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Abstract: The utility of a solvent is one of the key factors that impacts resultant film morphol-
ogy. However, the effect of solvent-dependent morphology on the doping process and electrical
conductivity has not been adequately elucidated. In this work, we compared the morphology of
chloroform- and chlorobenzene-processed thiophene polymer films and investigated how the choice
of solvent influences film morphology, doping level, charge transport properties, and thus electrical
conductivity. It was found that the film drop-casted from chloroform exhibits better crystallinity
than that drop-casted from chlorobenzene. The crystallinity has negligible impact on the doping
level but significant impact on charge transport properties. As a result, the chloroform-processed
film shows a higher electrical conductivity of up to 408 S cm−1 due to a high carrier mobility related
to the continuously crystalline domains in film. This finding indicates that the choice of solvent
for preparation of film, which strongly correlated with molecular orientation, is a new strategy to
optimize the electrical conductivity of doped polymers.

Keywords: conductive polymer; chemical doping; electrical conductivity; carrier mobility

1. Introduction

Molecular doping has been a promising way to control the electrical properties of
polymer semiconductors [1,2]. The doped conjugated polymers are widely used as the
active layers in the organic field-effect transistor, organic light-emitting diode, and organic
thermoelectric devices [3–7]. Molecular doping will improve the electrical conductivity
(σ) by increasing free carriers along polymer chains via charge transfer between polymer
and dopant. To achieve a high σ, an extremely high doping concentration is usually re-
quired to obtain a high carrier concentration (n) [8,9]. However, the addition of large
amounts of dopants results in a disruption of the polymer film morphology and induces
a drop in carrier mobility (µ) [10], which leads to a low σ according to the relationship
of σ = neµ. [8] Therefore, it is still challenging to effectively dope polymers without re-
straining the charge transport in polymer film. There have been great efforts recently to
overcome film quality issues of heavily doped conjugated polymers. For example, several
doping methods are developed in which the dopants are applied to a pre-casted polymer
film, including vapor-phase deposition [11,12], immersion doping [13,14], sequential dop-
ing [15,16], etc. Other attention has been given to the modification of chemical structures
of polymers to leave dopants in side chains without disturbing the packing of polymer
backbones [17,18]. For instance, the introduction of π-conjugated subunits as a spacer
can reduce the number of side chains and improve the accommodation of dopants into
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films [19]. Additionally, polythiophenes with oligo(ethylene oxide) side chains show high
electrical conductivity of up to 100 S cm−1 and is attributed to the good miscibility between
polar side chains and dopants [20,21]. It is accepted that the crystalline film of pristine
polymers is beneficial for achieving good charge transport properties. The crystalline
behavior of polymers is strongly related to the properties of the solvent for dissolving
the given polymer [22,23]. However, how the solvent affects the solid-state orientation of
pristine film, and therefore the molecular doping and charge transport in doped film, has
not been sufficiently elucidated.

Herein, we investigate the influence of solvent for dissolving the polymer on the
crystallinity of pristine polymer films, doping efficiency and charge transport by employing
a thiophene polymer, PODTT-4T, drop-casted from chloroform (CF) and chlorobenzene (CB)
solution, respectively. It is found that the pristine film prepared from CF solution (PODTT-
4TCF) shows a preferentially edge-on orientation and a highly ordered microstructure while
the film prepared from CB solution (PODTT-4TCB) exhibits a lower crystallinity with both
edge-on and face-on orientations inside. PODTT-4TCF film shows a much higher σ of up to
408 S cm−1 compared to that of the PODTT-4TCB (280 S cm−1) although these two films
have a similar doping level if doped by FeCl3. The higher σ of doped PODTT-4TCF can
be ascribed to the higher carrier mobility due to larger crystalline domains upon doping
compared to the PODTT-4TCB film. We propose that the choice of solvent to dissolve
PODTT-4T determines the polymer crystalline behavior in the solid state, which prefers to
dominate the transport property of free carriers rather than the doping efficiency.

2. Synthesis and Characterization of Polymer

Polymer PODTT-4T was synthesized by Stille coupling reaction [24], copolymerizing
5,5′-dibromo-4,4′-bis(2-octyldodecyl)-2,2′-bithiophene and 2,6-bis(trimethylstannyl)thieno
[2′,3′:4,5]thieno[3,2-b]thieno[2,3-d]thiophene (4T) (Scheme 1). The large conjugated unit is
used to allow good planarity, promoting the charge delocalization. The long and branched
alkyl chains ensure the solubility of copolymers in common organic solvents, such as CF
and CB. The synthesis details and basic properties of the polymer are given in the sup-
porting information. PODTT-4T shows a high number-average molecular weight (Mn) of
22.2 kDa with a polydispersity index (PDI) of 2.08 (Figure S1). It exhibits excellent thermal
stability with a decomposition temperature (5% weight loss) of about 395 °C measured
by thermogravimetric analysis (TGA) (Figure S2). Differential scanning calorimetry (DSC)
analysis shows a melting transition peak at 296 ◦C and a crystallization peak at 271 ◦C
during the heating and cooling cycle (Figure S3), respectively, which suggests the exis-
tence of crystalline phases in the polymer [25]. PODTT-4T shows the highest occupied
molecular orbit (HOMO) level around −5.26 eV by employing the cyclic voltammetry
(CV) (Figure S4), which is beneficial for p-doping by FeCl3 [26]. The pristine films were
prepared by dissolving the polymer into CF or CB with a concentration of 5 mg mL−1. The
polymer solution was drop-casted on the glass substrate and dried at ambient temperature.
Then, the films were annealed at 160 ◦C for 30 min in the glovebox. The doped films were
prepared by immersing the annealed films into FeCl3 solution (in acetonitrile, 5 mg mL−1)
for 10 min.
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3. Results
3.1. The Doping Level of Films Prepared from Two Solvents

The doping behavior of PODTT-4TCF and PODTT-4TCB films is characterized by using
UV-vis-NIR absorption spectra. It is observed that pristine PODTT-4TCF and PODTT-
4TCB films show a similar absorption spectrum (Figure 1a). The maximum peak appears
at 605 nm and no obvious absorption is observed over 700 nm. In addition, there is
no obvious peak shift or absorption intensity change between these two films although
the different solvents usually induce the wavelength shift of shoulder peaks due to the
change of backbone interactions [27]. This indicates PODTT-4T chains dissolved in CF and
CB probably adopt a similar π-π stacking distance in the solid state. Upon doping with
FeCl3, the intensity of the neutral absorption peak of PODTT-4TCF and PODTT-4TCB films is
significantly bleached. Meanwhile, the absorption band ascribed to the (bi)polarons appears
above 800 nm in the near-infrared region. In order to compare the doping levels of the
two films, two absorption bands—neutral absorption bandI (380–710 nm) and (bi)polaron
absorption bandII (710–2000 nm)—are assigned. The ratio (R) of the integral area of these
two absorption bands (bandII/bandI) is calculated (Table S1). It is found that the doped
PODTT-4TCF film and PODTT-4TCB film have a similar R value suggesting similar doping
levels in the two films [21]. This indicates that CF and CB have a negligible effect on the
polymer doping level under the same conditions. Raman spectroscopy (Figure 1b) is further
employed to characterize and analyze the vibrational mode of PODTT-4TCF and PODTT-
4TCB upon doping. All intensities are normalized at the vibrational peak of mode A, which
corresponds to the C=C symmetric stretching vibration on the 4T core. Mode B and mode
C correspond to the C=C stretching vibration and the C=C/C-C stretching/shrinking on
the thiophene ring, respectively [28]. These vibrational modes are sensitive to the structural
order and π-electron delocalization [29]. The positions of mode B and mode C of the
pristine PODTT-4TCF film and PODTT-4TCB film are almost the same while mode A of
PODTT-4TCB is wider than that of PODTT-4TCF, indicating more disordered structures
existing in the former film. Upon doping with FeCl3, both mode A and mode C shift to
much lower wavenumbers, suggesting that the benzenoid structures along the conjugated
backbone are transformed into quinoid structures. It should be noted that the shift of mode
C of PODTT-4TCF is more significant (Table S2) and mode A is much wider compared to
those of PODTT-4TCB film, which means the dopants have a significant influence on the
molecular packing of polymer chains in PODTT-4TCF film. These results demonstrate that
the doping level is not dependent on the molecular orientation in PODTT-4T film.
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3.2. The Electrical Conductivity of Doped Films

To investigate how the solvents impact the electrical properties, the electrical conduc-
tivity of PODTT-4TCF and PODTT-4TCB films doped by FeCl3 was tested by four-probe
measurement. As shown in Figure 2, the electrical conductivities of the two films dramati-
cally increase with increasing the immersing time in the range of 10 min. As a result, the
σ tend to be saturated. The σ of doped PODTT-4TCF film is higher than that of doped
PODTT-4TCB film if doping time is greater than 10 min. The highest σ of PODTT-4TCF
is up to 408 S cm−1, which is 1.5 times higher than that of PODTT-4TCB (280 S cm−1). In
addition, the Seebeck coefficient (S, the potential difference arises from per unit temperature
difference) of the doped PODTT-4TCF film is slightly higher than that of the PODTT-4TCB
film (Figure S5a). As a result, the power factor (S2σ) of the doped PODTT-4TCF film is two
times higher than that of the PODTT-4TCB film at a doping time of 10 min, indicating the
potential thermoelectric application of this polymer. Considering a similar doping level
observed in two-doped films, the higher TE performance could probably be attributed to
the higher mobility in PODTT-4TCF film. To further support our hypothesis, Hall effect
measurements were employed to investigate the effect of solvents on carrier concentrations
and mobilities in doped polymers at doping times of 10 min (Figure S6). The results
show that the mobility of the doped PODTT-4TCF film and PODTT-4TCB film is 0.96 cm2

V−1 s−1 and 0.76 cm2 V−1 s−1, respectively. Meanwhile, the carrier concentration of the
doped PODTT-4TCF film and PODTT-4TCB film is 2.74 × 1021 cm−3 and 2.62 × 1021 cm−3,
respectively (Table S3). These data indicate that both films show higher mobilities than
that of a typical thiophene polymer, such as FeCl3-doped P3HT [13], due to a large and
delocalized backbone of PODTT-4T. In addition, the PODTT-4TCF film exhibits a 1.3-fold
higher carrier mobility with slightly more free carriers compared to PODTT-4TCB film,
affirming the importance of solvent selection for electrical conductivity optimization.
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3.3. Microstructural Characterization

To further understand the relationship between solvent-dependent morphology and
charge transport properties, grazing-incidence wide-angle X-ray scattering (GIWAXS) was
performed (Figures 3 and S7). Pristine PODTT-4TCF film shows intense (h00) multi-order
diffraction peaks in the out-of-plane direction (along the qz direction) and a (010) diffraction
peak at qxy = 1.6–1.8 Å−1 generated by π-π stacking in the in-plane direction. That indicates
a dominantly edge-on orientation existing in PODTT-4TCF film [30,31]. In contrast, pristine
PODTT-4TCB film shows weak and broad Debye rings of (h00) peaks with a (010) diffraction
peak appearing both in the out-of-plane and in-plane directions, meaning that both edge-on
and face-on orientation exists in the PODTT-4TCB film. Since CF and CB have different
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boiling points, the difference of molecular orientations from two solvents can be attributed
to the evaporation rate of solvent during the film preparation. In addition, the face-on
orientation is thermodynamically stable packing for the polymer. The lamellar distance and
π-π stacking distance of the PODTT-4TCF film are 20.26 Å and 3.67 Å, while the distances are
20.93 Å and 3.67 Å for PODTT-4TCB film, respectively. (Table S4). These results demonstrate
that the utility of solvent mainly affects the packing orientation in pristine films and has a
negligible effect on the lamellar distance and π-π stacking distance. Upon doping by FeCl3,
the lamellar stacking distance of PODTT-4TCF film is increased to 22.43 Å (∆d100 = 2.17 Å),
while the π-π stacking distance decreases to 3.50 Å (∆d010 = −0.17 Å). For the PODTT-
4TCB film, the lamellar packing distance is increased to 23.26 Å (∆d100 = 2.33 Å) while the
π-π stacking distance also decreases from 3.67 to 3.50 Å (∆d010 = −0.17 Å). These results
indicate that the dopants prefer to intercalate into the lamellar alkyl side-chain region
without disturbing the intense π-π stacking attributed to the electronic coupling between
the conjugated backbone. Moreover, the molecular orientations of pristine films are still
maintained upon doping. The size of the crystalline grain of pristine and doped films
is compared by extracting the data of the full-width at half-maximum (FWHM) of (100)
peaks according to the Scherrer equation [32,33]. It is observed that the FWHM of pristine
PODTT-4TCF film (0.072 Å−1) is slightly smaller than that of pristine PODTT-4TCB film
(0.078 Å−1), indicating larger crystalline domains in the pristine PODTT-4TCF film. Upon
doping, the crystalline domains of doped films are significantly increased. In addition,
the crystalline size of doped PODTT-4TCF film is still much larger than that of doped
PODTT-4TCB film.
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Figure 3. (a) GIWAXS line cuts of in-plane scattering profiles; (b) GIWAXS line cuts of out-of-plane
scattering profiles of pristine and doped films drop-cast from CB and CB, respectively.

The microscopic morphology of the pristine and doped films is further characterized
by atomic force microscopy (AFM) (Figure 4). Both the pristine PODTT-4TCF and pristine
PODTT-4TCB films are smooth with an average roughness of 1.2 nm and 5.0 nm, respectively.
Pristine PODTT-4TCF shows a fibrous zone while PODTT-4TCB film looks amorphous,
which is consistent with the GIWAXS results. The surface roughness of doped films is
slightly increased, which is in agreement with the enlarged crystalline domains observed in
GIWAXS. For the doped PODTT-4TCF film, the self-aggregation of dopants is not obviously
observed at the surface compared to that of PODTT-4T CB film, suggesting better miscibility
of FeCl3 with the former film. The GIWAXS information and AFM results support the
fact that the ordered molecular packing and higher crystallinity in PODTT-4TCF film are
responsible for its higher mobility compared to that of PODTT-4TCB film. The use of
chloroform solvent can promote polymer chains to form more ordered packing and larger
crystalline domains.
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Figure 4. AFM height images of (a) pristine PODTT-4TCF film, (b) pristine PODTT-4TCB film,
(c) doped PODTT-4TCF film, and (d) doped PODTT-4TCB film.

To further elucidate the carrier transport mechanism in the doped PODTT-4TCF and
PODTT-4TCB films, the temperature-dependent σ was measured. It has been found that
the σ increases with increased temperature (Figure 5), indicating thermal activated trans-
port properties in doped films [34,35]. The transport activation energy (Ea) of the doped
PODTT-4TCF film and PODTT-4TCB film can be calculated according to the equation of
σ=σ0exp(−Ea/kBT), where σ0 is the pre-exponential conductivity and kB is Boltzmann
constant [35]. It has been found that the Ea of the doped PODTT-4TCF film is 5.2 meV,
which is lower than that of doped PODTT-4TCB films (Ea = 8.0 meV). The low Ea suggests
a low transport barrier exists, and thus more polaronic states can contribute to electrical
conductivity due to the continuous carrier transport channels in the doped PODTT-4TCF
film [36]. Therefore, the film prepared from CF solution allows highly ordered and crys-
talline domains, resulting in strong coupling between doped polymer chains and thus a
high carrier mobility.

Figure 5. Temperature-dependent electrical conductivity of doped PODTT-4TCF and PODTT-4TCB

films (the unit of σ is S cm−1). All doped films were immersed in FeCl3 solution for 10 min.
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4. Conclusions

In this work, the effect of solvent on morphology, doping process and electrical
conductivity of thiophene polymers has been investigated. It has been found that the
molecular orientation in films is strongly related to the solvent used for dissolving the
polymer, which is dominated by the evaporation rate of solvent during film formation. The
films prepared from chloroform (PODTT-4TCF) mainly have an edge-on orientation, while
the films prepared from chlorobenzene (PODTT-4TCB) show both edge-on and face-on
orientations. PODTT-4TCF film exhibits better crystallinity than that of the chlorobenzene-
processed film. The crystallinity has significant influence on charge transport properties
rather than the doping level. As a result, FeCl3-doped PODTT-4TCF film shows a higher
electrical conductivity of up to 408 S cm−1 and is attributed to a high carrier mobility
correlated to the continuous and largely crystalline domains in film compared to that
of chlorobenzene-processed film. Our findings show that the selection of solvents for
the preparation of film is a promising strategy to optimize the electrical conductivity of
doped polymers.
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