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Abstract
This study aims to build a radiological model based on standard MR sequences for 
detecting methylguanine methyltransferase (MGMT) methylation in gliomas using 
texture analysis. A retrospective cross- sectional study was undertaken in a cohort 
of 53 glioma patients who underwent standard preoperative magnetic resonance 
(MR) imaging. Conventional visual radiographic features and clinical factors were 
compared between MGMT promoter methylated and unmethylated groups. Texture 
analysis extracted the top five most powerful texture features of MR images in each 
sequence quantitatively for detecting the MGMT promoter methylation status. The 
radiomic signature (Radscore) was generated by a linear combination of the five fea-
tures and estimates in each sequence. The combined model based on each Radscore 
was established using multivariate logistic regression analysis. A receiver operating 
characteristic (ROC) curve, nomogram, calibration, and decision curve analysis (DCA) 
were used to evaluate the performance of the model. No significant differences were 
observed in any of the visual radiographic features or clinical factors between differ-
ent MGMT methylated statuses. The top five most powerful features were selected 
from a total of 396 texture features of T1, contrast- enhanced T1, T2, and T2 FLAIR. 
Each sequence’s Radscore can distinguish MGMT methylated status. A combined 
model based on Radscores showed differentiation between methylated MGMT and 
unmethylated MGMT both in the glioblastoma (GBM) dataset as well as the dataset 
for all other gliomas. The area under the ROC curve values for the combined model 
was 0.818, with 90.5% sensitivity and 72.7% specificity, in the GBM dataset, and 
0.833, with 70.2% sensitivity and 90.6% specificity, in the overall gliomas dataset. 
Nomogram, calibration, and DCA also validated the performance of the combined 
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1  | INTRODUC TION

Methylguanine methyltransferase is an enzyme that repairs 
DNA. When the MGMT promoter is methylated, the MGMT 
gene is silenced/inactivated epigenetically, which suppresses 
DNA repair activity.1 The methylation of the MGMT promoter 
is associated with sensitivity to TMZ, as tumor cells lacking 
MGMT activity are significantly more sensitive to the cyto-
toxic effects of TMZ.2 Determining the MGMT promoter sta-
tus before treatment is very important for high- grade gliomas, 
especially for GBM, for which TMZ is considered part of the 
standard treatment protocol. Furthermore, it has also been sug-
gested that the survival benefit of MGMT promoter methyla-
tion is not exclusive to patients treated with TMZ and radiation 
therapy3; prolonged survival has also been reported in patients 
with methylated MGMT promoters irrespective of treatment 
method. Consequently, the methylation of the MGMT promoter 
has been widely accepted as a strong prognostic and predic-
tive molecular marker of gliomas, whether high- grade or low- 
grade.4,5 The MGMT promoter status is typically determined 
by methylation- specific PCR, pyrosequencing, or a methylation 
chip based on a specimen, which could be hindered by the rel-
atively long detection period, tumor heterogeneity, or the un-
availability of surgery or biopsy.

A preoperative noninvasive method of evaluating the 
MGMT promoter methylation status would be of benefit and 
could help guide more efficacious decisions to be made on 
treatment. Although promising results have been reported with 
the use of conventional and functional MR to predict MGMT 
promoter methylation status,6,7 limited studies have focused 
on the use of texture analysis for this prediction.8 Given that 
MGMT promoter methylation status is an independent prog-
nostic biomarker both for high-  and low- grade gliomas, and is 
also a predictive biomarker for treatment response to chemo-
therapy with an alkylating agent regardless of histological clas-
sification,5,9 the ability to predict MGMT promotor methylation 
status using texture analysis could have great utility in clinical 
practice.

This study retrospectively investigated the imaging char-
acteristics from preoperative conventional MR images of glio-
mas using a texture analysis approach, aiming to build a reliable 
radiological model to noninvasively predict the MGMT pro-
moter methylation status in glioma patients, especially in GBM 
patients.

2  | MATERIAL S AND METHODS

2.1 | Dataset

Fifty- three consecutive patients with histopathologically validated 
gliomas (44 high- grade gliomas and nine low- grade gliomas) (33 men 
and 20 women, aged 46.547 ± 13.580, [range 18- 72] years) who un-
derwent standard MRI for presurgical planning at our hospital be-
tween September 2013 and September 2018 were included in this 
retrospective cross- sectional study. Our study was approved by our 
institutional review board, and the requirement of written informed 
consent was waived. The inclusion criteria were as follows: (a) adults 
with histopathology verified primary gliomas who had no history of 
central nervous system malignancy; (b) underwent MGMT promoter 
methylation status testing; (c) underwent preoperative MRI includ-
ing routine diagnostic protocol; (d) MR images were obtained with-
out artifacts that affect image observation and post- processing; and 
(e) had not undergone radiotherapy, chemotherapy, or other treat-
ment prior to MRI acquisition and surgery. The gender, age, histo-
pathologic types (GBM, diffusely infiltrating astrocytomas [including 
NOS], oligodendroglioma [including NOS], diffuse midline glioma, 
and other astrocytomas), and tumor grade (high and low) were con-
sidered as clinical factors associated with MGMT status. According 
to the WHO guidelines, gliomas are graded I- IV using the following 
histological criteria: cytological atypia, mitotic activity, cellularity, 
microvascular proliferation, and/or necrosis. Gliomas graded I and II 
were classified as low- grade gliomas, whereas gliomas graded III and 
IV were classified as high- grade gliomas.10

2.2 | Histopathological protocols

Tumor tissue specimens were fixed in 10% formalin and embedded 
in paraffin wax using routine processing. For each subject, H&E- 
stained sections were examined to classify the tumors according to 
the WHO International Histological Classification of Tumours. The 
MGMT promoter methylation status was determined by qMSP. The 
qMSP process involves the treatment of genomic DNA, denatured 
by sodium hydroxide with hydroquinone and sodium bisulfite to con-
vert unmethylated C into T. The target gene was amplified by primers 
designed according to the gene sequence after C- to- T conversion. 
Because the C in the methylated CPG island cannot be converted 
into T, the target gene will not be amplified with the above primers. 
Therefore, the purpose of identifying genomic DNA methylation can 
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be achieved by the above methods. To detect the MSP amplifica-
tion products, if the fragments can be amplified with the primers for 
the methylated DNA chain, it means that there is methylation at the 
detected site. If the primers for the unmethylated DNA chain after 
treatment are used to amplify the fragments, it means that there 
is no methylation at the detected sites. To reduce the influence of 
tumor heterogeneity, we selected the solid components of the tumor 
for amplification, avoiding necrotic or hemorrhagic areas. DNA ex-
tracted from unstained tissue slides made from paraffin- embedded 
blocks of tumor tissues was subjected to bisulfite modification by a 
Simlex OUP FFPE DNA extraction kit (TIB), according to the manu-
facturer’s instructions. Polymerase chain reaction was carried out 
with a DRR007 kit (Takara) using the Verity 96- Well Thermal Cycler 

(Thermo Fisher Scientific), and pyrosequencing was done using the 
PyroMark Q96 system (Qiagen) in the 5 CpG island region within 
the MGMT promoter. A glioma was defined as “methylated” if the 
average methylation rate of the CpG regions was 8% or higher, oth-
erwise, the tumor was classified as “unmethylated” (Figure 1).11

2.3 | Magnetic resonance imaging protocols

For all patients, MR imaging was acquired within 72 hours before 
tumor resection. The MR scans were acquired on a 3T MR scanner 
(Verio; Siemens) using a 16- channel head coil. The routine diagnostic 
protocol included T1w imaging, CE T1w imaging, T2w imaging, and 

F I G U R E  1   Sequencing peak map of methylguanine methyltransferase (MGMT) promoter methylation in glioma tumor tissue specimens. 
A, MGMT promoter methylated. B, MGMT promoter unmethylated
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T2- FLAIR imaging. Axial T1w scanning was acquired at spin- echo se-
quence with the following parameters: TR/TE of 400 ms/15 ms, ma-
trix of 320 × 192, FOV of 24 cm, and a voxel size of 0.4 × 0.4 × 6 mm3. 
T2 weighted scanning was acquired at a fast spin- echo sequence 
with a TR/TE of 6000 ms/99 ms, matrix of 320 × 192, FOV of 24 cm, 
and a voxel size of 0.4 × 0.4 × 6 mm3. T2- FLAIR was acquired at 
a TR/TE of 9000 ms/94 ms, matrix of 320 × 192, FOV of 24 cm, 
and a voxel size of 0.5 × 0.5 × 6 mm3. Contrast- enhanced T1w scan-
ning was acquired at a 3- D MP RAGE sequence with a TR/TE of 
2100 ms/2.299 ms, matrix of 512 × 512, FOV of 24 cm, and a voxel 
size of 0.9 × 0.9 × 0.9 mm3, after administration of the contrast agent 
gadodiamide (0.1 mmol/kg; Omniscan, GE Medical Systems) at a rate 
of 2.5- 3 mL/s, followed by a 20 cm3 saline chaser at the same flow 
rate.

For all subjects, the entire tumor 3- D ROI was segmented man-
ually using ITK- SNAP software (version 3.4.0; http://www.itksn 
ap.org)12 in each sequence. The ROIs include the entire tumor avoid-
ing blood vessels and discernible peritumoral edema. This was car-
ried out by a clinical radiologist (LW with 4 years of experience) and 
verified by a senior radiologist (WH with 11 years of experience), 
who were blinded to molecular information.

2.4 | Imaging analysis: Visual radiographic features

Two radiologists blinded to patients’ molecular data (LW And WH) 
reviewed the MR images and assessed the following tumor visual ra-
diographic features by consensus: tumor location, crossing the mid-
line (+/−), enhancement degree (none, mild, marked), necrosis/cyst 
change (none, mild, marked), and presence of peritumoral edema 
(none, mild, marked). Necrosis was defined as an area located within 
the CE region of the tumor that had no or little discernable contrast 
enhancement. Cystic regions were defined as homogeneous areas 
isointense to cerebrospinal fluid on T1w and T2w images with a 
thin enhancing rim on T1 postcontrast images. Classification criteria 
were evaluated by the VASARI scoring system.13

2.5 | Imaging analysis: Texture analysis

Image processing was applied before feature extraction, includ-
ing image resampling to 1 × 1 × 1 mm3 voxel size using linear 
interpolation and image gray normalization to uniform grayscale 
of 0- 255. A total of 396 texture features were extracted using 
AK software (Analysis Kit; GE Healthcare). The feature set in-
cluded histogram features, GLCM features, gray level run- length 
matrix features, form factor features, and gray level size- zone 
matrix features. These features could characterize intratumor 
heterogeneity.

To eliminate the differences in the value scales of extraction 
features, feature normalization was carried out before feature 
selection, and each feature for all patients was normalized 
with Z- scores, subtracting the mean value and dividing by SD. 

Minimum redundancy maximum relevance was used to eliminate 
the redundant and irrelevant features. The top five features14 
among 396 texture features with the greatest correlation with 
the MGMT methylation status were screened in. The Radscore 
of each sequence was then calculated for each patient using a 
linear combination of the five selected features weighted by 
their respective coefficients. The data texture analysis flow is 
shown in Figure 2.

2.6 | Radiological model building and validation

The Radscore of each sequence was considered a variable. A ra-
diological combined model was built based on Radscores of four 
sequences using multiple logistic regression. To estimate the pre-
diction error and confidence interval, we further tested the pro-
posed model using a 1000- iteration bootstrap analysis on the 
overall dataset. The performance of the radiological model of four 
sequences was validated by a ROC curve. The radiological com-
bined model was validated by a ROC curve, nomogram, calibra-
tion, and DCA.

2.7 | Statistical analysis

All statistical analyses were undertaken with R software (ver-
sion 3.5.2, https://www.rproj ect.org), SPSS (version Windows 
25, https://www.spss.com), and Medcalc (version 19.1.6, https://
www.medca lc.org). For discrimination between MGMT methyl-
ated or MGMT unmethylated using visual radiographic features 
and clinical factors, the χ2 test was used to compare categori-
cal variables, and an independent- sample t test (conforming to 
a normal distribution)/Mann- Whitney U test (not conforming to 
the normal distribution) was used to compare continuous vari-
ables (SPSS). The ROC analysis was carried out with Medcalc. 
Logistic regression, nomogram, calibration, and DCA were car-
ried out with the glm, PredictABEL, and DecisionCurve packages 
of R software.

3  | RESULTS

3.1 | Basic information

Methylguanine methyltransferase methylation status was defined 
based on qMSP results (Figure 1). Of the 53 patients, 21 (39.62%) 
belonged to the MGMT methylated group and 32 patients (60.38%) 
belonged to the MGMT unmethylated group. There were 32 GBM 
patients in our overall dataset; 11 (34.38%) belonged to the MGMT 
methylated group and 21 patients (65.62%) belonged to the MGMT 
unmethylated group. None of the five visual radiographic features 
and four clinical factors showed a significant difference between 
the MGMT methylated and unmethylated groups. The clinical 
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information of the patients is shown in Table 1. Representative cases 
of MR images of MGMT methylated and unmethylated groups are 
shown in Figure 3.

3.2 | Texture analysis

After the selection of the minimum redundancy maximum relevance 
algorithm and elimination of redundancies, the five texture features 
with the greatest correlation with MGMT methylation and the least 
redundancy between features were selected in each group. All 
of these texture features are list in Table 2. For T1w images, only 
Radscore (P = .011) was significantly different between the MGMT 
methylated group and unmethylated groups. For CE T1w images, 
Radscore (P < .001), Compactness2 (P = .011), SphericalDisproprotion 
(P = .01), and Sphericity (P = .007) had a significant difference be-
tween the MGMT methylated and unmethylated groups. For T2w im-
ages, Radscore (P = .009), GLCMEntropy_angle45_offset7 (P = .023), 

GLCMEntropy_angle90_offset4 (P = .027), GLCMEntropy_angle90_
offset7 (P = .019), and GLCMEntropy_angle135_offset7 (P = .033) 
had a significant difference between the MGMT methylated group 
and unmethylated group. Only Radscore (P = .011) can discriminate 
against the MGMT methylated status in FLAIR images.

3.3 | Model development and analysis

Among the four sequences’ Radscores, the Radscore of CE T1 ac-
counted for the highest weight in the radiological combined model 
built by multivariate logistic regression with an odds ratio value of 
2.712 (Figure 4A). The ROC results of the four sequences of ra-
diological models based on Radscore and the radiological com-
bined model are shown in Table 3 and Figure 4B. The radiological 
combined model (proposed model) showed the best performance 
for discrimination of MGMT methylation status, with sensitivity, 
specificity, and AUC of 72.7%, 90.6%, and 0.833 (95% confidence 

F I G U R E  2   Workflow of texture analysis to detect methylguanine methyltransferase (MGMT) methylation in glioma. CE, contrast- 
enhanced; DCA, decision curve analysis; FLAIR, fluid attenuated inversion recovery; GLCM, gray level co- occurrence matrix; GLZSM, gray 
level size- zone matrix; RLM, gray level run- length matrix; Radscore, radiomic signature; ROC, receiver operating characteristic; VOI, volume 
of interest
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interval, 0.706- 0.922), building by multivariate logistic regression 
(Enter) greater than the forward model. The density distribution 
map from the bootstrap analysis regarding the distributions of AUCs 
(0.85 ± 0.04) (Figure 4C) showed that the combined model lacked 
overfitting. We also verified the model performance in the GBM 
dataset using the ROC curve for consideration of GBM’s clinical and 
imaging characteristics. The combined model has an AUC of 0.818, 
with 90.5% sensitivity and 72.7% specificity (95% confidence inter-
val, 0.672- 0.947), for discrimination of MGMT methylation in GBMs 
(Figure 4D). No significant difference was observed in the ROC per-
formance of the combined model compared to the overall glioma 
dataset over GBM datasets (P = .89).

The performance of the combined model were as follows: cali-
bration curve and decision curve. Calibration evaluates whether the 
nomogram (combined model) is over the fitting quantitative index 
Hosmer– Lemeshow test; the closer the P value is to 1, the better 
the effect of the model. The difference between the probabilities 
discriminated by the combined model and the observed probabili-
ties was insignificant (P = .7099). Decision curve analysis was used 
to evaluate whether this nomogram would assist in differentiating 
MGMT methylation status, when the threshold probability ranged 
from 0 to 1 according to the decision curve analysis, the nomogram 
obtained the greatest benefit compared with a “treat all” strategy, a 
“treat none” strategy. The combined model is shown as a nomogram 
in Figure 3C and its discrimination and calibration plots are presented 
in Figure 3D. On the decision curve (Figure 3C), the black line rep-
resents the assumption that all glioma patients have MGMT methyl-
ation. The thick gray line represents the assumption that no glioma 
patients have MGMT methylation. The red line is the net benefit of 
the prediction of MGMT methylation on the basis of the combined 

model. The decision curve showed that if the threshold probability 
of a patient or doctor is higher than 20%, using the combined model 
nomogram in the current study to predict MGMT promoter status 
adds more benefit than the treat- all or treat- none strategy. The com-
bined model is shown as a nomogram in Figure 4E and its discrimina-
tion and calibration plots are presented in Figure 4F.

4  | DISCUSSION

In this study, we investigated the relationship between MGMT pro-
moter methylation and radiological characteristics of gliomas based 
on the texture analysis of conventional MR images. Each sequence 
model and the combined model based on the Radscore of texture 
features can be used to differentiate the MGMT methylated and 
MGMT unmethylated tumor groups. Between the sequence mod-
els, the combined model could be the most promising. No significant 
correlation was found between visual radiographical features and 
clinical factors, and MGMT methylated status.

Most previous investigations have used CE T1w images to tar-
get volume definition of glioma tumors.8 We used each sequence 
to outline the ROI of tumors for texture feature extraction of each 
sequence, trying to enable a lower bias for the extraction of features 
among the different sequences.

None of the top five texture features extracted from T1w and 
T2- FLAIR showed the ability to differentiate MGMT methylated 
from MGMT unmethylated tumors, which is not surprising for 
T1w images; except in instances of hemorrhage within a tumor, 
the tumor tissue showed a similar signal intensity with the nor-
mal brain tissue on T1w images. The texture extracted from T1w 
images has limited ability to distinguish the MGMT methylated 
status. For T2- FLAIR, it could be difficult to distinguish the area 
of the tumor and peritumoral edema. Kanazawa et al’s15 results 
also indicated that none of the texture features extracted from 
T2- FLAIR were associated with MGMT promoter methylation. We 
use Radscore, which integrated the information of the top five tex-
ture features for further analysis. The Radscore of both T1w and 
T2- FLAIR can distinguish MGMT promoter methylation in glioma; 
this suggests that Radscore is more powerful than conventional 
texture features in the determination of the MGMT methylated 
status. For T2w and CE T1, some of the top five texture features 
showed a significant difference between MGMT methylated and 
MGMT unmethylated groups. However, Radscore integrated in-
formation from the top five texture features showed the best per-
formance in differentiating methylated MGMT from unmethylated 
MGMT.

The combined model demonstrated better performance in differ-
entiating MGMT methylated from MGMT unmethylated glioma than 
any other single sequence model with a 70.2% sensitivity and 90.6% 
specificity. Regarding GBM clinical and imaging characteristics, we 
also verified the efficacy of the combined model in the only GBM 
dataset. Our result showed that the combined model has a 90.4% 
sensitivity and 72.7% specificity in the GBM dataset. Furthermore, 

TA B L E  1   Clinical factors of patients with glioma (n = 53)

MGMT 
methylated 
(n = 21)

MGMT 
unmethylated 
(n = 32)

P 
value

Age, years; 
mean ± SD

47.43 ± 12.55 45.66 ± 15.10 .658

Gender

Male 11 (52.38) 22 (68.75) .229

Female 10 (47.62) 10 (31.25)

Grade

High (WHO III- IV) 17 (80.95) 25 (78.12) .806

Low (WHO I- II) 4 (19.05) 7 (21.88)

Histopathological type

Glioblastoma 8 (38.10) 15 (46.88) .827

Astrocytoma/
oligoastrocytoma

11 (52.38) 12 (37.50)

Oligodendroglioma 2 (9.52) 2 (6.25)

Others 0 (0.00) 3 (9.38)

Note:: Data are shown as n (%) unless otherwise indicated.
MGMT, methylguanine methyltransferase.



     |  2841HUANG et Al.

F I G U R E  3   Representative images of glioma patients with or without methylguanine methyltransferase (MGMT) methylation. A, Patient 
1, a 68- y- old man with MGMT promoter methylated high- grade glioma. The combined model radiomic signature (Radscore) is 0.997. Patient 
2, a 28- y- old woman with MGMT promoter methylated low- grade glioma. The combined model Radscore is 0.913. B, Patient 3, a 58- y- old 
man with MGMT promoter unmethylated high- grade glioma. The combined model Radscore is 0.090. Patient 4, a 20- y- old man with MGMT 
promoter unmethylated low- grade glioma. The combined model Radscore is 0.072. CE, contrast- enhanced; FLAIR, fluid attenuated inversion 
recovery; T1w, T1 weighted; T2w, T2 weighted
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the bootstrap analysis confirmed that our combined model lacked 
overfitting. Jiang et al16 compared the performance between the 
3D- CE- T1w single radiomics model, T2w single radiomics model, and 
fusion radiomics model (based on the selected features from both 
the 3D- CE- T1w and T2w modalities) in predicting MGMT promoter 
methylation of low- grade glioma. They also demonstrated that the 
fusion radiomics model was more powerful than the 3D- CE- T1w sin-
gle or T2w single radiomics model. In our combined model, CE T1 
was weighted and contributes the most.

We also studied several visual radiographic features (tumor lo-
cation, crossing the midline, enhancement degree, necrosis/cyst de-
gree, and presence of peritumoral edema) and clinical factors (age, 
gender, grade, and histological type), but none were correlated with 
MGMT methylation status, which is in agreement with previous re-
sults.8,17 The enhancement mode judged by the radiologist with 
the naked eye cannot distinguish the status of MGMT methylation. 
However, texture features extracted from contrast T1 images can 
predict MGMT methylation preoperatively. With the application of 
a filtration histogram- based approach, texture analysis can evaluate 

the distribution of gray levels in an image; the filtration step extracts 
and enhances features of different sizes corresponding to fine, me-
dium, and coarse texture scales. This is then followed by quantifi-
cation with histogram- based statistical metrics.18 Thus, this yields a 
potentially promising imaging biomarker to assess the microstructure 
and heterogeneity of tumors. The application of texture analysis 
to determine the mutation of IDH1 has also been confirmed.19 This 
study demonstrates the potential for texture analysis to distinguish 
between MGMT methylated and MGMT unmethylated tumors by 
quantifying heterogeneity, without additional nonroutine imaging.

This study has several limitations. First, the study design was 
retrospective, and the patients with WHO grade I- IV tumors were 
all included in the study, which caused relatively complicated tumor 
biological characteristics with notable heterogeneity. However, 
we verified the effectiveness of the combined model in the GBM 
dataset to overcome this disadvantage. We therefore show that the 
combined model, based on texture analysis, performed well to dis-
criminate MGMT methylation status both in the GBM and the overall 
dataset. Second, our sample size was not large enough to undertake 

TA B L E  2   Features selected based on texture analysis

Sequences Texture features
MGMT methylated
n = 21

MGMT unmethylated
n = 32

P 
value

T1w ClusterShade_angle135_offset7 −0.05 ± 1.38 0.03 ± 0.66 .791

Compactness1 −0.27 ± 0.98 0.18 ± 0.98 .106

GLCMEntropy_AllDirection_offset1_SD 0.25 ± 1.46 −0.16 ± 0.48 .140

LowGreyLevelRunEmphasis_AllDirection_
offset1_SD

0.22 ± 1.58 −0.14 ± 0.10 .202

LongRunHighGreyLevelEmphasis_AllDirection_
offset7_SD

−0.10 ± 0.23 0.07 ± 1.28 .542

Radscore- T1 −0.03 ± 1.14 −0.69 ± 0.67 .011

CE T1w GLCMEntropy_AllDirection_offset4_SD −0.27 ± 0.50 0.24 ± 1.25 .086

GLCMEntropy_angle135_offset7 0.28 ± 1.23 −0.23 ± 0.86 .083

Compactness2 0.49 ± 1.09 −0.28 ± 0.88 .010

SphericalDisproportion 0.49 ± 1.09 −0.28 ± 0.88 .010

Sphericity −0.48 ± 1.05 0.28 ± 0.90 .007

Radscore- CET1 0.68 ± 2.07 −1.30 ± 1.16 <.001

T2w ClusterProminence_angle0_offset1 −0.21 ± 0.90 0.28 ± 1.07 .089

GLCMEntropy_angle45_offset7 0.37 ± 1.16 −0.29 ± 0.89 .023

GLCMEntropy_angle90_offset4 0.35 ± 1.18 −0.28 ± 0.85 .027

GLCMEntropy_angle90_offset7 0.38 ± 1.17 −0.30 ± 0.86 .019

GLCMEntropy_angle135_offset7 0.33 ± 1.15 −0.29 ± 0.90 .033

Radscore- T2 −0.12 ± 0.97 −0.74 ± 0.69 .009

T2- FLAIR ClusterShade_AllDirection_offset4 −0.10 ± 0.93 0.07 ± 1.07 .548

ClusterShade_angle0_offset7 −0.09 ± 0.94 0.07 ± 1.06 .586

ClusterShade_angle45_offset4 −0.10 ± 0.93 0.08 ± 1.07 .53

ClusterShade_angle90_offset4 −0.10 ± 0.92 0.08 ± 1.07 .531

ClusterShade_angle90_offset7 −0.09 ± 0.91 0.07 ± 1.08 .573

Radscore- FLAIR −0.20 ± 0.93 −0.68 ± 0.66 .034

CE, contrast- enhanced; FLAIR, fluid attenuated inversion recovery; GLCM, gray level co- occurrence matrix; MGMT, methylguanine 
methyltransferase; Radscore, radiomic signature; T1w, T1 weighted; T2w, T2 weighted.
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radiomics analyses to validate the performance of our model in this 
study. Therefore, further larger cohort studies are needed to vali-
date the effectiveness of the Radscore model of texture analysis in 
the prediction of MGMT methylation.

Our results add new information to the imaging features of glio-
mas based on the MGMT methylation status using conventional MR. 
We have shown that the combined model based on texture features 

could be considered as a noninvasive imaging marker for detecting 
MGMT promoter methylation in glioma patients.
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F I G U R E  4   A, Forest plot of independent predictors of methylguanine methyltransferase (MGMT) in glioma, with odds ratios. B, Receiver 
operating characteristic (ROC) analysis for different sequence models and the combined model. C, Density distribution map regarding the 
distribution of area under the ROC curves (AUCs) from the bootstrap analysis for the combined model. D, Efficacy of the combined model 
in recognizing MGMT promoter methylation in gliomas was similar to that in glioblastomas (GBM), showing no significant difference. E, 
Decision curve for the nomogram. F, Calibration plot of the nomogram. CI, confidence interval; FLAIR, fluid attenuated inversion recovery
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TA B L E  3   Receiver operating characteristic (ROC) results of models to detect methylguanine methyltransferase methylation in glioma 
using texture analysis

Variable AUC 95% CI Sensitivity Specificity Cut- off
P 
value

Radscore- T1 0.693 0.552- 0.813 81.0 56.2 >−0.662 .009

Radscore- CE T1 0.824 0.695- 0.915 76.2 84.5 >−0.495 <.001

Radscore- T2 0.690 0.549- 0.810 47.6 84.5 >−0.064 .012

Radscore- T2 FLAIR 0.720 0.580- 0.835 90.5 46.9 >−0.697 .002

Combined Radscore model 
(Enter)

0.833 0.706- 0.922 72.7 90.6 >0.454 <.001

Combined Radscore model 
(Forward)

0.824 0.695- 0.915 76.2 84.5 >0.389 <.001

AUC, area under the ROC curve; CE, contrast- enhanced; CI, confidence interval; FLAIR, fluid attenuated inversion recovery; Radscore, radiomic 
signature.
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