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Abstract: The Wnt signalling pathway is one of the central signalling pathways in bone development,
homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors
and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity
and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral
density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-
catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands
can also activate several non-canonical, β-catenin independent signalling pathways with important
effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge
on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially
on the pathways that affect bone cell differentiation, maturation and function, processes involved
in bone tissue structure regulation. We will describe the role of the two most known non-canonical
pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling
pathways with a strong role in bone biology that communicate with the Wnt signalling pathway
through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not
well researched but important pathways in the regulation of bone biology in the hope of prompting
additional research in the area of non-canonical Wnt signalling pathways.

Keywords: non-canonical Wnt signalling pathway; bone mineral density; signalling crosstalk; osteogenesis

1. Introduction: The Role of Wnt Signalling Pathways in Bone Biology

The wingless-type mouse mammary tumour virus (MMTV) integration site family
(Wnt) signalling pathway is a central and evolutionary conserved signalling pathway
involved in several developmental and physiological processes in the organisms. It plays
an essential role in embryonal development, the establishment of polarity axes and cell
fate determinations, tissue and organ development, as well as tissue regeneration and
repair in post-embryonal and adult life. On a cellular level, the pathway regulates different
stages of cell differentiation and/or stem cell renewal, cell proliferation, cell adhesion,
motility and apoptosis [1,2]. Due to its important roles, any dysregulation can lead to
developmental defects or even embryonal death or can result in pleiotropic or age-related
diseases in later life, including cancer [3], Alzheimer’s disease [4], metabolic disorders [5,6]
and osteoporosis [7,8].

The involvement of the Wnt signalling pathway in bone biology and disease was
first discovered through a mutation in the LRP5 co-receptor, which was associated with
osteoporosis pseudoglioma syndrome (OPPG), an autosomal recessive disorder resulting
in low bone mass, frequent fractures and bone deformations [9]. Since then, several other
mutations in the components of the Wnt signalling pathways have been linked to various
bone-related hereditary disorders [10], and the Wnt signalling pathway was recognised as
one of the crucial pathways regulating bone development and formation. Moreover, several
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genome-wide association studies (GWAS) have linked single nucleotide polymorphisms
in Wnt-related genes to age-related low bone mineral density (BMD) and fracture risk,
shedding new light on the underlying processes of bone formation [11,12].

Wnt signalling pathways are in general divided into the canonical, β-catenin de-
pendent Wnt signalling pathway, and non-canonical, β-catenin-independent signalling
pathways, which are historically divided into Wnt/planar cell polarity (PCP) pathway and
Wnt/Ca2+ pathway. In bone cells, the activity of the canonical Wnt signalling pathway
generally leads to bone tissue formation and maintenance of bone mineral density in
adults [13,14]. Canonical Wnt signalling promotes the commitment of mesenchymal stem
cells (MSCs) to osteoblastic lineage and promotes differentiation and bone formation at the
critical steps of osteoblast differentiation [15–17] while at the same time inhibiting osteoclast
formation through osteoblast secreted factors [14,17,18]. On the other hand, osteoblast-
derived Wnt5a activates the non-canonical Wnt signalling pathway in osteoclast precursors
and stimulates their differentiation and consequent bone degradation [19]. Moreover, Wnt
signalling pathways have been shown to crosstalk with several other signalling pathways,
including receptor activator of NF-κB (RANK)/RANK ligand (RANKL)/NF-κB pathway,
mechanistic target of rapamycin (mTOR) metabolic pathways, the mitogen-activated pro-
tein kinase (MAPK) pathway and Hippo signalling pathway, which are all tightly involved
in bone physiology. These pathways either promote or inhibit each other on the transcrip-
tional level or directly through interactions of the signal transduction pathways. Thus,
although the canonical/β-catenin Wnt signalling pathway plays a crucial role in bone
remodelling, it is not sufficient to explain the complex processes of regulation and commu-
nication between the main bone cell types (osteoblasts, osteoclast, osteocytes and osteal
macrophages) as well as the cells in their immediate environment. The balanced activity
of both canonical and non-canonical signals, as well as adequate crosstalk with other
signalling pathways, are thus required for optimal bone homeostasis (i.e., balance between
bone destruction mediated by osteoclasts and bone formation mediated by osteoblasts as
part of continuous bone remodelling process).

In this review, we will explore the current knowledge on different non-canonical
Wnt signalling pathways involved in bone biology, focusing especially on the pathways
that affect bone cell differentiation, maturation and function, processes involved in bone
tissue structure regulation. We will describe the signal transduction pathways and roles of
Wnt/PCP and Wnt/Ca2+ pathways, as well as other signalling pathways that communicate
with Wnt signalling pathway through non-canonical Wnt signalling. We will focus on
pathways that are downstream of Wnt activation and signalling, such as RANK/RANKL
NF-κB pathway with a crucial role in osteoclast differentiation, mTOR pathways impor-
tant for adjustments of cell metabolism during cell differentiation, as well as the Hippo
and MAPK signalling pathways, which seem to be required for a complete response to
Wnt activation.

2. Overview of the Canonical and Non-Canonical Wnt Signalling Pathways

The canonical Wnt/β-catenin signalling pathway is the most thoroughly researched
Wnt signalling pathway, especially in relation to bone physiology. It is initiated by binding
of a Wnt ligand to the frizzled (Fzd) receptor and two LDL receptor-related protein (LRP)
co-receptors (LRP5/6), forming a tripartite complex [20]. This recruits the β-catenin de-
struction complex to the membrane (Scheme 1a). The destruction complex is a multiprotein
complex responsible for the constant degradation of β-catenin, which prevents β-catenin
accumulation in cytosol and translocation to the nucleus, where it could affect the transcrip-
tion of Wnt target genes. Recruitment of the destruction complex to the membrane inhibits
its degradation function and instead triggers the assembly of another multiprotein complex
termed signalosome [21]. Signalosome enables the release of β-catenin and its translocation
to the nucleus. There, β-catenin mediates gene transcription through its interaction with the
third multiprotein complex termed enhanceosome [22]. Enhanceosome consists of several
interacting proteins and protein complexes that mediate β-catenin loading into the complex,
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complex rearrangements, chromatin remodelling and transcription regulation (Scheme 1b).
The main proteins of the enhanceosome are transcriptional co-repressors TLE (transducin-
like enhancer of split) and T-cell factor/lymphoid enhancer factor (TCF/LEF) family of
DNA-bound transcription factors [23,24]. These promote or repress transcription of Wnt
response genes by regulating histone deacetylation and chromatin condensation [23,25].

Scheme 1. Schematic representation of (a) the inactive Wnt signalling pathway, (b) activated canonical Wnt signalling pathway
and (c) non-canonical Wnt/Ca2+ signalling pathway. (a) In the absence of a Wnt ligand, the canonical Wnt signalling pathway
is inactive, and β-catenin is degraded by a multiprotein complex termed axin degradosome. Degradosome is composed of
scaffold proteins adenomatous polyposis coli (APC) and axin and kinases glycogen synthase kinase 3 (GSK3) and casein kinase
1 (CK1). The two kinases phosphorylate β-catenin and release it into the cytosol, where it is ubiquitinated and degraded by
a proteasome complex. (b) Canonical Wnt signal transduction is initiated by the binding of Wnt ligand (WNT) to membrane
frizzled (Fzd) receptor and low-density lipoprotein receptor-related protein 5/6 (LRP5/6) co-receptor. Fzd and LRP5/6 undergo
dimerization and conformational changes, which recruit dishevelled (DVL) and degradosome to the membrane and trigger
the assembly of a multiprotein complex termed signalosome. Inhibition of kinases releases β-catenin from the complex and
enables its accumulation in the cytosol and translocation to the nucleus. In the nucleus, β-catenin incorporates into a multiprotein
complex termed enhanceosome, composed of Pygopus (PYGO), ChiLs complex, adaptor protein B-cell lymphoma 9 (BCL9) and
BAF (Brg/Brahma-associated factors) chromatin-remodelling complex. The main proteins of enhanceosome are transcriptional
co-repressors TLE (transducin-like enhancer of split) and T cell factor (TCF) family of DNA-bound transcription factors, which
mediate transcription of β-catenin dependent genes through changes in histone acetylation and chromatin condensation. (c) Non-
canonical Wnt signalling is activated by binding a non-canonical Wnt ligand to Fzd receptor and Receptor tyrosine kinase-like
orphan receptor 2 (ROR2). Receptor dimerization recruits DVL to the membrane and activates heterotrimeric G-proteins, which
in turn activate phospholipase C (PLC). The PLC cleaves the membrane-bound phosphatidylinositol-4,5-bisphosphate (PIP2)
into inositol-1,4,5-trisphosphate (IP3) and 1,2 diacylglycerol (DAG). IP3 induces the release of Ca2+ from intracellular calcium
stores and activation of calcium-sensitive enzymes, such as protein kinase C (PKC), calmodulin-dependent protein kinase II
(CaMKII) and calcineurin. These activated proteins, in turn, activate several transcription factors, such as nuclear factor κB
(NF-κB), cAMP-responsive element-binding protein (CREB) and nuclear factor associated with T cells (NFAT).
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In comparison, the non-canonical Wnt signalling pathway is a generic term that refers
to signalling pathways triggered by Wnt ligands but not mediated by β-catenin. They are
activated by specific Wnt ligands. However, due to the complexity, significant overlap
and utilisation of the same core proteins and multitude of different outcomes, it is still
not completely clear how many and which pathways there are. Two historically defined
signalling pathways are Wnt/Ca2+ pathway, resulting in the release of intracellular calcium
and activation of calcium-dependent processes, and the Wnt/PCP pathway, which leads
to the establishment of cell polarity, changes in cytoskeleton arrangement, cell migration
and attachments, although activation of several other transcription factors have also been
observed [26], which will be discussed later.

Although the intracellular transduction pathways are markedly different, non-canonical
and canonical Wnt signalling pathways share several extracellular and membrane com-
ponents, especially Wnt ligands, certain receptors and Wnt endogenous inhibitors. In
humans, 19 different Wnt ligands exist, and while certain Wnts activate only the canonical
pathway, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt7b and Wnt16 activate both the canonical
and non-canonical pathways. Which pathway will be activated is most probably depen-
dent on the quantity of Wnt ligands, expressed receptors, co-receptors and endogenous
inhibitors [27–30]. Even Wnt5a, which is usually regarded as a non-canonical Wnt lig-
and, can, in the presence of Fzd4 and LRP5, activate the canonical Wnt signalling path-
way [27,28]. Other ligands, such as Wnt3a, can activate both canonical and non-canonical
signalling pathways in the same cell [29,31,32], and studies have shown that certain Wnt
ligands can antagonise each other’s functions [33,34] or exert redundancy [35]. What effects
certain Wnt ligands will have on cells also depends on the state of cell differentiation and
the threshold levels of its activation [36].

Similar to the canonical Wnt signalling pathway, non-canonical signalling also requires
an Fzd receptor. The frizzled protein family consists of 10 Fzd receptors, hepta-span
transmembrane receptors, which can bind multiple Wnt ligands [37–39]. Not many studies
have addressed the functional differences between the Fzd receptors, but substantial gene
overlap and the presence of compensatory mechanisms indicate at least a partial functional
redundancy [40,41]. However, instead of associating with LRP5/6 receptor, as required for
canonical Wnt signalling, non-canonical Wnt signalling utilises alternative co-receptors,
such as related to tyrosine kinase (Ryk), protein tyrosine kinase 7 (Ptk7) or receptor tyrosine
kinase-like orphan receptor (ROR). Only ROR2 co-receptor has so far been shown to play
an important role in bone biology and BMD regulation [19,42,43]. Similar to LRP5/6, it
contains an extracellular cysteine-rich domain that resembles the Wnt binding site of Fzd
receptors and an intracellular domain with tyrosine kinase activity, which is required for
the transmission of the activation signal [44].

The last major component shared by canonical and non-canonical Wnt signalling
pathways are endogenous Wnt inhibitors. While certain inhibitors, such as sclerostin
(SOST) [45,46] and the Dickkopf WNT signalling pathway inhibitors (DKK) [47–49], can
only inhibit LRP5/6 and Fzd functions, other inhibitors, such as Secreted frizzled-related
proteins (sFRP) [50,51] and WNT inhibitory factor 1 (Wif1) [52], bind to the Wnt ligand
directly and inhibit both canonical and non-canonical signalling. Their transcription and
secretion can be triggered by both Wnt-related and -unrelated signals, which enable quick
regulation of Wnt activities in relation to changes in external signals and establishment of
gradients of signalling activity [53,54].

The large number of available ligands and receptors enable tight spatial and temporal
regulation through ligand/receptor/co-receptor specificity, regulation of their transcription,
as well as through secretion of endogenous Wnt inhibitors—the pathway will thus be
activated only when all required molecules are present [55]. However, it is important to
keep in mind that although these conditions can be achieved in vitro, such ligand, receptors
and co-receptors combinations might not be available in vivo. The known effects of each
Wnt ligand on bone cells have been summarised in Table 1.
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Table 1. The effect of activation of the canonical and non-canonical signalling pathways with prominent roles in bone
homeostasis. Only studies where the involved signalling pathway was confirmed are included.

Ligand Effects of Activation
of Non-Canonical

Non-Canonical
Signal Transduction Effects of Activation of Canonical

Wnt1
N/A Stem cell maintenance [56]

Promotion of Osteoblastogenesis [56,57]

Wnt2b N/A Osteogenic differentiation [58,59]

Wnt3a

Suppression of
osteoclast differentiation cAMP/PKA pathway [60] Stem cell maintenance [36,61–63]

Suppression of
chondrocyte differentiation c-Jun/AP-1 [60] Suppression of osteoblastogenesis [64,65]

Induction of osteoblastogenesis PKCδ [66] Suppression of osteoclastogenesis [60,67]
mTORC1, mTORC2 [68,69] Suppression of chondrogenesis [70]

JNK pathway [31]
Promotion of osteoblastogenesis RhoA [71]

Prevention of starvation
induced apoptosis c-Src/ERK1/2 and PI3K/Akt [32]

Wnt4
Osteogenic differentiation,

bone formation p38 MAPK [72] N/A

Inhibition of osteoclast differentiation TAK1-TAB2-NLK [73]

Wnt5a

Promotion of osteoclastogenesis DAAM2/Rho/PKN3/c-Src [74] N/A
JNK/c-Jun/Sp1 [19]

PKC/CAMKIIα/JNK [64]
Suppression of canonical

Wnt signalling PKC/CAMKIIα/JNK [64]

TAK1/NLK [75]
Prevention of starvation-

induced apoptosis c-Src/ERK1/2 and PI3K/Akt [32]

Promotion of chondrogenesis CaMK/NFAT [76]
Inhibition of chondrogenesis PI3K/Akt/IKK/NF-κB [76]

Promotion of osteoblastogenesis RhoA [77]
JNK/c-Jun [78]

Wnt5b Suppression of chondrogenesis JNK pathway [79] N/A

Wnt7b
Promotion of osteoblastogenesis mTORC1, mTORC2 [69,80] N/A

Gαq/11/PLCβ/PKCδ [66]

Wnt10b Promotion of osteoblastogenesis mTORC2 [69] Promotion of osteoblastogenesis [81–86]

Wnt16
Suppression of osteoclastogenesis JNK/c-Jun [86] Suppression of osteoclastogenesis [87]

Promotion of osteogenesis JNK pathway [65]

Abbreviations: Akt: protein kinase B; AP-1: activator protein 1; CAMK: calcium/calmodulin-dependent protein kinase; cAMP: cyclic
adenosine monophosphate; c-Jun: Jun Proto-Oncogene, AP-1 transcription factor subunit; c-Src: SRC non-receptor tyrosine kinase; DAAM2:
dishevelled associated activator of morphogenesis 2; ERK: extracellular signal-regulated kinase; IKK: inhibitor of nuclear factor-κB (IκB)
kinase; JNK: c-Jun N-terminal kinase; MAPK: mitogen-activated protein kinase; mTORC: mechanistic target of rapamycin complex; NFAT:
nuclear factor of activated T cells; NF-κB: nuclear factor κB; NLK: Serine/threonine-protein kinase NLK; PI3K: phosphatidylinositol
3-kinase; PLC: phospholipase C; PKA: protein kinase A; PKCδ: protein kinase C delta; PKN3: protein kinase N3; RhoA: Ras homolog
family member A; TAB2: TGF-beta-activated kinase 1; TAK1: TGF-β–activated kinase 1.

3. Wnt/Ca2+ Non-Canonical Signalling Pathway

The Wnt/Ca2+ signalling pathway is a group of Wnt ligand-induced signalling path-
ways that result in an increase in intracellular Ca2+ concentration and the subsequent
Ca2+-dependent cell signalling [87]. It regulates cytoskeletal rearrangements, cell attach-
ment, migration [88] and differentiation and is involved in the establishment of dorsolateral
asymmetry and somite patterning during embryonal development [89,90]. Calcium release
is followed by the depolarisation of both the cell and nucleus membranes [91], and a study
also suggested that a Wnt-induced increase in cytosolic Ca2+ concentration might promote
canonical Wnt signalling by facilitating the transport of larger molecules (>10 kDa) across
the nuclear envelope, thus increasing also the translocation of β-catenin [91].
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Wnt5a and Wnt3a are considered prototypical activators of Wnt/Ca2+ signalling. They
bind to ROR2 co-receptors and one of the Fzd receptors. For activation of calcium signalling,
Wnt5a requires receptors Fzd2, 3, 4, 5 or 6 [89,92,93], out of which only Fzd4 [41,94,95]
and Fzd6 [13,61,96] have so far been shown to play a role in bone biology. Following
receptor activation, the pathway signals through heterotrimeric G-proteins, which leads to
the activation of phospholipase C (PLC) [97–99]. The PLC cleaves the membrane-bound
phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol-1,4,5-trisphosphate (IP3) and
1,2 diacylglycerol (DAG). PI3 diffuses into the cytosol and binds to the IP3 receptors (IP3Rs),
which function as calcium channels on the endoplasmatic reticulum, triggering the release
of Ca2+ from intracellular stores [100]. Increased Ca2+ together with calmodulin, a phospho-
serine/threonine-specific protein phosphatase, activates calcium-sensitive enzymes, such
as calmodulin-dependent protein kinase II (CaMKII) and calcineurin [99]. DAG, on the
other hand, together with Ca2+, activates protein kinase C (PKC) [89,99]. These activated
proteins, in turn, activate several transcription factors, such as NF-κB, cAMP-responsive
element-binding protein (CREB) and nuclear factor associated with T cells (NFAT).

The Wnt/Ca2+ signalling pathway is also required for osteoblast and osteoclast cell dif-
ferentiation and function. In osteoblasts, Wnt3a and Wnt7b activate a Gαq/11/PLCβ/PKCδ

pathway, through which they promote osteoblast differentiation and mineralisation in a
β-catenin independent way. Inhibition of this pathway through KO of PKCδ or Wnt7b
results in lower embryonal ossification, delayed chondrocyte maturation in long bones and
reduced osteoblast differentiation [66]. Wnt/Ca2+ signalling also controls chondrogene-
sis. Bradley and Drissi have shown that Wnt5a promotes or inhibits chondrogenesis in a
differentiation stage-specific manner. In the early stages, Wnt5a increases CaMK/NFAT
and inhibits NF-κB-dependent signalling to promote chondrogenesis through an increase
in SRY-Box transcription factor 9 (Sox9) expression. On the other hand, in later stages of
differentiation, Wnt5a activates the PI3K/Akt/NF-κB signalling pathway and represses
chondrocyte hypertrophy via NF-κB-dependent inhibition of RUNX family transcription
factor 2 (Runx2) expression [76]. The two Wnt5a-induced signalling pathways thus inhibit
each other in a stage-specific manner, which emphasises the importance of stage-dependent
regulation and signalling in the control of cell differentiation.

Both canonical and non-canonical Wnt signalling pathways are also involved in Wnt
suppression of RANKL induced osteoclast differentiation in osteoclast precursor cells. The
non-canonical signalling is involved in the suppression of RANKL-mediated activation of
the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Wnt3a treatment led to
a rapid increase in cyclic adenosine monophosphate (cAMP) accumulation, which induced
phosphorylation and thus activation of protein kinase A (PKA), increasing phosphorylation
(inactivation) of NFATc1 [60].

Interestingly, while there is ample evidence for tight cross-communication between
osteoblast, osteocytes and osteoclast through both canonical and non-canonical Wnt sig-
nalling pathways, so far, no study has addressed the role of these pathways in commu-
nication with osteal macrophages (also osteomacs), resident macrophages in bone tissue.
Even though osteal macrophages were shown to provide significant anabolic support
during bone remodelling and fracture healing and are emerging as important players in
bone homeostasis [101,102], there are still many open questions regarding their specific
functional contributions. It would thus be interesting to explore whether the precise coordi-
nation between different bone cell types through the Wnt signalling pathway also includes
osteal macrophages.

4. Wnt/Planar Cell Polarity (PCP) Pathway

The PCP signalling pathway is a mechanism that provides global and local directional
information that is required for cell and tissue polarisation, which is especially important
during gastrulation and embryonal tissue formation. As such, it regulates cytoskeletal
organisation, cell attachment and downstream cell signalling [103]. In vertebrates, the
membrane-associated PCP core complex consists of six proteins that interact with each
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other inter- and intracellularly from the opposite sides of the cell. This provides cells with
a planar orientation axis pattern that can extend through the whole tissue (Scheme 2a). The
intercellular communication and connection are controlled by three transmembrane compo-
nents of the complex; a Fzd receptor (particularly Fzd3 and Fzd6), Vangl planar cell polarity
protein 2 (VANGL2) and cadherin EGF LAG seven-pass G-Type receptor (CELSR), while
the intracellular signals are mediated through the tree cytoplasmic components disheveled
(DVL), Prickle (PRICKLE) and ankyrin repeat domain 6 (ANKRD6) or Invesrin (INVS).

Scheme 2. Schematic representation of Wnt/planar cell polarity (PCP) establishment, core components and signal transduc-
tion pathway. (a) Cell polarity is established in an epithelium based on the gradient of certain signalling molecules, such as
Wnt5a ligands. It is mediated by two protein complexes that form on the opposite cell sites, and inter- and intracellular
communication between these complexes provides the cells with a planar orientation axis pattern that can extend through
the whole tissue. (b) The first complex is formed by a transmembrane frizzled receptor (Fzd) and cadherin EGF LAG
seven-pass G-Type receptor (CELSR), which enable intercellular communication and cell–cell connection, and intracellular
disheveled (DVL) and ankyrin repeat domain 6 (ANKRD6) proteins, which mediate intracellular signals. Similarly, the
second complex is composed of transmembrane CELSR and Vangl planar cell polarity protein (VANGL) and the intracellular
Prickle. The intracellular components are essential for negative feedback loops within each cell (they antagonise each other)
and for activating signal transduction pathways. (c) Following Wnt ligand binding to Fzd receptor and ROR2 co-receptor,
DVL is recruited to the membrane, which activates downstream signalling transductions. The activation signal is then
transmitted to the adaptor protein dishevelled associated activator of morphogenesis (DAAM1-2) and small G proteins,
such as Rac1, RhoA and Cdc42 as well as Rho-associated coiled kinase (ROCK1/2). The activation of GTPases triggers
cytoskeleton rearrangements and activates transcriptions factors, such as c-jun NH2-terminal kinase (JNK) and activator
protein1 (AP-1).

Through mutual inhibition, two complexes—Celsr-Vangl2-Prickle and Fzd-Celsr-DVL-
Ankrd6—are established on the opposite sites of the cell [103–105]. The complex may also
include additional components, such as Ryk and ROR2 co-receptors, which help relay the
Wnt5a signal to Vangl2 to induce its phosphorylation [106–109]. Intracellularly, on the
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other hand, these two complexes stabilise each other and enable cell–cell communication
required for the establishment of uniform PCP in a tissue [110,111] (Scheme 2b).

In bone tissue, the PCP signalling pathway and tissue polarisation have been associ-
ated with embryonal bone and joint formation, which involves cell migration, elongation
and gradient-dependent differentiation [112]. For example, PCP is crucial during em-
bryonal long bone cartilage elongation along the proximal–distal axis [113,114], which is
mediated through the Wnt5a gradient in forming chondral tissue [115,116]. This gradient,
in turn, induces a gradient in the Vangl2 phosphorylation end establishment of tissue
polarity [106,117]. Similar effects were also observed for Wnt5b, where PCP activation
was involved in Wnt5b-induced cell migration and chondrocyte differentiation [79]. The
PCP pathway is also active postnatally, where it mediates orientation of cell division in
strain-induced osteoblast proliferation, although proliferation itself is mediated through
canonical Wnt signalling. Accordingly, mice with mutated Vangl2 exhibited altered bone
architecture and a disorganised bone-forming surface [118]. The PCP signalling pathway
was also shown to be involved in the migration and differentiation of osteoblast precursors
in the frontal bone in mice [119].

The establishment of cell and tissue polarity is thus mainly involved in tissue organ-
isation, growth and elongation, but not regulation of BMD. Instead, most effects of PCP
signalling on osteoblast differentiation and function are attributed to changes in gene ex-
pression mediated by PCP pathway activation. It is not yet clear exactly how non-canonical
Wnt ligands activate PCP-related signalling; however, several studies confirmed that Fzd
receptor and ROR2 co-receptor are both required for Wnt/PCP signalling pathway activa-
tion, as is phosphorylation of Vangl [92,106,109]. The activation signal is then transmitted
to the adaptor protein DAAM, small G proteins, such as Rac1, RhoA and Cdc42, and kinase
Rho-associated coiled kinase (ROCK) [120] (Scheme 2c). Activation of Rho and ROCK
triggers the assembly of stress fibres composed of contractile actin–myosin filaments and
focal adhesion complexes [121,122], while activation of Rac promotes reassembly of actin
filaments to form lamellipodia and membrane ruffles [123]. This induces changes in cell
attachment and cytoskeletal organisation, which leads to cell migration and changes in
cell polarity. Interestingly, cytoskeletal organisation and the subsequent RhoA and ROCK
activity were also suggested to be the determining factor of MSC lineage commitment to
osteo- or adipogenesis [77,122].

Apart from the cytoskeletal organisation, the Wnt/PCP signalling pathway can also ac-
tivate the NH2-terminal kinase (JNK) and transcription factor c-jun, affecting downstream
target genes [103–105]. JNK signalling, activated through Wnt3a or Wnt5a, seems to play
an important role in the control of osteo- and the adipogenic fate of MSCs [31,71,78,124].
This balance between osteoblast and adipocyte commitment of MSCs, which might play a
role in bone mass reduction during aging and osteoporosis [125], is also controlled through
canonical and non-canonical RhoA/JNK Wnt signalling [31,71,77,78]. Similarly, canonical
and non-canonical Wnt3a signalling inhibits chondrocyte differentiation and chondral
matrix maturation through activation of the JNK signalling pathway and c-Jun and AP-1
transcription factors [70]. Osteoblast secreted Wnt5a can also enhance osteoclastogenesis
through Wnt5a/ROR2 signalling, which increases expression of RANK in osteoclast precur-
sor cells through activation of JNK/c-Jun/Sp1 [19] and promotes bone-resorbing osteoclast
activity through DAAM2/Rho-protein kinase N3 (PKN3)/c-Src pathways [74]. The latter
most probably regulates osteoclast function through the regulation of actin cytoskeleton,
formation of stress fibres and actin rings, which are required for the formation of osteoclast
resorption pit [126–128].

5. Non-Canonical Wnt Crosstalk with Other Signalling Pathways

The Wnt signalling pathway is part of an extensive and highly complex network
of signalling pathways inside each cell. As such, the Wnt pathway can be stimulated
or inhibited by other signalling pathways and vice versa; Wnt signalling activity can
transactivate other signalling pathways [129]. In bone cells, Wnt was shown to interact
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with Bone morphogenic protein (BMP) signalling [130,131], the RANK/RANKL/NF-κB
pathway, Hippo, Notch [132] and Hedgehog [133,134] signalling pathways, mTOR and
epidermal growth factor (EGF) signalling [135] and most probably several others that have
not been explored yet. Most of these interactions have been confirmed on the level of
canonical Wnt signalling. In this chapter, we will focus on RANK/RANKL/NF-κB, mTOR,
the Hippo and MAPK signalling pathways, which have been shown to be also regulated
through non-canonical Wnt signalling.

5.1. Non-Canonical Wnt Crosstalk with RANKL/NF-κB Signalling Pathway

The RANK/RANKL signalling pathway is one of the main pathways regulating bone
resorption. The receptor RANK is widely expressed in several cell types, including osteo-
clast precursor cells. It binds the RANK ligand (RANKL), which is in bone tissue secreted
by mature osteoblasts, together with osteoprotegerin (OPG), a secreted non-signalling
decoy receptor for RANKL that helps regulate osteoclast differentiation and function [136].
RANK/RANKL binding activates several signalling pathways, which lead to the activa-
tion of transcription factors essential for osteoclast activation, such as NF-κB, JNK/AP1
and NFAT1 [137]. Although the RANK/RANKL signalling axis and non-canonical WNT
signalling share several signalling components and end effects, not many studies have
shown a connection between the two systems. One mechanism of communication occurs
through canonical Wnt signalling-mediated regulation of RANKL and OPG expression in
osteoblasts, which was shown for Wnt3a, Wnt4 and Wnt16 [14,17,86,138–140]. Similarly,
osteoblast-derived Wnt5a increases RANK expression in osteoclast precursor cells through
Wnt5a/ROR2/JNK signalling by the recruitment of c-Jun transcription factor to RANK
promoter, thus enhancing susceptibility of osteoclast precursor cells to osteoblast derived
RANKL (Wnt5a itself failed to induce osteoclastogenesis in the absence of RANKL). Inhibi-
tion of this pathway leads to increased bone mass due to a reduction in bone resorption and
osteoclast number [19]. Wnt5a induced RANK expression is thus required for adequate
bone resorption.

The communication between RANK/RANKL and the Wnt signalling pathway can
also occur on the level of signalling transduction pathways. For example, Wnt4 inhibits
osteoclast differentiation of primary bone marrow macrophages and RAW264.7 cells
induced by RANKL by repressing NF-κB-dependent genes. This is achieved by Wnt4
promoting the formation of Tak1-Tab2-NLK complex, a MAPK-related pathway, that was
also shown to inhibit the canonical Wnt signalling pathway by inhibiting the activity of
TCF. In this pathway, transforming growth factor beta-activated kinase 1 (Tak1) kinase
activates the Serine/threonine-protein Nemo like kinase (NLK), which, in turn, phos-
phorylates LEF1/TCF family proteins and prevents their binding to DNA [75,141]. How-
ever, in its interaction with the RANK/RANKL signalling pathway, the Wnt4-induced
formation of Tak1-Tab2-NLK complex sequesters Tak1 and prevents the formation of
RANKL-signalling-induced Traf6-Tak1-Tab2 complex (Scheme 3a). This not only re-
duces NF-κB signalling, but also partially inhibits phosphorylation of ERK, p38 and
JNK induced by RANKL. In mice, administration of Wnt4 reduced and even reversed
ovariectomy-induced bone loss [73].
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Scheme 3. Schematic representation of cross-communication of non-canonical Wnt signalling pathways observed in bone cells.
(a) Non-canonical Wnt signalling inhibits the RANK-RANKL signalling pathway through the inhibition of the formation of the
TRAF6-TAB2-TAK1 complex by sequestering TAK1 to the Wnt-induced TAB2-TAK1-NLK complex. This complex activates NLK
kinase, which inhibits the TCF/LEF protein family through phosphorylation. (b) The non-canonical Wnt signalling pathway
interacts with mTOR in osteoblasts through two mechanisms. mTORC1 complex is activated through LRP6/Fzd-PI3K-AKT
pathway and results in increased activity of S6 kinase 1 (S6K1) and increased protein synthesis. On the other hand, mTORC2
activation is mediated through Rho-family small GTPase RAC1 and leads to the activation of AKT and other signal transduction
pathways, which results in changes in glucose and lipid energy metabolism, cell survival and cytoskeleton reorganisation. Both
processes are required for adequate cell growth and proliferation. (c) The Hippo signalling pathway is activated through cell–cell
attachment and cell adhesion. When active, it activates MST1/2 kinases and LATS1/2 kinases, which inhibit YAP/TAZ activity by
inducing its proteosomal degradation. Non-canonical Wnt signalling through ROR2/Gα12/13 G protein/RhoA kinase inhibits
YAP/TAZ inhibitor LATS1/2. This releases YAP/TAZ from degradation and enables it to translocate to the nucleus, where
it forms complexes with different transcription factors, such as TEAD or β-catenin, to regulate transcription of downstream
genes. YAP/TAZ also interacts with the canonical Wnt signalling pathway by blocking the degradosome function and promoting
β-catenin cytoplasmic release. (d) MAPK signalling pathways involve the activation of small GTPases RAS and a cascade of
sequentially activated kinases that lead to the activation of ERK1/2, JNK and p38 MAPKs. Activation of canonical Wnt signalling
and inhibition of degradosome not only leads to the release of β-catenin but also stabilises RAS and thus activates the MAPK
cascade. At the same time, p38 promotes Wnt/β-catenin signalling through the inhibition of the destruction complex. Not enough
information is known to reliably construct the interactions of the non-canonical Wnt with MAPK signalling pathway in bone cells.
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5.2. Non-Canonical Wnt Crosstalk with mTOR Pathway

The Wnt signalling pathway has also been shown to interact with mTORC1 (mecha-
nistic target of rapamycin complex 1) and mTORC2, the two complexes formed by mTOR.
The two complexes have distinctive functions; while mTORC1 is involved in the regula-
tion of protein synthesis, ribosomal biogenesis and nutrient transport, mTORC2 controls
glucose and lipid metabolism, survival and cytoskeletal organisation [142,143]. mTOR
activation and signalling have been implicated in bone biology in several in vivo studies,
which implicated the activity of mTOR complexes in osteogenesis, skeletal growth and
formation [80,144,145], chondral tissue development [145,146] and osteoarthritis [147] in
mice. mTOR is involved in a Wnt-induced increase in aerobic glycolysis and protein
synthesis in osteoblasts and chondrocytes during differentiation [146,148,149], and several
studies have shown that adequate mTOR activity is required for normal cell differentiation
and mineralisation [144,150,151]. On the other hand, mTOR activity decreases during
osteoclastogenesis [152]. Some of the results are conflicting, which might be a consequence
of opposing effects of mTOR signalling in different differentiation stages [153,154]. Interest-
ingly, mTOR and DEP domain containing MTOR interacting protein (Deptor), important
components of both mTORC1 and mTORC2 complexes, have also been associated with
BMD in GWAS studies [155–158].

Esen and co-workers showed that Wnt3a/mTORC2 signalling could induce the War-
burg effect in differentiating cells, a switch to glycolytic metabolism despite the presence
of oxygen [69]. They detected an increase in levels of the key proteins in the glycolytic
pathway, such as glucose transporter 1 (GLUT1), hexokinase II (HK2) enzyme that catal-
yses the first rate-limiting step of glucose catabolism, phosphofructokinase 1 (PFK1),
6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3), lactate dehydrogenase
A (LDHA), which catalyses the conversion of pyruvate to lactate, as well as pyruvate dehy-
drogenase kinase 1 (PDK1) that inactivates the pyruvate dehydrogenase complex [69]. This
shift in glucose metabolism leads to reduced levels of acetyl-CoA and histone acetylation,
which changes gene transcription in favour of osteoblast differentiation [159]. Moreover,
increased Wnt/mTORC1 signalling also leads to increased glutamine catabolism during
osteoblast differentiation, which is required for increased energy and protein synthesis re-
quirements [68]. In vivo, mTOR activity leads to increased osteoblast number and activity,
which results in increased bone formation, higher bone mass and bone accrual [80]. This
Wnt3a-, Wnt10b- or Wnt7b-induced activation of mTORC1 and subsequent changes in cell
metabolism are mediated through LRP6/PI3K/AKT/S6K1 (S6 kinase 1) signalling [80,160].
Increased activity of S6K1 following mTORC1 activation leads to increased phosphorylation
of ribosomal protein S6 and consequently increased markers of osteogenic differentiation
(Runx2, alkaline phosphatase [ALP], osteocalcin, collagen 1 α1 [COL1A]) [160]. Inter-
estingly, another study showed that mTORC2 signalling is mediated through LRP5 and
activation of Rho-family small GTPase RAC1 [69], suggesting a separate mechanism of
activation for each mTOR complex (Scheme 3b). The two complexes also seem to have dis-
tinctive roles in MSC lineage determination; while mTORC1 activity promotes osteogenic
differentiation, mTORC2 is more effective in stimulating adipogenesis [161].

The mTORC1 and Wnt signalling pathways in osteoblasts also communicate in the
opposite direction. mTORC1 activity has been shown to inhibit the Wnt signalling pathway
activity by decreasing cell surface levels of Fzd receptors. It influences the association
of DVL with clathrin AP-2 adaptor [162], which is essential for clathrin-mediated Fzd
internalisation and subsequent downstream Wnt signal transduction [163].

5.3. Non-Canonical Wnt Crosstalk with Hippo Signalling Pathway

The role of the Hippo signalling pathway in bone biology has been recognised only in
recent years. The pathway is involved in the regulation of cell proliferation and differenti-
ation, especially in response to changes in cell adhesion and mechanical stress [164,165],
but also responds to BMPs [166,167] and Wnts [168–170]. The Hippo signalling pathway
signals through Yes-associated protein (YAP) and Transcriptional co-activator with PDZ
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binding motif (TAZ), which downstream interact with TEA domain (TEAD) containing fam-
ily transcriptional factors to induce gene transcription [171]. YAP also acts as a co-regulator
for other bone-related transcription factors, such as Runx2 [172], peroxisome proliferator-
activated receptor-γ (PPARγ) [173] and β-catenin [168]. In bone, the pathway regulates
the proliferation and differentiation of osteoblast progenitors, suppresses adipogenesis
and in this way promotes bone mass formation [170,174]. Similarly, it regulates osteoclast
proliferation, differentiation and apoptosis, mainly through inhibition of RANKL-induced
NF-κB and calcium signalling [175].

The Wnt and Hippo signalling pathways are tightly connected and regulate each
other’s activities. YAP/TAZ, the main effectors of the Hippo signalling pathway, regulates
β-catenin levels and activity through physically interacting with β-catenin or DVL by
blocking the activation of DVL and/or the cytoplasmic sequestration of β-catenin [174,176].
Other studies also suggest that YAP could directly bind to β-catenin in the nucleus to form
a YAP/β-catenin/TCF transcriptional complex [177]. On the other hand, YAP and TAZ
are suggested to be β-catenin downstream target genes [170], and the levels of TAZ are
regulated by the β-catenin destruction complex [168,169].

Most of these interactions are mediated through the canonical Wnt signalling pathway;
however, one study indicated that non-canonical Wnt ligands Wnt5a, Wnt5b, Wnt4 and
Wnt3a are also strong activators of YAP/TAZ activity. The YAP/TAZ activation was inde-
pendent of LRP5/6 co-receptors and β-catenin but required Fzd2 or Fzd5 receptor, ROR1
co-receptor and Gα12/13 G protein, which lead to downstream activation of RhoA and
Rac kinases and subsequent inhibition of YAP/TAZ inhibitors Lats1/2 [178] (Scheme 3c).
This study also showed that the activation of both the Wnt and YAP/TAZ is required for
osteogenic differentiation of MSC cells and that the suppression of YAP/TAZ abolished
WNT4-induced enhancement of osteoblast differentiation [178]. The two signalling path-
ways thus seem to function in unison and are both required for an adequate response to
differentiation stimuli, which was so far attributed to the Wnt or Hippo signalling pathway
only. Additional studies are thus necessary to better evaluate the contributions of each
pathway and their crosstalk.

5.4. Non-Canonical Wnt Crosstalk with MAPK Pathway

The mitogen-activated protein kinase (MAPK) pathway is a cascade involving small
GTPases Ras and a series of sequentially activated protein kinases (MAPKKK → MAPKK
→ MAPK), which lead to the activation of MAPK level kinases: extracellular signal-
regulated kinases 1/2 (ERK1/2), JNK and p38 MAPK. The pathway is involved in re-
sponses to extracellular signals and affects skeletal development and bone homeosta-
sis through regulation of osteoblast commitment and differentiation [179]. Both ERK
and p38 MAPK are expressed during osteoblast differentiation and their signalling is
required for osteogenic commitment and differentiation mediated by bone morphogenic
protein 2 (BMP2) [180–182]. While ERK pathway is involved in the regulation of cell
proliferation [183,184], p38 signalling is required for adequate ALP activity and mineralisa-
tion [183,185]. Similarly, ERK and p38 MAPK also have central roles in the promotion of
chondrogenesis [186].

MAPK and Wnt signalling pathways mainly communicate through the β-catenin
destruction complex of the canonical Wnt signalling pathway (Scheme 3d). Inhibition
of the β-catenin destruction complex upon Wnt ligand stimulation not only stabilises β-
catenin, but also leads to stabilisation of Ras and consequent activation of the downstream
MAPK cascade [187]. At the same time, p38 promotes Wnt/β-catenin signalling through
phosphorylation of LPR6, which is required for recruitment of the destruction complex
to the membrane [188], and phosphorylates and inactivates glycogen synthase kinase 3β
(GSK3β), allowing release and cytoplasmic accumulation of β-catenin [120]. The canonical
Wnt and MAPK signalling pathways are thus primarily connected through shared functions
of the β-catenin destruction complex.
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Nevertheless, several studies indicate MAPK kinase activity can also be influenced
through the non-canonical Wnt signalling pathway, which is especially important for the
regulation of MSC function. For example, Wnt3a has been shown to induce both canonical
and non-canonical Wnt signalling pathways [31,32], and while canonical Wnt signalling is
primarily associated with osteogenic differentiation and renewal of MSCs, non-canonical
Wnt signalling has been associated with cell survival and prevention of apoptosis. This
is mediated through Src/ERK1/2 and PI3K/Akt signalling cascades, which are triggered
independently of LRP5/6, and results in increased transcription of anti-apoptotic B-cell
lymphoma 2 (Bcl-2) [32,189]. Similar effects were also shown for non-canonical Wnt5a
signalling [32]. MAPK-mediated increased survival of osteoblasts may result in increased
mature osteoblast number and prolonged activity, which was so far mainly attributed to
the stimulatory effects of the canonical Wnt signalling pathway.

Another Wnt-MAPK crosstalk was reported by Chang and colleagues, who showed
that non-canonical Wnt4 signalling promoted osteoblast differentiation from MSCs, in-
creased mineralisation in vitro and stimulated bone formation in vivo. Observed p38
MAPK activation was dependent on axin but did not affect JNK activity [72]. Similarly,
the Wnt4-induced p38 MAPK pathway has also been shown to be involved in melatonin-
induced osteogenic differentiation and suppression of osteoclastogenesis [190–192]. Mela-
tonin treatment increased Wnt4 synthesis through the ERK1/2-Pax2–Egr1 pathway, which
in turn promoted osteoblast differentiation and function through both the canonical Wnt/β-
catenin signalling (Wnt4-Fzd1/6-LRP5/6–β-catenin) and non-canonical Wnt4-Fzd2-JNK–
p38 signalling pathways [193–195].

6. Syndromes and Osteoporosis Treatments Related to Non-Canonical Wnt
Signalling Pathways

Most clinical research has been focused on canonical Wnt signalling in association
with skeletal dysplasia’s, such as Osteogenesis Imperfecta type XV (mutations in Wnt1),
Sclerosteosis and Van Buchem disease (mutations in SOST), osteoporosis pseudoglioma
syndrome, juvenile osteoporosis (mutations in LRP5) and many more [10]. Up to now,
only two inherited bone diseases have been associated with the non-canonical Wnt/PCP
signalling pathway; a) autosomal recessive Robinow syndrome type 1 (ARRS1; OMIM
268310), which is characterised by short stature and upper limbs, brachydactyly, facial
dysmorphisms and genital hypoplasia, and b) autosomal dominant Brachydactyly type
B1 (OMIM 113000), one of the most severe types of brachydactyly, which can result in
hypoplastic or absent distal phalanges and nails of hands and feet [196,197]. Both diseases
are a result of a dysregulated PCP/Wnt signalling pathway as a consequence of gain or loss
of function mutations in Wnt5a, ROR2 or Rac family small GTPase 3 (RAC3) [113,198,199].
This pathway is active, especially during embryonal tissue development and elongation,
and any dysregulation results in limb deformities [113].

Out of endogenous Wnt inhibitors, only mutations in sFRPs, a family of Wnt ligand
protein inhibitors, affect both canonical and non-canonical Wnt signalling. Loss of function
mutations in sFRP4 were associated with Pyle disease (OMIM 265900), a rare recessive
disorder resulting in metaphyseal widening of long bones, cortex thinning, increased
trabecular bone, decreased BMD and a consequently increased bone fragility [200,201].
Cortical thinning was associated with decreased periosteal and endosteal bone formation
and increased endocortical resorption in mice as a consequence of disrupted Wnt-BMP
signalling crosstalk [200] and increased osteoclast differentiation. The latter was attributed
to the lack of sFRP4-mediated inhibition of non-canonical Wnt5a/ROR2/JNK signalling
otherwise required for suppression of osteoclast differentiation [202]. Possible treatment
could thus involve inhibition of ROR2 signalling in order to compensate for the lack
of sFRP4-mediated inhibition [202], which can, however, be a double-edged sword, as
ROR2 activation is also required for osteoblast differentiation [42,77,78]. On the other
hand, inhibition and not stimulation of sFRP1 was shown to promote bone formation ex
vivo [203–205] and in vivo in mice [206], indicating a different mechanism of action for
each sFRP inhibitor. Their use as therapeutics is further hindered by several reported
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actions unrelated to Wnt signalling and their role in the development of different tissues
and pathological processes [207].

Much work thus remains to be done in clinical and basic research to better understand
all connections between different canonical and non-canonical Wnt signalling pathways
and better define Wnt ligand/receptor specificity and expression patterns, as non-canonical
Wnt signalling pathways are emerging as an important support of canonical Wnt signalling
and represent a potential target for the treatment of skeletal diseases. Unfortunately,
Wnt signalling pathways are not crucial only for bone development, and any increase or
decrease in signalling activity could result in adverse effects on other organ systems or
cancer. The possible novel Wnt-based therapies would thus have to adjust the delivery
system in order to limit the effects of the therapy to the target tissue, or target bone-specific
protein targets, as was achieved with anti-SOST therapeutics. Despite that, even FDA-
approved SOST inhibitor EVENITY comes with a warning for potential risk of myocardial
infarction, stroke or cardiovascular death.

7. Conclusions

The Wnt signalling pathway has been shown to have an enormous impact on bone
development and remodeling. Variations in several Wnt-related genomic regions have been
associated with changes in BMD or different bone disorders, and changes in signalling
activity can easily tip the balance between bone formation and bone resorption into a
pathological state. Despite the fact that most studies primarily attribute this to the canonical
Wnt signalling pathway, non-canonical Wnt signalling has been time and again shown to
also have an important role in the regulation of this balance, either through its direct effects,
through interactions with the canonical Wnt signalling pathway, or through crosstalk
with other signalling pathways crucial for appropriate bone development. After all, Wnt
signalling is just a part of a complex network of signal transduction events that occur
during processes such as differentiation. Dysregulation of any of the connected pathways
might thus propagate a change to the whole signalling network and induce effects that
cannot be explained by the observed pathway only.

Thus, when researching the many roles of Wnt signalling pathways in bone biology, it
is important to consider that Wnt ligands can not only activate canonical and non-canonical
signalling at the same time, as was demonstrated for Wnt3a, but could also activate more
than one non-canonical Wnt signalling pathway. Future studies exploring the effects of
Wnt signalling pathways should thus consider analysing also the possible activation of
other (non-canonical) Wnt signalling pathways or even strongly interconnected pathways,
such as Hippo or MAPK signalling pathways. This will result in a better understanding of
the importance and impact of each pathway’s crosstalk, shine more light on the roles of
GWAS hits associated with BMD and possibly provide the groundwork for novel anabolic
bone therapies targeting more than one signalling pathway.
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