Sox2EpINV /+(H) embryos have normal size (M,Q), whereas
the remaining ones have a smaller size (N,R) at E11.5. Both types of
Sox2EpINV /+(H) mutant embryos show evident defects in the head region (M,N).

www.frontiersin.org September 2014 | Volume 5 | Article 345 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Craniofacial_Biology/archive


Mandalos et al. Head development is fine tuned by Sox2

littermates (Figures 1E–G). E11.5 Sox2EpINV/+ embryos express
eGFP precisely in the areas where Sox2 is expressed (Avilion et al.,
2003a; Mandalos et al., 2012) (Figures 1H–J). Sox2EpINV/+ adult
mice are fertile, feed normally, have normal body weight and
normal lifespan, whilst Sox2INV/+ adult male exhibit no infertil-
ity problems, as some Sox2βgeo/+ mice reportedly have (Avilion
et al., 2003b). It is tempting to suggest that infertility problems
in Sox2βgeo2/+ and Sox2βgeo2/+ mice could arise from the removal
of regulatory regions due to the design of the mutants, while in
Sox2EpINV/+ mice the whole sequence of the locus remains intact
after inversion (Mandalos et al., 2012).

EPIBLAST DELETION OF Sox2 RESULTS INTO HYDROCEPHALY AND
CRANIOFACIAL DEFECTS
We then proceeded to Sox2EpINV/+ intercrosses and har-
vested the embryos again at E11.5 (Table 1). Normally, if
all Sox2EpINV/+ and Sox2EpINV/EpINV embryos would survive,
one would expect that 75% of the embryos would be eGFP-
positive (eGFP+). However, we observed that only 48.8% of
the embryos harvested were eGFP+, suggesting that as previ-
ously observed (Mandalos et al., 2012), the Sox2EpINV/EpINV die
in the deciduas at an early stage (Table 1). Half of the har-
vested eGFP+ heterozygote embryos had normal phenotypes
Sox2EpINV/+ (Figures 1L,P), while the remaining ones repre-
sented haploinsufficient Sox2EpINV/+ (Sox2EpINV/+(H)) mutants
(Figures 1Q,R). The Sox2EpINV/+(H) observed embryonic phe-
notypes fall in two categories: (a) Sox2INV/+(H) embryos with a
similar size to Sox2+/+ and Sox2INV/+ embryos (Figures 1M,Q)
and (b) Sox2INV/+(H) embryos with a significantly reduced
size (Figures 1N,R) compared to Sox2+/+ (Figures 1K,O) and
Sox2EpINV/+ littermates (Figures 1L,P). Sox2EpINV/+(H) embryos
exhibit heart defects, hemorrhage, bulging fourth ventricu-
lar roof, and severe craniofacial defects (Figure 1M). We har-
vested litters at E12.5 and E15.5 derived from Sox2EpINV/+
intercrosses and found only Sox2+/+ and Sox2EpINV/+ normal
embryos, suggesting that Sox2EpINV/+(H) embryos die at around
E11. Phenotypic differences among heterozygote Sox2EpINV/+
and Sox2EpINV/+(H) littermates, derived from Sox2EpINV/+ inter-
crosses confirm that there is a Sox2 expression threshold, below
which phenotypic abnormalities appear during embryogene-
sis. To generate conditional epiblast-inverted Sox2 mutants,
we performed Sox2COIN/COIN to Sox2EpINV/+; Tg(Sox2CRE)
intercrosses and named these conditional mutant embryos
Sox2EpINV/mosaic. We could harvest Sox2EpINV/mosaic embryos
from E8.5 to E11.5, but not beyond E11.5, indicating that

these mutants, similarly to Sox2EpINV/+(H) mutants, die around
E11.5. Sox2EpINV/mosaic embryos exhibited similar, albeit more
severe, abnormalities compared to Sox2EpINV/+(H) embryos
(Figures 2A–F).

To examine whether a regional loss of Sox2 expression was
responsible for those defects, we analyzed Sox2 expression by RNA
in situ hybridization (Figures 2D–F). Sox2 was absent through-
out the spinal cord (sc) in E10.5 mutants, with an exception of
the tail tip of both Sox2EpINV/+ and Sox2EpINV/mosaic mutants
(Figures 2E,F). However, there were no obvious morphological
defects in the SC at E10.5, suggesting that down-regulation of
Sox2 could be rescued due to the functional redundancy of Sox2
with other SoxB genes, namely Sox1 and Sox3 (Uwanogho et al.,
1995; Rex et al., 1997; Wood and Episkopou, 1999; Archer et al.,
2011; Elkouris et al., 2011). We observed a down-regulation of
Sox2 in the frontonasal process (fnp), the forebrain region (fb),
the midbrain (mb) and the hindbrain (hb), the eye (Hever et al.,
2006) and the otocyst (ot) (Kiernan et al., 2005; Hume et al., 2007;
Pan et al., 2013) of Sox2EpINV/+(H) and Sox2EpINV/mosaic mutant
embryos. Morphologically, there was a distortion of the eye, an
enlargement of the brain ventricles, and marked translucency in
the hindbrain region.

Several studies have shown that regulation of EMT during
NCC development plays a crucial role for the normal develop-
ment of the frontonasal region, including the palate and nasal
cavities (Kang and Svoboda, 2005). We observed that Sox2 protein
marks specific brain and craniofacial regions during their devel-
opment (Figure 3). In E11.5 embryos, expression is seen in the
hindbrain and forebrain neuroepithelium, and in the oral epithe-
lium (Figures 3A–D). At E15.5, Sox2 is expressed in the dermis
surrounding developing hair follicles and whiskers, including in
their dermal papilla (Figures 3H–J). Sox2 is also detected in the
epithelium of the retina (Figure 3K), in developing bone and
cartilage (Figure 3L), in muscle fibers (Figures 3M,N) and the
acinar structures of the salivary glands (Figure 3O). Furthermore,
Sox2 asymmetrically marks the epithelium that connects the
developing molar teeth with the oral epithelium (Figure 3P).
At later post-natal stages Sox2 is expressed in the alveolar bone
(ab) (Figure 3T) and in the incisor labial cervical loop (cl,
Figures 3R,S). In the hair follicles the expression is confined to
some cells of the inner and outer sheath (Figures 3Q,U).

To further analyze the craniofacial defects observed in
Sox2EpINV/+(H) embryos, we harvested E11.5 Sox2EpINV/+(H)

mutants and sectioned them for hematoxylin and eosin
histological analysis (Figures 4A–D). Compared to Sox2+/+

Table 1 | Analysis of progeny from Sox2EpINV /+ × Sox2EpINV /+ intercrosses#.

Genotypic distribution obtained at E11.5*

Total Dead Live Sox2EpINV /+ Sox2EpINV/+(H ) Sox2EpINV/EpINV Sox2+/+

43 11 (25.6%) 32 (74.4%) 11 (25.6%) 10 (23.2)** 0 (0%) 11 (25.6%)

#Data collected from mice in C57BL6 background.
*Genotypes were assessed by PCR either from tail biopsies or from embryonic yolk sac or whole embryos.
**50% of Sox2INV /+(H) (11.6% of the total number of embryos) from Sox2INV /+× Sox2INV /+ intercrosses have a smaller size (Figures 1N,R).
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FIGURE 2 | Sox2 loss leads to multiple developmental defects. eGFP
expression recapitulates the expression of Sox2 in Sox2EpINV /mosaic mutant
(A–C). Whole mount in situ hybridization shows down-regulation of Sox2 in
the hindbrain (hb), midbrain (mb) and forebrain (fb) regions, in the frontonasal
process (fnp), the eye (ey), the surface ectoderm of branchial arches 1 and 2

(ba1, ba2), and the spinal cord (sc) but not the tail tip, of E10.5 Sox2EpINV /+(H)

and Sox2EpINV /mosaic embryos. These embryos show increased translucency
mostly visible at the level of the hindbrain (hb); forebrain (fb) and midbrain
(mb). Ventricles are also enlarged and frontonasal truncations are evident
(D–F).

normal embryos, we observed a reduction of the thickness of the
neuroepithelial wall lining the telencephalic (fb), mesencephalic
(mb) and rhombencephalic (hb) ventricles, defective frontonasal
proccess and oral cavity formation, and dilated lumen of the optic
stalk (Figures 4A–D). Thus, Sox2 loss leads to severe brain and
craniofacial defects.

SOX2 LOSS LEADS TO DOWN-REGULATION OF Hoxa2 IN
RHOMBOMERE 3, BUT NOT Hoxb1 IN RHOMBOMERE 4
In order to find out whether Sox2 loss of function disrupts the
Hox code in hindbrain, we analyzed the expression of Hoxa2
and Hoxb1 at E8.5 in Sox2+/+ and Sox2EpINV/mosaic embryos,
using whole mount in situ hybridization (Figures 5A,B). We
observed that Hoxa2 is down-regulated in rhombomere (r)3, but
not in r5 of Sox2EpINV/mosaic mutant embryos, underscoring a
specific role for Sox2 in the regulation of Hoxa2 in r3 at E8.5
(Figures 5A,B). To find out whether Sox2 loss of function affects
the facial innervation programme, we analyzed the expression
of Hoxb1 in Sox2+/+ and Sox2EpINV/mosaic embryos, and found
that Hoxb1 expression was unaffected both in r4 (Figures 5A,B)
and in the spinal cord (data not shown) of E8.5 Sox2EpINV/mosaic

embryos. Thus, our results do not support previous reports on
Sox2 involvement in the regulation of Hoxb1 in vitro, at least with
regard to E8.5 hindbrain and spinal cord regions. As predicted
from these observations, when cranial nerves were stained for
Sox10 expression at E11.5 in mutant embryos (Figures 5C,D), we
found that Sox2 loss of function does not affect the formation of
Sox10+ ganglia of the spinal accessory, vagus (n10), glossopha-
ryngeal (n9), and branches of facial (n7) nerves (Figures 5C,D).

Sox2 FINE-TUNES THE FLOW OF MIGRATING Sox10+ NCCs
To investigate the fate of NCCs that may under to craniofa-
cial abnormalities observed in Sox2 mutants, we analyzed Sox10
expression in Sox2+/+ and Sox2EpINV/+(H) embryos at E9.5, at
an embryonic stage in which Sox10+ NCCs are migrating along
the lateral surface of the neural tube in wild-type embryos. We
found that Sox10+ cells expressing high levels of Sox10 are het-
erotopically present in the frontonasal region and in the branchial
arches (ba) 1-2 of Sox2EpINV/+(H) mutants (Figure 5A). Thus,
down-regulation of Sox2 causes a dramatic up-regulation of
Sox10 expression and an outflow of Sox10+ cells in the hind-
brain (hb) and branchial areas of mutant embryos. Furthermore,
we observed Sox10+ cells in Sox2EpINV/+(H) mutant embryos in
frontonasal areas, where Sox10 is normally not expressed, while
migrating CNCC do not express Sox10 at this embryonic stage
in Sox2+/+ control embryos (Figures 6A–D). Thus, Sox2 loss
disrupts severely the CNCC development.

DISCUSSION
EMT plays a crucial role in the development of the embryonic
head (Mitsiadis, 2011). CNCCs undergo EMT and individual cells
delaminate from the lateral ridges of the dorsal neural tube and
migrate to the craniofacial area (Kouskoura et al., 2011) to form
the frontonasal, maxillary and mandibular processes (Bronner-
Fraser, 2002). Amongst genes of the SoxB1 group (Sox1-3), which
are predominantly expressed in the developing central nervous
system (CNS) (Collignon et al., 1996; Wood and Episkopou,
1999), Sox3 activity is required for pharyngeal segmentation and
for the pharyngeal epithelium to proceed toward craniofacial
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FIGURE 3 | Immunohistochemical analysis of Sox2 expression in

developing craniofacial structures. At E11.5 Sox2 is detected in hindbrain
(hb) and forebrain (fb), as well as in the oral epithelium (oe) (A–D). At
E13.5, expression appears in the nasal epithelium (ne) (E–G). At E15.5
Sox2 is expressed in the dermis surrounding the developing whiskers (w),
and in their dermal papilla (wp) (H–P). Expression is also detected in the
retina (r, K), in developing bone (b) and cartilage (c, L), in developing
muscle fibers (mf, M,N), and in salivary glands (sg, O). Noteworthy, the
expression of Sox2 in the developing molar teeth is asymmetrical, being
restricted to the connection between the tooth and the oral epithelium

(oe) along the lingual side (P). At postnatal day 1 (PN1), Sox2 expression is
limited to some cells of the inner and outer root sheath of the whisker
epithelium (we, the outer root sheath being delimited by red dots, Q)
(Q–U). Sox2 is furthermore expressed in the labial cervical loop (cl) of the
incisor (inc) (R,S), in the alveolar bone (ab) (T,S) and the vasculature (U).
de, dental epithelium; dm, dental mesenchyme; dp, dental papilla; fnp,
frontonasal process; hl, hindlimb; m, mesenchyme; md, mandible; mx,
maxilla; n, nose; np, nasal process; e, epithelium; g, glomerulae; k,
keratinized part of the whisker; v, vessel; sm, smooth muscle; sg, salivary
gland; c, cartilage; r, retina; f, follicle; mf, muscular fibers.

morphogenesis (Rizzoti and Lovell-Badge, 2007). On the other
hand, Sox2 activity has been implicated in processes that coun-
teract NCC development (Hutton and Pevny, 2011; Remboutsika
et al., 2011; Cimadamore et al., 2012) and could affect the

generation of NCC progeny, as observed in differentiation exper-
iments of human ES cells (ESC)-derived NCCs into sensory
neurons in vitro (Cimadamore et al., 2012). Thus, the severity
of defects observed in the developing brain and facial structures
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FIGURE 4 | Sox2INV /+(H) E11.5 embryos exhibit brain and craniofacial

malformations. Histological analysis of Sox2+/+ and Sox2EpINV /+(H)

embryos head structures (A–D). Serial sagittal sections of E11.5 embryos
stained with hematoxylin and eosin. Sox2EpINV /+(H) embryos exhibit
thinness of the ventricular wall and abnormal oral cavity formation enlarged
forebrain and midbrain ventricles, while the frontonasal process (fnp) is
severely reduced with an abnormal oral cavity (B,D) when compared
Sox2+/+ littermates (A,C).

of Sox2EpINV/+(H) and Sox2EpINV/mosaic mutants underline a Sox2
dosage-dependent role in the development of both the head and
craniofacial areas.

Sox2EpINV/+(H) and Sox2EpINV/mosaic embryos suffer from
ventriculomegaly, which in turn leads to the accumulation of
increased amounts of cerebrospinal fluid (CSF) in the brain.
Hydrocephaly involves both dilated ventricular system and
increased intracranial pressure. Every reduction in the thick-
ness of the ventricular wall invevitably will result in dilation of
the ventricular system (hydrocephalus ex vacuo). It is difficult
to establish cause and effect relationship in this reciprocal set-
ting, however abnormal brain wall development will definitely
lead to morphologically enlarged ventricular system. The indi-
cation that the ventricular system is enlarged could not in itself
be considered proof of hydrocephaly, because there is thickness
of the wall, thus pointing to ventriculomegaly only (Deveale
et al., 2013). Likewise, reduction in the diameter of the aque-
duct and abnormal periaqueductal region development does not
prove etiological relationship toward hydrocephalus causation
(Lee et al., 2012). In adult animals, hydrocephaly involves also
defects in choroid plexus, but as this is in very early stages in
development at the embryonic period we examined, the contri-
bution of CSF overproduction in hydrocephalus causation is hard
to assess (Mizusawa, 1997). Sox2EpINV/+(H) and Sox2EpINV/mosaic

mutants display developmental defects both in ventricular sys-
tem/wall formation, as well as in the oral cavity morphology

FIGURE 5 | Hoxa2 and Hoxb1 expression in rhombomeres, and Sox10

expression in developing cranial nerves and ganglia. In situ
hybridization for Hoxa2 and Hoxb1 at E8.5 reveals that Hoxa2 is
down-regulated in rhombomere 3 of a Sox2INV /mosaic embryo, but not in
rhombomere 5 (A,B). Hoxb1 is normally expressed in r4 in Sox2INV /mosaic

mutants (A,B). Sox10+ nerves form normally in Sox2EpINV /+(H) embryos.
In situ hybridization reveals that Sox10 expression is not affected in
branchial arches 1 and 2 (ba1, ba2) in developing cranial nerves and ganglia
(n10, n9, n5mx, n5md, g7-8, g5, n5o) of Sox2EpINV /mosaic mutants
compared with Sox2+/+ control embryos (C,D). ey, eye.

that could contribute to early pathoanatomical events resulting
in hydrocephalus and craniofacial defects in humans (Panetta
et al., 2008). Thus, disruption of Sox2 function in the embryonic
head region could be an additional cause for the development of
hydrocephalus later on in life.

Hox genes play an essential role in the development of cranio-
facial structures (Trainor and Krumlauf, 2000; Narita and Rijli,
2009; Tumpel et al., 2009; Di Bonito et al., 2013). At E8.5,
Hoxb1 is expressed in r4 and throughout the spinal cord region
(Gavalas et al., 2003), where it is required for the specification of
facial branchiomotor neuron progenitors that are programmed
to innervate the facial muscles (Arenkiel et al., 2004). Despite the
fact that Sox2 has been shown to regulate Hoxb1 in vitro (Di Rocco
et al., 2001; Williams et al., 2004; Lian et al., 2010), the expression
of Hoxb1 appeared to be unaffected both in r4 and in the spinal
cord of E8.5 Sox2INV/mosaic embryos (Figure 4). Our results do
not support previous reports on Sox2 involvement in the regu-
lation of Hoxb1 in vitro, at least with regard to E8.5 hindbrain
and spinal cord regions. On the other hand, Hoxa2 appears to
be down-regulated in our mutants. At E8.5, Hoxa2 has a limit of
expression in the rhombencephalic neural tube corresponding to
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FIGURE 6 | Sox2 regulates the flow of Sox10+ NCC. NCC formation and
migration is exacerbated in E9.5 Sox2INV /+(H) mouse embryos, as observed
by the Sox10 in situ hybridization pattern in branchial arches 1 and 2 (ba1,
ba2), and in the frontonasal (fnp) area of Sox2INV /+(H) embryos when
compared to Sox2+/+ embryos (A,B). Coronal sections of E9.5 Sox2INV /+(H)

and Sox2+/+ embryos. Enlargement of the fourth ventricle and the
mandibular component of the ba1 is observed. Exacerbated numbers of
Sox10+ cells are observed in cranial and trunk regions, in the frontonasal
region and throughout ba1 (C,D). fb, forebrain; fnp, frontonasal process; mb,
midbrain; sc, spinal cord; h, heart.

FIGURE 7 | Sox2: a rheostat of EMT transition during neural crest

development. Precise timing ensured by an extremely accurate
developmental clock regulates the dynamics of the decisions to generate
NCC from neural progenitors. Sox2 controls the flow of the EMT transition,
leading to NCC migration in appropriate numbers at the appropriate regions
in the head. This way, sequence (from neural progenitor to NCC) and
genetic heterochrony (spatially and temporally controlled Sox10
expression), resulting into craniofacial malformations could be averted.

r3 and r5 (Prince and Lumsden, 1994). It is not surprising that no
effect was observed in Hoxa2 expression in r5, as Sox2 is expressed
along the hindbrain in all rhombomeres, but not in r5 (Wood and
Episkopou, 1999). Hoxa2-null mutant embryos lack craniofacial
and cartilage elements derived from the first and second branchial
arch and die perinatally due to cleft palate (Vieille-Grosjean et al.,
1997; Rijli et al., 1998; Trainor and Krumlauf, 2001; Santagati
et al., 2005). Sox2 has been shown to interact in vitro with
a SoxB DNA binding element (ACAAT motif) present in the
enhancer of the Hoxa2 gene and mutation of this motif reduces
the expression of a Hoxa2 reporter in electroporation experiments
in chick embryo hindbrains (Tumpel et al., 2008). The reduction

of Hoxa2 expression in Sox2EpINV mutants indicates that Sox2
controls an integral component of NCC morphogenetic program,
which requires Hoxa2 at discrete time points to pattern distinct
derivatives in craniofacial structures (Santagati et al., 2005).

As neural progenitor cells differentiate into NCCs, a switch in
expression from SoxB to SoxE genes becomes evident, with Sox2
inactivated in the NCC progenitors, whereas Sox9 and Sox10 are
activated in newly migrating trunk NCCs (Melton et al., 2004;
Remboutsika et al., 2011). This is a necessary switch for the activa-
tion of the complex mechanism that generates NCCs (Wakamatsu
et al., 2004). Amongst the SoxE genes, Sox10 is required for the
formation, maintenance of multipotency, specification and dif-
ferentiation of NCCs (Kelsh, 2006). Sox10 is the only SoxE gene
that maintains its expression during migration of NCCs along
the lateral surface of the neural tube (McKeown et al., 2005),
except in the cranial region. Sox10 mutations lead to several
craniofacial abnormalities in humans, called neurocristopathies,
including Waardenburg-Hirschsprung syndrome and peripheral
neuropathies (Hoke, 2012). Sox2 over-expression and Sox2+ neu-
ral stem cell transplantation experiments in avian and murine
cranial neural tubes have demonstrated that Sox2 restricts neu-
roepithelial differentiation into CNCCs (Cheung and Briscoe,
2003; Remboutsika et al., 2011; Wahlbuhl et al., 2012). Thus, the
exacerbation of Sox10+ migrating cells in the Sox2EpINV mutants
may not be surprising. These observations point out that Sox2
could act to repress Sox10 expression. However, any genetic inter-
action between Sox2 and Sox10 in neural progenitor or NCC
progenitor cells is far from evident in vivo and in vitro. Whether
Sox2 could influence the expression of Sox10 directly or indi-
rectly by affecting levels of other SoxE genes such as Sox8 and
Sox9 that contribute to the induction of Sox10 in NCC progen-
itors, once NC-inducing signals are set (Taylor and Labonne,
2005; McCauley and Bronner-Fraser, 2006; Haldin and Labonne,
2010; Stolt and Wegner, 2010; Wahlbuhl et al., 2012), remains
to be investigated. In the Sox2EpINV mutants ,Sox10 levels appear
dramatically increased both in the branchial arches area and in
the frontonasal area. Sox10 over-expression has been shown to
arrest the neuroepithelial and cranial mesenchymal cells in an
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undifferentiated state, causing a range of cell fate specification
defects (Ahlstrom and Erickson, 2009). Neural progenitor cells,
which over-express Sox10 remain undifferentiated and fail to
form neuronal, Schwann, or melanocyte cells (Stolt et al., 2008).
Thus, it is tempting to suggest that the failure of the embryos to
form the craniofacial region could, in part, be due to the failure
of the cranial mesenchyme to proceed through development due
to an aberrant and exacerbated population of Sox10+ cells in the
frontonasal region.

In recent years, the importance of NCCs as inducers of periph-
eral neural structures, craniofacial tissues and other peripheral
mesodermal-derived structures has become evident (Trainor and
Tam, 1995; Trainor et al., 2003; Hong and Saint-Jeannet, 2005;
Cordero et al., 2011; Hagiwara et al., 2014). Defects in their
development has been attributed to a failure and/or abnormal
NCCs migration and differentiation (Bronner, 2012), resulting
into the generation of neurocristopathies in humans (Etchevers
et al., 2006) and expanding the most recent classification of
neurocristopathies to an entire category of abnormal induction
of non-neural NCC-derived peripheral structures of the body
(Cossais et al., 2010). Recent evidence has shown that Sox2 has
been indirectly associated with defects that are characteristic of
the CHARGE syndrome, a human neurocristopathy (Aramaki
et al., 2007). CHARGE syndrome patients exhibited mutations in
the Chd7 gene (Vallaster et al., 2012), the product of which acts
as a Sox2 transcriptional cofactor (Engelen et al., 2011; Puc and
Rosenfeld, 2011). Our results suggest a Sox2 dosage-dependent
mechanism acting during head development, with a specific role
for Sox2 in the prevention of these CNCC-related pathologies. We
propose that Sox2 acts as a rheostat of EMT during CNCC devel-
opment that influences cell fates involved in head development
(Figure 7). These findings open novel avenues to target Sox2 in a
number of craniofacial malformations in humans.
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