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Quantum spin-valley Hall effect in 
AB-stacked bilayer silicene
Kyu Won Lee & Cheol Eui Lee*

Our density functional theory calculations show that while AB-stacked bilayer silicene has a non-
quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the 
bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb 
bilayer, we found that the interlayer potential difference and the staggered AB-sublattice potential lead 
to abrupt and gradual change of the valley Chern number from a quantized value to zero, respectively, 
while maintaining backscattering-free gapless edge states if the valley Chern number is not too close 
to zero. Under an inversion symmetry-breaking potential in the form of the staggered AB-sublattice 
potential, such as an antiferromagnetic order and a hexagonal diatomic sheet, a finite but non-
quantized (spin-)valley Chern number can correspond to a quantum (spin-)valley Hall insulator.

Silicene, one of the two-dimensional group IV materials such as graphene, is a single layer of silicon atoms 
arranged in a honeycomb lattice and is similar to a buckled graphene lattice1–4. The low-energy physics of silicene 
can be described by the two-dimensional Dirac equation like graphene1,4,5. Silicene is a quantum spin Hall insu-
lator with a spin-orbit coupling of 3.9 meV1,2,5, and various topological phases were predicted under an electric 
field and an exchange field4,6.

The layers in bilayer silicene can be bound together by covalent bonds unlike the layers in bilayer graphene 
bound by the van der Waals interaction. Due to a buckled structure, bilayer silicene can have various structures, 
which are semimetallic7,8. Multilayer silicene has been synthesized by several groups9–11, and effects of intercala-
tion and hydrogenation on the (opto)electronic properties of bilayer silicene have been studied8,12. Most works 
on bilayer silicene have been done without considering electron-electron interactions. Under electron-electron 
interactions, bilayer silicene was predicted to be a topological superconductor13.

A planar AA-stacked bilayer silicene, where all the silicon atoms of a layer are covalently bonded to the silicon 
atom of the other layer, has the lowest energy7, but needs to overcome considerable energy barriers14. AB-stacked 
bilayer silicene, where the silicon atoms of a layer reside on top of a carbon atom (dimer sites) or a hollow center 
(nondimer sites) of the other layer, is known to be an antiferromagnetic insulator with an indirect band gap of 
0.29 eV14. AB-stacked bilayer silicene has covalent interlayer bonds at the dimer sites, breaking the π-bond net-
work of each layer, and the interactions of π-electrons localized on nondimer sites are responsible for the intra-
layer ferrimagnetic and interlayer antiferromagnetic order of AB-stacked bilayer silicene14.

On the other hand, the spin-valley degree of freedom characterized by the product of spin and valley indi-
ces is a new degree of freedom other than spin and valley, and can be employed for advanced electronics4,15,16. 
Inversion symmetry breaking together with spin-orbit coupling in monolayers of MoS2 was reported to lead to 
valley-contrasting spin splitting, which suppresses spin and valley relaxations and results in coexisting spin and 
valley Hall effects15. Antiferromagnetic order coupled to the valley degree of freedom was reported to result in 
the spin-valley degree of freedom, which leads to spin-valley-dependent optical selection rule and can lead to a 
renormalization of the valley gaps under a strong enough spin-orbit coupling16. In the π-band tight-binding mod-
els for monolayer and bilayer silicene, staggered exchange field was predicted to lead to a quantum spin-valley 
Hall insulator phase4,17,18.

The valley degree of freedom can be distinguished in systems where inversion symmetry is broken19–23. Under 
a small inversion symmetry-breaking potential, the Berry curvature is sharply peaked at each valley and the valley 
Chern number can be accurately defined20,23. If the inversion symmetry-breaking potential increases, the Berry 
curvature peak pertaining to each valley can be broadened and partially mixed with each other, and the valley 
Chern number obtained by integrating the the Berry curvature around a valley will deviate from the quantized 
value. In that case, it is not clear how the valley-related physics such as the bulk-edge correspondence would 
change. Actually, the inversion symmetry-breaking potential due to a spontaneous magnetic order may not be 
small enough to ensure the sharply peaked Berry curvature.
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In this work, our density functional theory (DFT) calculations show that while the intralayer ferrimagnetic 
and interlayer antiferromagnetic order of AB-stacked bilayer silicene gives a non-quantized spin-valley Chern 
number, there exist backscattering-free gapless edge states corresponding to a quantum spin-valley Hall effect. 
Using a tight-binding (TB) model for a honeycomb bilayer, we found that the valley mixing occurs abruptly as 
the interlayer potential difference increases above a threshold, but occurs gradually as the staggered AB-sublattice 
potential increases. The interlayer potential difference induces an abrupt change of the valley Chern number 
from a quantized value to zero. The staggered AB-sublattice potential induces a gradual decrease of the valley 
Chern number from a quantized value, while maintaining backscattering-free gapless edge states corresponding 
to a quantum valley Hall effect. As a result, under an inversion symmetry-breaking potential in the form of the 
staggered AB-sublattice potential, such as an antiferromagnetic order and a hexagonal diatomic sheet, a finite but 
non-quantized (spin-)valley Chern number can correspond to a quantum (spin-)valley Hall insulator.

Figure 1(a) shows the spin density of AB-stacked bilayer silicene sheet. The spin density is mostly localized on 
the nondimer sites with intralayer ferrimagnetic and interlayer antiferromagnetic order as previously reported14. 
Figure 1(b) shows the band structure of AB-stacked bilayer silicene, where the energy bands with opposite spins 
were completely overlapped. The band structure indicates that the AB-stacked bilayer silicene is an antiferromag-
netic insulator with an indirect band gap ~0.36 eV, consistently with a previous work14. Figure 1(c,d) show the 
Berry curvature maps for opposite spins. The Berry curvature shows opposite signs at opposite valleys and for 
opposite spins, indicating a possible spin-valley Hall effect. From the spin-valley-resolved Chern number ξC s( , ) 
~sign(sξ)0.67, four types of the Chern number can be defined4,18. The Chern numbers were zero except for the 
spin-valley Chern number Csv ~ 2.68, which is not quantized but still indicates a spin-valley Hall effect.

The Berry curvature shows broad peaks of small height. The Berry curvature peak pertaining to each valley 
can be partially mixed, giving the non-quantized spin-valley Chern number. A small inversion-symmetry break-
ing potential ensures the sharply peaked Berry curvature20,23, and the staggered magnetization in the AB-stacked 
bilayer silicene decreases with increasing interlayer distance24. Figure 1(e,f) show the band gap and the spin-valley 
Chern number as a function of Δ = − ×d d d d( )/ 1000 0 , respectively, with a strained (equilibrium) interlayer 
distance d (d0).

The sublattice magnetization on the nondimer sites, obtained from the Mulliken population analysis, is 
0.3 μB at equilibrium. As the interlayer distance increases, the sublattice magnetization gradually decreases to 
zero, becoming nonmagnetic when Δd~35%. As the interlayer distance increases, the antiferromagnetic band 
gap decreases due to the reduction of staggered magnetization, and the spin-valley Chern number gradually 
approaches Csv~4, confirming that the non-quantized spin-valley Chern number is due to a large staggered mag-
netization. Next, we have investigated AB-stacked bilayer silicene nanoribbons with zigzag edges in order to 
confirm the corresponding spin-valley Hall effect. The ribbon width is represented by the number N of the C-C 
pairs on a layer in the unit cell.

Figure 2 shows the band structures of the zigzag-edge nanoribbons with N = 16 near the Fermi level EF, where 
the energy bands with opposite spins were completely overlapped. As shown in Fig. 2(a), nanoribbons with bare 
edges have gapless edge states within the bulk gap, indicating that bilayer silicene can be a topologically nontrivial 
insulator while the spin-valley Chern number is not quantized. As can be seen in Fig. 2(b–d), there are gapless 
edge states when the dimer edge sites are terminated by hydrogen, but the gapless edge states disappear when the 
nondimer edge sites are terminated with hydrogen.

The gapless edge states in Fig. 2(a,b) are not connected with valence and conduction bands, which can be 
attributed to edge potentials. Nanoribbons inevitably have edge potentials, which can be induced by dangling 
σ-bonds, functional groups passivating the dangling bonds and edge-localized magnetic moments25–27. In a quan-
tum valley Hall insulator, the dispersion of the edge state band is sensitive to edge potentials, varying from gapped 
flat-band to gapless chiral modes, because the edge potentials can introduce bearded-edge-like properties on the 
zigzag-edges20.

To check whether the gapless edge states correspond to any quantum Hall effect, we have investigated the 
square of the wavefunction |Ψ|2 near EF. Figure 3(a) shows |Ψ|2 at EF in the nanoribbons with bare edges, where the 
gapless edge states are confined on an edge, possibly indicating a quantum Hall effect. Figure 3(b) shows the sche-
matics for the propagation of the gapless edge states constructed from |Ψ|2 at EF and the band velocity. Since each 
state contributes e

h

2
 to the conductivity, the Hall conductivity can be estimated in units of e

h

2
 by counting the num-

ber of states propagating in a given direction. In Fig. 3(b), we can obtain a spin-valley Hall conductivity σsv = 4 e
h

2
 

and can confirm that backscattering of the gapless edge states requires inversion of the spin-valley index sξ. 
Time-reversal symmetry for a fixed valley and inter-valley separation for a fixed spin protects the gapless edge 
states from backscattering. As a result, the AB-stacked bilayer silicene is believed to be a quantum spin-valley Hall 
insulator, while the spin-valley Chern number is not quantized. In zigzag-edge nanoribbons with N = 32, we 
obtained the same results.

The gapless edge states with σsv = 4 e
h

2
 correspond to Csv = 4, which is consistent with the spin-valley Chern 

number obtained at the limits of small staggered magnetization shown in Fig. 1(f). For a quantum spin-valley 
Hall insulator, the bulk-edge correspondence is known to be exactly established only at a topological domain 
wall4,18. At a vacuum interface, the number of gapless edge states depends on the edge condition and may not 
correspond to the spin-valley Chern number. Nevertheless, the gapless edge states in Figs. 2 and 3 show that the 
AB-stacked bilayer silicene is a quantum spin-valley Hall insulator while the spin-valley Chern number is not 
quantized.

The (spin-)valley Chern number and the bulk-edge correspondence are based on the assumption that opposite 
valleys are well separated19–23. At an armchair edge, where opposite valleys are completely mixed, the bulk-edge 
correspondence has no meaning. For a large inversion symmetry-breaking potential, the Berry curvature still 
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centered on each valley may be broadened and partially mixed with each other, and thus the (spin-)valley Chern 
number obtained by integrating the Berry curvature around each valley may deviate from the quantized value. 
To clarify the effect of partial valley mixing, the TB model of Eq. (1) for the AB-stacked honeycomb bilayer was 
investigated (see the Methods section).

Figure 4(a) shows the absolute value of spin-valley-resolved Chern number ξ| |C s( , )  as a function of the inver-
sion symmetry-breaking potentials. We can consider two types of potential, interlayer potential difference 2V and 
staggered AB-sublattice potential Δ. For a small enough V and Δ, ξ| | =C s( , ) 1. While ξ| |C s( , )  abruptly changes 
from 1 to 0 as V increases to t0, ξ| |C s( , )  gradually decreases as Δ increases. In the intralayer ferrimagnetic and the 
interlayer antiferromagnetic order, the staggered magnetization Mi corresponds to a combination of a interlayer 
potential difference and a staggered AB-sublattice potential, with opposite signs for opposite spins. As M 
increases, ξ| |C s( , )  gradually decreases, too. The abrupt and gradual change of the spin-valley-resolved Chern 
number can be attributed to the Berry curvature.

Figure 1.  DFT calculations for bilayer silicene sheet. (a) Spin density. Green ball corresponds to silicon atom. 
The red and blue colors represent opposite spins. (b) Band structure. Energy bands with opposite spins were 
completely overlapped. (c,d) Show the Berry curvature maps for opposite spins. The bright and dark spots 
correspond to positive and negative Berry curvature, respectively. b1 and b2 represent reciprocal lattice vectors. 
K+ and K− correspond to the opposite valleys. (e,f) Show the band gap Eg and the spin-valley Chern number 
CSV as a function of Δ = − ×d d d d( )/ 1000 0 , where d (d0) is the strained (equilibrium) interlayer distance.
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Figure 4(b,c) show the Berry curvature maps for V = 0.9 and Δ = 0.9, respectively. For a small V and Δ, the 
Berry curvature is sharply peaked at each valley. The increase in V shifts the Berry curvature peak away from the 
valley while maintaining its sharp shape as shown in Fig. 4(b), and the mixing of the Berry curvature peak per-
taining to each valley abruptly occurs when the Berry curvature peak reaches the Brillouin zone border. As shown 
in Fig. 4(c), the increase in Δ broadens and lowers the Berry curvature peak while maintaining its center at each 
valley, and the mixing of the tails of the Berry curvature peak pertaining to each valley gradually increases with Δ.

Figure 2.  DFT band structures of zigzag-edge nanoribbons with N = 16. The top of each panel shows 
the corresponding edge structure, where red dots correspond to hydrogen. (a) Bare edges. (b) Hydrogen 
termination at the dimer edge sites. (c) Hydrogen termination at the nondimer edge sites. (d) Hydrogen 
termination at both edge sites. Energy bands with opposite spins were completely overlapped.
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Under a staggered AB-sublattice potential Δ, the Berry curvature in a honeycomb monolayer was reported to 
be ξΩ = Δ Δ +q q( ) 3 /2( 3 )2 2 3/2 for small q, where q is the wavevector measured from the K point in the Brillouin 
zone20. As Δ increases, the Berry curvature peak broadens while maintaining its center on each valley, consist-
ently with our results. Under an interlayer potential difference 2V, the Berry curvature in a honeycomb bilayer 
was reported to be ξΩ = − +q t Vq q t V( ) 2 /( )1

2 4
1
2 2 3/2 for small q23. As V increases, the Berry curvature peak 

moves away from the valley, consistently with our results.
Regardless of the abrupt and gradual change of the spin-valley-resolved Chern number, the band gap increases 

as the inversion symmetry-breaking potential increases. It is clear that ξ| | =C s( , ) 1 corresponds to a quantum 
(spin-)valley Hall insulator with gapless edge states at a topological domain wall, and ξ| | =C s( , ) 0 corresponds to 
a topologically trivial insulator. To clarify whether a finite non-quantized ξ| |C s( , )  due to the partial valley mixing 
corresponds to a quantum (spin-)valley Hall effect, we investigated N = 80 zigzag-edge honeycomb bilayer nano-
ribbons with a kink-type topological domain wall.

Figure 5(a,c,e) show the band structure, |Ψ| at E = 0 and a schematic for the propagating states at E = 0, respec-
tively, for Δ = ±0.5 in each half of the nanoribbon. Figure 5(b,d,f) show the band structure, |Ψ| at E = 0 and a 
schematic for the propagating states at E = 0, respectively, for M = ±1 in each half of the nanoribbon. In both 
cases, ξ ∼ ± .C s( , ) 0 5 in each half of the nanoribbon. Within the bulk gap, we can see that there are gapless edge 
states which are well confined on the topological domain wall, and backscattering of the gapless edge states 
requires inversion of the (spin-)valley index.

According to the bulk-edge correspondence4,21,22, the number of gapless edge state per valley per spin at the 
topological domain wall should be equal to the difference of the spin-valley-resolved Chern number between the 
two topological domains, ξ ξ ξ− − =C s C s C s( , ) ( ( , )) 2 ( , ). In Fig. 5, the number of gapless edge state per valley 
per spin is 2, indicating that ξC s( , ) should be 1 according to the bulk-edge correspondence. While the (spin-)
valley Chern number obtained by integrating the Berry curvature around each valley deviates from the quantized 
value due to the partial valley mixing, the gapless edge states still correspond to the quantized (spin-)valley Chern 
number obtained at the limits of well-separated valleys if the opposite valleys are not completely mixed and so if 
the (spin-)valley Chern number is not too close to zero.

Figure 3.  Schematics for gapless edge states in the zigzag-edge nanoribbons with bare edges. (a) The square of 
the wavefunction |Ψ|2 at EF for N = 16. (b) Schematics for the propagating states at EF. The red and blue colors 
represent the opposite spins. The up and down arrows correspond to the opposite propagating directions. s, ξ 
and sξ are spin, valley and spin-valley indices, respectively.
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As shown in Fig. 5(a), there are gapless edge states corresponding to the quantum valley Hall effect if 
Δ ≤ . t0 5 0. In the intralayer ferrimagnetic and interlayer antiferromagnetic order, the magnitude of the sublattice 
magnetization at the dimer sites (MD) is smaller than that at the nondimer sites (MND). When =M MD ND, there 
are gapless edge states corresponding to the quantum spin-valley Hall effect if ≤M tND 0. As MD decreases, the 
critical value of MND increases. When = .M M0 1D ND, corresponding to Fig. 5(b), the gapless edge states survive if 

M t3ND 0.
In the quantum (spin-)valley Hall effect with large staggered AB-sublattice potentials, the (spin-)valley Chern 

number is not well defined due to the valley mixing, but the gapless edge states still correspond to the (spin-)val-
ley Chern number obtained at small potential limits. Even in the presence of spin mixing, the spin Chern number 
could be well defined by partitioning the occupied valence band into two spin sectors using the projected spin 
operator28,29. In a similar way, it is expected that the (spin-)valley Chern number can be well defined even in the 
presence of valley mixing, which requires further study.

To summarize, we have investigated AB-stacked bilayer silicene, known to be an antiferromagnetic insulator, 
by using the density functional theory calculations. While the spin-valley Chern number is not quantized, there 
exist backscattering-free gapless edge states within the bulk gap, indicating that the bilayer silicene is a quantum 
spin-valley Hall insulator. Using a tight-binding model for a honeycomb bilayer, we found that a non-quantized 
(spin-)valley Chern number may correspond to a quantum (spin-)valley Hall insulator under an inversion 
symmetry-breaking potential in the form of staggered AB-sublattice potential such as an antiferromagnetic order.

Methods
A SIESTA package30 using a localized linear combination of numerical atomic-orbital basis sets was employed for 
the DFT calculations. A generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) was used 
for the exchange and correlation potential31. A double-ζ  polarized basis set and norm-conserving 
Troullier-Martins pseudopotentials generated with a Perdew-Burke-Ernzerhof functional were used. The 
plane-wave cutoff energy of 350 Ry was used for the real-space grid, and k-points of 100 × 100 × 1 and 40 × 1 × 1 
meshes in a Monkhorst-Pack scheme were used for bilayer silicene sheet and nanoribbons, respectively. The 
atomic coordinates were optimized by using the conjugated gradients method with a maximum force tolerance of 
0.1 eV/nm. The equilibrium lattice constant a0 = 0.386 nm and the interlayer distance d0 = 0.251 nm between the 
covalently-bonded dimer sites were obtained from the total energy minimum, in agreement with a previous 
work14. Zigzag-edge nanoribbons were considered as a one-dimensional system periodic in a zigzag direction. 
The ribbon width is represented by the number N of the C-C pairs on a layer in the unit cell. The spin-orbit cou-
pling, much smaller than the antiferromagnetic gap, was neglected.

Using the wavefunctions obtained from the DFT calculations on the bilayer silicene sheet, maximally localized 
Wannier functions were constructed within the Wannier90 code32. Berry curvatures were calculated based on the 

Figure 4.  TB calculations for honeycomb bilayer sheet. (a) Absolute value of spin-valley-resolved Chern 
number ξ| |C s( , )  as a function of inversion symmetry breaking potentials. (b,c) Show the Berry curvature maps 
for V = 0.9 and Δ = 0.9, respectively.
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Wannier interpolation. Using the anomalous Hall conductivity calculation routine implemented in Wannier90 
code, the spin-valley-resolved Chern number ξC s( , ) with spin s and valley ξ was calculated by integrating the 
Berry curvature over a half Brillouin zone. The spin-valley Chern number was defined as = ↑ + −C C( , K )sv  

↓ + − ↑ − + ↓ −C( , K ) C( , K ) C( , K ) and the spin-valley Hall conductivity can be expressed as σ = Csv sv e
h

2
33.

A π-band TB model Hamiltonian with nearest-neighbor hopping was introduced to model the AB-stacked 
honeycomb bilayer with broken inversion symmetry18,34:

∑ ∑= − + + Δ + .
〈 〉

† †H t c c V sM c c( )
(1)i j s

i j is js
is

i i i is is
,

,

The hopping amplitude =t ti j, 0 for in-plane hopping and =t ti j, 1 for interalyer hopping between the dimer 
sites. We set t0 = 1 and = .t 0 11 . The second term corresponds to on-site potentials breaking inversion symmetry. 

Figure 5.  TB calculations for N = 80 zigzag-edge honeycomb bilayer nanoribbons with a kink-type topological 
domain wall. (a,c,e) Show the band structure, |Ψ| at E = 0 and a schematic for the propagating states at E = 0, 
respectively, for Δ = ±0.5 in each half of the nanoribbon. (b,d,f) show the band structure, |Ψ| at E = 0 and a 
schematic for the propagating states at E = 0, respectively, for M = ±1 in each half of the nanoribbon. The red 
and blue colors represent the opposite spins. The up and down arrows correspond to the opposite propagating 
directions. The solid and dashed arrows represent the opposite valleys.

https://doi.org/10.1038/s41598-019-55927-9


8Scientific Reports |         (2019) 9:19426  | https://doi.org/10.1038/s41598-019-55927-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

The AB-stacked honeycomb bilayer has four sites A1, B1, A2 and B2 as shown in Fig. 2(a). On the basis of 
(A1,B1,A2,B2), Vi = (−1, −1, +1, +1)V corresponds to the interlayer potential difference. Δi = (−1, +1, −1, +1)
Δ corresponds to the staggered AB-sublattice potential. Mi = (+1, −0.1, +0.1, −1)M models the intralayer fer-
rimagnetic and the interlayer antiferromagnetic order of AB-stacked bilayer silicene with a spin s = ±1.
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