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Abstract
Physiologically- based pharmacokinetic (PBPK) models usually include a large 
number of parameters whose values are obtained using in vitro to in vivo ex-
trapolation. However, such extrapolations can be uncertain and may benefit from 
inclusion of evidence from clinical observations via parametric inference. When 
clinical interindividual variability is high, or the data sparse, it is essential to use 
a population pharmacokinetics inferential framework to estimate unknown or 
uncertain parameters. Several approaches are available for that purpose, but their 
relative advantages for PBPK modeling are unclear. We compare the results ob-
tained using a minimal PBPK model of a canonical theophylline dataset with 
quasi- random parametric expectation maximization (QRPEM), nonparamet-
ric adaptive grid estimation (NPAG), Bayesian Metropolis- Hastings (MH), and 
Hamiltonian Markov Chain Monte Carlo sampling. QRPEM and NPAG gave 
consistent population and individual parameter estimates, mostly agreeing with 
Bayesian estimates. MH simulations ran faster than the others methods, which 
together had similar performance.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
No single software platform allows practitioners to compare parametric and 
nonparametric estimates of calibrated physiologically- based pharmacokinetic 
(PBPK) model parameters.
WHAT QUESTION DID THIS STUDY ADDRESS?
How do a maximum likelihood parametric (quasi- random parametric expecta-
tion maximization) and nonparametric (nonparametric adaptive grid estimation) 
algorithms, and two Bayesian numerical methods (Hamiltonian Markov Chain 
Monte Carlo and MH) compare in results and timing for calibration of a PBPK 
model?
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INTRODUCTION

Physiologically- based pharmacokinetic (PBPK) models 
usually integrate a large number of parameters because 
of their mechanistic nature.1 The common practice work-
flow for PBPK modeling in clinical studies involves in 
vitro to in vivo extrapolation (IVIVE) of parameter val-
ues.2 However, such extrapolations can be uncertain 
and may benefit from inclusion of evidence from clinical 
observations, via parametric inference on some model 
parameters.3 When clinical interindividual variability 
is high, or the data sparse, it is essential to use a popula-
tion pharmacokinetics framework when conducting such 
parametric inference.4 Several approaches and algorithms 
are available for that purpose, and their relative advan-
tages for PBPK modeling are unclear. A recent article5 
compared the application of two Markov Chain Monte 
Carlo (MCMC) numerical samplers to a diazepam PBPK 
model: the Metropolis- Hastings sampler (MH),6 and the 
Hamiltonian MCMC sampler (HMCMC).7 Both produced 
very good fits at the individual and population levels. 
HMCMC outperformed MH in sampling efficiency, due 
to its almost uncorrelated sampling. Yet, MH was much 
faster per iteration, and because of that it converged faster 
and produced more samples per unit time. A previous 
paper8 compared NONMEM9 (using a frequentist ap-
proach) and Winbugs10 (using a Bayesian approach) on 
the same data set.

Physiologically- based pharmacokinetic models include 
species- specific physiological parameters, drug- specific 
parameters, and parameters defining the trial design. It is 
essential to document distributions or best values for this 
vast number of parameters (up to several hundreds), and 
their covariances. The Simcyp Population- Based PBPK 
Simulator compound database holds more than 100 drugs 
for which mean parameter values and, in most cases, in-
terindividual variance (determined via meta- analysis of 
the available data1,11– 13) are available. Similarly, distribu-
tional estimates for physiological parameters are available 
for more than 20 populations (e.g., Chinese, Japanese, 

North European, pediatric, and the obese). In the Simcyp 
Simulator, the covariance between parameters is typically 
modeled via covariate submodels14 when prior informa-
tion is available. For several compounds, parameter val-
ues are often extrapolated from in vitro measurements. 
In such cases, simulations may not accurately match the 
available clinical data, and parametric inference based on 
the latter may yield better parameter estimates. Population 
estimation methods are computationally intensive, so un-
less the number of model parameters is already small, it 
may be necessary to confine population fitting to a small 
subset of them. For the rest of the parameters, which have 
a mechanistic definition, literature values supported by 
IVIVE have been used. When the number of uncertain 
parameters is large, sensitivity analysis is recommended 
to decide which ones are the most influential and should 
be estimated.

In this work, we compared results obtained using 
a minimal PBPK model of a classical theophylline 
dataset15 with two frequentist asymptotic methods— 
quasi- random parametric expectation maximization 
(QRPEM),16,17 nonparametric adaptive grid estimation 
(NPAG),18 both implemented in the Simcyp Simulator— 
and two Bayesian numerical sampler, MH,19 and 
Hamiltonian HMCMC.20

INFERENCE METHODS AND 
ALGORITHMS

Statistical parameter estimation uses frequentist point- 
estimation or Bayesian distribution- based methods. 
Frequentist methods produce confidence intervals around 
point- estimates, which should lead to approximately the 
same decisions as Bayesian methods, given enough data. 
An independent classification differentiates parametric 
(assuming fixed distributions) from nonparametric meth-
ods. The methods investigated here cover the parametric 
and nonparametric frequentist cases, as well as the para-
metric Bayesian case.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We demonstrate, for the theophylline dataset studied, a strong coherence of the 
four approaches tested. Computation times differ largely, with MH being fastest, 
but this is partly implementation dependent.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Practitioners will be able to test parametric assumptions with a nonparametric 
method when calibrating PBPK model parameters and will have greater confi-
dence when making important decisions in a drug development process.
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Quasi- random parametric expectation 
maximization

The QRPEM algorithm (Figure 1) is a population pharma-
cokinetic likelihood maximizer first implemented in the 
Phoenix NLME software21 and available in Simcyp version 
19. In QRPEM, importance sampling of the posteriors is 
based on quasi- random (“low discrepancy” or Sobol) se-
quences22 with increased sampling efficiency over pseudo- 
random sequences. QRPEM also uses sampling importance 
resampling to draw individual random effects from their 
conditional empirical Bayes distribution (EBD). The overall 
marginal log- likelihood function evaluated in QRPEM is:

where Yi represents the observations for individual i, xi the 
structural parameter vector for ith individual (i = 1, … ,N ). 
The individual parameters xi are assumed to be normally 
or log- normally distributed. The � is a vector of fixed ef-
fects (population means), Ω is the population parameters’ 
variance– covariance matrix, and �2 is the residual error 
variance. The integrand of Equation (1) is usually written 
as an expectation �g

[
p
(
Yi |xi, �2

) p(xi |�,Ω)
g(xi |�,Ω)

]
 with respect to 

proposal distribution g. The EBD is defined as:

where � is a normalization factor defined by the integral in 
(1), p

(
Yi |xi, �2

)
 is the individual likelihood of the observa-

tion Yi, and p(x |�,Ω) is the conditional distribution of the 
individual parameters xi with population mean and covari-
ance. EBD(x) is approximated by a discrete distribution on 
Mi support points 

(
xi1, … , xiM

)
 where the probability on 

each support point is:

 with

In Simcyp version 20, g is a mixture of two multivariate 
normal distributions. The first distribution is g1

(
xi |�i, �Ωi

)
 

where �i and Ωi are the individual i’s Empirical Bayes esti-
mates of the mean and the covariance of current iteration 
of the EM algorithm and � is a dilation factor. Distribution 
g2
(
xi |�,Ω

)
 is wider, � =mean

(
�i
)
 and Ω being respec-

tively the current population mean and covariance matrix 
estimates. Equal numbers of quasi- random samples for 
individual parameters are drawn from these two distribu-
tions to calculate a current (discrete) EBD via:

The QRPEM maximization step is done via optimization of 
the residual error model parameters with a Newton method 
or L- BFGS- B.23 A fast bootstrap method24 is used to calcu-
late the confidence regions for estimated parameters and 
predictions. Simcyp QRPEM calculates individual estimates 
as means (eventually in log- space):

Individual covariance matrices using:

Population mean:

The population variance– covariance matrix is calculated as:
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F I G U R E  1  Key components of the 
quasi- random parametric expectation 
maximization (QRPEM) algorithm in 
Simcyp version 19/20
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Nonparametric adaptive grid estimation

The NPAG algorithm is a likelihood maximizer that does 
not rely on distributional assumptions of individual val-
ues. The key problem in the nonparametric maximum 
likelihood (NPML) method is to estimate the optimal dis-
tribution function, FML, that maximizes the likelihood of 
the observations among the set of discrete distributions 
with no more support points than the number of subjects 
N in the population. The fact that the number of support 
points must be limited to N is proven by the Carathéodory 
Theorem.25

In the approach proposed by Leary and Burke,26 the 
original NPEM algorithm27 is applied to a modestly sized 
grid H0 to produce an FML solution. A primal- dual inte-
rior point algorithm with near- quadratic convergence is 
used to solve the NPML estimation problem.18 Support 
points with very small probability are deleted from H0 ; 
new support points are added around each of these re-
maining support points in H0 leading to a new grid H1 and 
an improved likelihood (Figure 2). The process is repeated 
until the convergence of likelihood is achieved.

NPAG results in a conditional probability matrix ψ with 
one row per subject i and one column per final support 
point j, where � ij is the likelihood of subject i’s data given 
the parameter values of the support point. Given ψ, the pri-
mal dual algorithm estimates an optimal probability vector 
� with one element per support point. The population esti-
mate of a parameter is calculated as the expectation over the 
final support points, 

∑
j

�
�jxj

�
, where xj is the value of the 

parameter vector at the jth grid point. Parameter estimates 
for subject i are computed using the discrete empirical 

Bayes distribution for that subject. The probabilities in that 
distribution form a vector pi with elements equal to:

The parameter vector estimate for subject i is then given by 
the expectation 

∑
j

(
pi,jxj

)
.

In Simcyp version 19, NPAG18 was added as a popula-
tion estimation algorithm. It uses the QRPEM to generate 
the NPAG initial grid. The population covariance matrix, 
calculated using individual estimates, and the probability 
distribution of the final grid are reported with other nu-
merical and graphical performance measures. The coeffi-
cients b0 and b1 of the combination error model-  estimated 
within the initial QRPEM run (see Equation (15) below) 
are input to the NPAG algorithm and remain fixed.18

Metropolis- Hastings sampling

The MH algorithm6,28 is an MCMC sampling method. It 
generates a sequence of random draws from any distribu-
tion for which the density can be computed up to a con-
stant. Let θ be a set of parameters of interest. According to 
Bayes’ theorem, the joint posterior distribution of θ given 
data y is proportional to the product of its prior distribu-
tion by the data likelihood:

To simplify the notation, let f (�) be the product [�]
[
y |�

]
. At 

iteration zero of the sampler, the MH algorithm starts from 

(10)pi,j =
� ij ⋅ �j

∑
j

�
� ij ⋅ �j

� .

(11)
[
� |y

]
∝ [�]

[
y |�

]

F I G U R E  2  The NPAG algorithm starts from a set of initial grid points obtained with only a few iterations of QRPEM. The grid is 
updated (removing and adding points) according to probabilities re- calculated in every iteration of the algorithm, as explained in the text. 
NPAG, nonparametric adaptive grid estimation; QRPEM, quasi- random parametric expectation maximization
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an arbitrary point �0 (the exponent is used here for index-
ing). It then samples a “candidate” point �′ using a so- called 
“instrumental” (i.e., arbitrary but judiciously chosen) condi-
tional distributionJ. The conditioning is, in general, on the 
previously sampled value of � (in this case �0), hence the 
appellation “Markov chain.” Jis often a multivariate nor-
mal distribution centered on the previous draw of θ. The 
candidate �′ is selected or not, according to the following 
procedure:

a. Compute the ratio 

b.  If r ≥1, accept θ′; otherwise, accept it with probability r 
by sampling a uniform random number u between zero 
and one and accepting θ′ if u ≤ r ;

c.   If θ′ is accepted, keep and call it θ1; otherwise discard it 
and make θ1 = θ0.

The algorithm continues sampling proposed values 
and accepting or rejecting them, according to the value 
of rj, as long as needed. It can be shown that after an in-
finite number of draws, the retained values of θ form a 
random sample from the desired posterior distribution. 
In practice, it is enough to run several chains from differ-
ent starting points θ0 and check that they approximately 
converge to the same distribution.29 Note that if J(θ|•) is 
symmetrical and centered on the previous value, the ratio 
J(θi|θ′)/J(θ′|θi) in Equation  12 is always equal to 1 and 
does not need to be evaluated.

Instead of sampling the whole parameter vector θ at 
once, it is common practice to split it into multiple com-
ponents using conditional independence arguments and 
update these components one by one. In the simplest case, 
each component is a scalar, and its proposal distribution 
J is univariate. We selected that sampling scheme for our 
MH computations.

Hamiltonian Markov Chain Monte 
Carlo sampling

This MCMC sampler avoids random walk. It uses 
Hamiltonian dynamics to generate proposal values. 
Imagine a particle with some position and momentum, 
moving over time in a frictionless space. The model pa-
rameters correspond to the position vector and an aux-
iliary vector represents the momentum vector. The 
potential and kinetic energy of the particle constitute the 

total energy (equal to the Hamiltonian in the HMCMC 
context), which remains constant over time due to lack of 
friction. The position and momentum of the particle can 
be calculated by solving Hamilton's equations (a system of 
partial differential equations).9,30

An advantage of HMC is that it informs the proposal 
about the target distribution through numerical approx-
imation of its gradient. Therefore, HMCMC performs 
better in high dimensional problems where the poste-
rior has high curvature compared to other MCMC meth-
ods. Yet, per step, HMCMC sampling is much heavier 
computationally.31

MATERIALS AND METHODS

Experimental data

A canonical theophylline data set15,32 was used (see Table 
S1). Eighteen healthy male subjects were administered an 
immediate release formulation of theophylline. For subjects 
A– K, 320 mg, for subject L, 268 mg, and for subjects M– R, 
190 mg oral doses of theophylline were given, respectively. 
The concentration (in mg/L) of theophylline in patient’s 
blood plasma samples was measured. The concentrations 
at time zero were not used (the model estimates would al-
ways be zero). Body weight was recorded for only 12 of the 
subjects (codes A to L) and was missing for the others.

Physiologically- based pharmacokinetic  
model

Physiologically- based pharmacokinetic 
model equations

The Simcyp minimal PBPK model consists of three well- 
stirred compartments, predicting the systemic, portal 
vein, and liver concentrations (Figure  3). Using a first 
order absorption model, input from the gut lumen can 
be obtained analytically. Because the volume of the por-
tal vein blood is very small compared to the others, we 
assumed that the portal vein drug concentration is al-
ways at equilibrium. For theophylline, we also assumed 
negligible gut wall metabolism. The model equations 
are provided in Section S2.

Individuals’ physiological covariates and 
parameter values

The subject- specific values of most physiological param-
eters were scaled using subjects’ age.14 Because Trembath 

(12)ri =
f
(
��
)

f
(
�i
) ⋅

J
(
�i |��

)

J
(
�� |�i

) with i = 0
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and Boobis only give the age range (21-  to 31- year- old) of 
the subjects, we computed their expected age by randomly 
sampling the age of 1000 White men in that age range 
from a Weibull distribution, using Simcyp version 20. The 
average age of the simulated subjects (27.6 years) was then 
imputed to the 18 subjects studied here. When body mass 
was given as data, it was used, rather than computed as a 
function of age.

The absorption rate constant (ka; 1/h), the volume of 
distribution of the drug at steady state (Vss; L/kg) and 
CYP1A2 liver enzyme mediated maximum rate of me-
tabolism (Vmax) of theophylline (pmol/min/pmol) were 
estimated for each subject, because they are the most un-
certain or variable and sensitive parameters of the model.

Statistical model and estimation 
procedures settings

The statistical model we consider assume that the jth 
theophylline plasma concentration measurement for the 
ith subject was normally distributed with a mean a time 
tij given by the structural PBPK model, f , and a residual 
error variance �2:

where θi was a vector of three estimated subject- specific pa-
rameters (ka Vss and Vmax), φ was a vector of fixed parame-
ters (given in Table S2), b0 and b1 being residual error model 
parameters (also estimated).

At the population level, the subject- specific parameters 
were assumed to be distributed according to a multivar-
iate log- normal distribution, with population geometric 
means μ (estimated) and population covariance matrix Ω 
in log- space:

The residual error variance, �2, describes modeling and 
measurement errors and was chosen to be proportional to 
the prediction with an added constant error:

Quasi- random parametric expectation 
maximization estimation

Table S3 gives the initial values of the population means μ 
and residual error parameters, the bounds applied to μ and θ 
components, and the coefficients of variation specifying the 
initial population variances. The covariances (off- diagonal 
elements of Ω) were initially set to zero. The initial value of 
b0 corresponds to 10% of the average data values.

The QRPEM- specific control parameters’ settings are 
given in Table S5. The number of QRPEM iterations was 
set at 100. For the expectation step, 500 values per subject 
were randomly drawn from the population distribution. 
An acceptance ratio (α) was used to set the dilation factor 
(λ; see QRPEM description above) as:

where Nreff  is the number of random effects in the model. 
L- BFGS- B optimization was used to estimate the resid-
ual error model parameters in the maximization step. The 
SUNDIALS CVODES33 solver, with the settings given in Table 
S7, was used to integrate the model’s differential equations.

Nonparametric adaptive grid estimation  
estimation

For NPAG, parameter initial values and bounds were the 
same as for QRPEM (Table S4). The NPAG- specific control 
parameters’ settings are given in Table S6. The number of it-
erations was set to 100. The initial NPAG grid needs only to 
hold approximate solutions, so 10 iterations of initial QRPEM 
were run, with 200 Monte Carlo samples. The SUNDIALS 
CVODES solver was used for integration, as above (Table S7).

Metropolis- Hastings estimation

Because of software limitations, a diagonal population 
covariance matrix was used instead of a full matrix with 
MH. Bayesian methods require the specification of prior 
distributions. At the population level, the priors for the 
population means of (Ka, Vss, and Vmax) were uniform 
within the same bounds as QRPEM and NPAG (Table S3). 
The priors for the population geometric SDs of Ka, Vss, and 
Vmax were set to normal distributions with mean 1.1, SD 

(13)yij∼N
(
f
(
tij,�i,�

)
, �2

(
f
(
tij,�i,�

)
, b0, b1

))
, 1≤ i≤N , 1≤ j≤ni

(14)log
(
�i
)
∼ N(log(�),�)

(15)�2
(
f
(
tij,�i,�

)
, b0, b1

)
=
(
b0+b1× f

(
tij,�i,�

))2

(16)� = 1∕�2∕Nreff

F I G U R E  3  The minimal physiologically- based 
pharmacokinetic (PBPK) model of the Simcyp Simulator
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0.3 and truncation bounds 1 and 4.0 (corresponding to 
a half- normal for the population SDs in log- space). The 
prior for b0 was half- normal with a SD of 5, and the prior 
for b1 half- normal with a SD of 0.1.

Four Markov chains of 10,000 iterations were simu-
lated. The initial 5000 samples were discarded and only 
one in two of the last 5000 samples were used, forming 
a final sample of 10,000 posterior parameter vectors. The 
convergence of the chains was assessed visually and con-
firmed using Gelman and Rubin potential scale reduction 
factor R̂34; R̂ lower than 1.05 indicates well converged 
chains.29 The Livermore Lsode35 implicit solver was used 
to integrate the structural model, with relative and abso-
lute tolerances of 10−7 and 10−8, respectively.

Hamiltonian Markov Chain Monte Carlo  
estimation

The population means and error model parameters b0 
and b1 were assigned the same priors as for MH (above). 
The full population covariance matrix prior was specified 
using a scale vector distributed like the populations SDs 
in MH, and a Lewandowski– Kurowicka– Joe prior on the 
correlation matrix, with parameter 3.

The standard HMC no- U- turn sampler was used. Four 
Markov chains were simulated with 500 warmup iterations 
and 1000 sampling iterations per chain, and no thinning. 
Convergence was assessed visually, with the R̂ criterion, 
and with the effective number of samples. Backward differ-
entiation formula method (an implicit integrator, like for 
the other methods) was used for solving differential equa-
tions, with relative and absolute tolerances both set at 10−6.

Software used

We used the QRPEM and NPAG algorithms implemented 
in Simcyp version 20. MH simulations were performed with 
GNU MCSim19,36 available at www.gnu.org/softw are/mcsim. 
HMCMC simulations were performed with the R package 
rstan20 under R version 4.0.5.37 Graphs and additional statisti-
cal treatment were performed in R. Software was run on a 
Dell Precision 5540 Notebook computer, with 16 GB RAM 
and 6 Intel Core i7- 9850H processors clocked at 2.6 GHz.

RESULTS

Model fits to the data

Figure 4 shows the best (maximum likelihood or maxi-
mum posterior) predictions versus observations for each 

of the four parameter estimation methods used. The pre-
dicted plasma concentration versus time curves, overlaid 
with individual observations, are shown in Figures S1– 
S4 of the Supplementary Material from QRPEM, NPAG, 
MH, and HMCMC, respectively. All four methods gave 
reasonable fits to the data and the residual error is prob-
ably close to the data measurement error. There is a sig-
nificant, even if not very high, intersubject viability, as 
can be seen by the deviations from the population aver-
age time curve.

Comparison of population parameter  
estimates

Figure 5 shows the population means and SDs for Vmax, 
ka, and Vss, and the error model parameter estimates for 
each method. The populations SDs are given on the log- 
scale, because the three parametric methods assume a log- 
normal distribution of individual values in the population. 
This is not relevant for NPAG, but we computed the SD 
estimates after log- transformation of the parameter grid 
points coordinates for easy comparison with the results 
of the other methods. MH and HMCMC yield posterior 
distributions, QRPEM computes confidence intervals, and 
NPAG does not provide uncertainty estimates. Yet, over-
all, the four methods gave similar estimates for population 
means and SDs, and for the proportional error component 

F I G U R E  4  Individual observations vs. predictions by all four 
parameter estimation methods. The solid line is the unity line; 
the blue and red dashed lines mark, respectively, 1 and 2 standard 
deviations above and below line of unity. HMCMC, Hamiltonian 
Markov chain Monte Carlo; MCMC, Markov Chain Monte Carlo; 
NPAG, nonparametric adaptive grid estimation; QRPEM, quasi- 
random parametric expectation maximization
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(b1) of the measurement error model. The additive error 
component (b0) has a long left- tail as it is poorly identifi-
able from the data, and the best QRPEM estimate is lower 
than the others, whereas still falling in a feasible region 
of the Bayesian posteriors. Note that the prior bounds im-
posed on the population means were not reached by any 
of the methods used and the estimates are practically only 
constrained by the data in all cases. Histograms of the  
posterior population parameter samples are shown in 
Figures S5 and S6 for HMCMC and MH, respectively.

Figure 6 shows the (best) population distributions den-
sities according to QRPEM, MH, and HMCMC for Vmax, 
ka, and Vss, overlaid with the NPAG individual estimates. 
The NPAG estimates do not point to any significant devia-
tion from lognormality of the population distribution, but 
there are only 18 subjects to check that. Note that the final 
NPAG grid of support points can have at most 18 points, 
but in fact only eight have a probability greater than 10−5. 
The population distributions are consistent across the four 
methods, even though QRPEM and NPAG population 
mean estimates for Vss are a bit lower than those of MH 
and HMCMC. Detailed population parameter estimates 
are given in Tables S8– S11 for QRPEM, NPAG, HMCMC, 
and MH, respectively. Detailed individual parameter esti-
mates are given in Tables S12– S15. The last two tables also 

give the R̂ convergence values obtained with HMCMC and 
MH, respectively. Approximate convergence of the simu-
lated Markov chains was always achieved.

Computation time

Run times of QRPEM and NPAG were 4.5 h and 1 h 20 min 
respectively, and 1 h 15 min and 1.5 min for HMCMC and 
MH, respectively. To check whether the much shorter run 
time of MH was partly due to a simpler (diagonal) matrix 
estimation, we ran separately an HMCMC estimation with 
a diagonal matrix. The HMCMC run time was the same 
as with a full covariance matrix and the results were the 
same as those of MH (data not shown), so the better per-
formance of MH is not due to simpler matrix estimation.

DISCUSSION

In this work, we used the parametric QRPEM and the non-
parametric NPAG methods, both implemented in Simcyp 
version 20, together with two Bayesian numerical methods 
(HMCMC and MH) to calibrate a PBPK model using popu-
lation data on theophylline plasma concentration following 

F I G U R E  5  Population (mean, SD) and error model (b0, b1) parameters posterior distributions (a) HMC; (b) MH or maximum likelihood 
estimates (c) QRPEM, with 95% confidence intervals when available; (d) NPAG. HMCMC, Hamiltonian Markov chain Monte Carlo; ka,  
absorption rate constant; MCMC, Markov Chain Monte Carlo; NPAG, nonparametric adaptive grid estimation; QRPEM, quasi- random 
parametric expectation maximization; Vmax, maximum rate of metabolism; Vss, volume of distribution of the drug at steady state
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oral administration of an immediate release form. We used 
a minimal PBPK model consisting of only two ordinary 
differential equations and a first- order absorption rate but 
complemented with a rich covariate model.

We could have used a more complex PBPK model, but 
such a model was not needed to describe theophylline phar-
macokinetics. Theophylline undergoes negligible intestinal 
metabolism and exhibits almost 100% bioavailability, with a 
time to peak plasma level of about 45 min in humans given 
theophylline orally as a solution.38,39 Those justify using a 
first- order model for theophylline absorption and estimat-
ing an absorption rate. Theophylline distributes mostly into 
body water. Its apparent volume of distribution is variable 
across subjects (which justifies estimating it, as we did 
here) with a mean of about 0.48 L/kg.39 This low volume 
of distribution justifies using a minimal PBPK model. The 
baseline values of our theophylline model parameters were 
extracted from the Simcyp compound library file for that 
drug. Metabolism of theophylline by hepatic CYP1A2 ac-
counts for 70– 80% of its total metabolism. Out of the three 
theophylline metabolic pathways mediated by CYP1A2, we 
selected the main N3- demethylation pathway40 and Vmax for 
that pathway was fitted, given its relatively high expected 
interindividual variability. Its value is only apparent and in-
cludes contributions from all pathways and enzymes.

Given the unavoidable uncertainty affecting the results, 
the four methods gave comparable estimates of all model 
parameters at the population and subject levels. The pos-
terior fit to the data were uniformly very good. Because we 
used uniform prior distributions for population means in 
Bayesian estimation, it is no surprise that the results are 
similar to those of maximum likelihood methods. It is re-
assuring that the choice of method does not strongly con-
dition the data analysis results. The population estimates 

of ka, are close to 2 h−1, which correspond to an absorption 
half- time of about 30 min. The population mean Vss esti-
mate is very close to the published value 0.48 L/kg, and the 
population mean for Vmax is close to 10 pmol/min/pmol of 
CYP1A2, which is compatible with the value used in the 
Simcyp compound library file (6 pmol/min/pmol) because, 
as mentioned above, our estimate includes contributions 
from other metabolic pathways which are modeled sepa-
rately in Simcyp. Population variability estimates corre-
spond to about 80% coefficient of variation (CV) for ka, 20% 
CV for Vss, and 50% CV for Vmax. A correlation at the pop-
ulation level between Vss and Vmax seems to exist, but it is 
quite uncertain (according to HMCMC, which gives a mea-
sure of its uncertainty), and MH (which neglect those cor-
relations) gave estimates consistent with those of the other 
methods. We suggest that the amount of information and 
covariance modeling that enters the PBPK model leaves 
their parameters quite uncorrelated. This has already been 
noticed by others.5,41 This feature allows the use of diagonal 
population covariance matrices, simpler to estimate.

In terms of computation time, MH was the fastest, 
followed by NPAG and HMCMC, and then by QRPEM. 
However, QRPEM and NPAG are implemented in the 
Simcyp Simulator and we used only a subset of its minimal 
PBPK model functionalities. It is likely that some overhead 
in QRPEM is due to unused capabilities of the model.

Population estimation of PBPK model parameters has 
been previously reported using various Bayesian or max-
imum likelihood methods implemented in Gnu MCSim, 
Matlab, Stan, PK- Sim, and NONMEM.5,42,43,44,45 The cur-
rent study is the first to compare the performance of para-
metric Bayesian to those of the parametric QRPEM and 
non- parametric NPAG frequentist methods in the context 
of PBPK models.

F I G U R E  6  Best population distributions density estimates according to QRPEM, MH, and HMCMC for Vmax, ka, and Vss, overlaid with 
the NPAG individual estimates (points). HMCMC, Hamiltonian Markov chain Monte Carlo; ka, absorption rate constant; MCMC, Markov 
Chain Monte Carlo; NPAG, nonparametric adaptive grid estimation; QRPEM, quasi- random parametric expectation maximization; Vmax, 
maximum rate of metabolism; Vss, volume of distribution of the drug at steady state
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The population parameter estimation module in Simcyp 
offers both a parametric method (QRPEM) and a nonpara-
metric one (NPAG). This allows the usual (log)normality 
assumptions made by QRPEM to be immediately checked 
by NPAG. For theophylline, with 18 subjects, NPAG did not 
point to any flaw in that assumption. This could indeed be 
different with other drugs and populations.

Population inference can be used with complex mod-
els if they are supported by sufficient individual data. 
Obviously, computing power should be scaled up accord-
ingly. Complex models often include mechanistic param-
eters for which informative priors can be defined. In a 
Bayesian context, that helps the estimation by increasing 
identifiability. Still, only the parameters to which the data 
predictions are sensitive should be included to limit iden-
tifiability problems. That is partly why global sensitivity 
analysis was recently implemented in Simcyp.

The possibility to use population inference for com-
plex PBPK model opens interesting perspectives for 
improved simulations of clinical trials for drug– drug 
interactions, special populations, or bioequivalence as-
sessments. The ability to estimate population variabil-
ity in drug- specific PBPK parameters in Simcyp should 
help users in capturing the variability seen in available 
data when running clinical trial simulations. Population 
means and CV estimates given by QRPEM or NPAG can 
be input for the parameters of the compound of interest. 
However, one also needs to consider the variability affect-
ing all the other PBPK model parameters that were kept 
fixed during the estimation process. For those, informa-
tive prior distributions determined by meta- analysis or 
IVIVE should be used when running predictive checks 
of the inference and further simulations. On a more fun-
damental level, better estimates of population variability 
for some parameters and processes can point to the need 
to better understand the biological determinants of that 
variability.
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