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Abstract

Genome-wide association studies (GWAS) of neurological diseases have identified thousands of 

variants associated with disease phenotypes. However, the majority of these variants do not alter 

coding sequences, making it difficult to assign their function. Here, we present a multi-omic 

epigenetic atlas of the adult human brain through profiling of single-cell chromatin accessibility 

landscapes and three-dimensional (3D) chromatin interactions of diverse adult brain regions across 

a cohort of cognitively healthy individuals. We developed a machine-learning classifier to integrate 

this multi-omic framework and predict dozens of functional single-nucleotide polymorphisms 

(SNPs) for Alzheimer’s disease (AD) and Parkinson’s disease (PD), nominating target genes and 

cell types for previously orphaned GWAS loci. Moreover, we dissected the complex inverted 

haplotype of the MAPT (encoding tau) PD risk locus, identifying putative ectopic regulatory 

interactions in neurons that may mediate this disease association. This work expands our 

understanding of inherited variation and provides a roadmap for the epigenomic dissection of 

causal regulatory variation in disease.

INTRODUCTION

AD and PD affect ~50 and ~10 million individuals world-wide, as two of the most common 

neurodegenerative disorders. Several large consortia have assembled GWAS that associate 

genetic loci with clinical diagnoses of probable AD dementia1–4 or probable PD5–7, or with 

their characteristic pathologic features. These efforts have led to the identification of dozens 

of potential risk loci for these diseases. However, most risk loci reside in noncoding regions 

and so it remains unclear if the nominated (often nearest) gene is functionally relevant for 

the disease, or if another gene is involved8.

Most functional noncoding SNPs would be predicted to exert their effects through alteration 

of gene expression via perturbation of transcription factor (TF) binding and regulatory 

element function8. Such regulatory elements are highly cell type-specific9, suggesting that 

the resultant effects of noncoding SNPs would be equally cell type-specific. Thus, 

comprehensive nomination of putative functional noncoding SNPs in the brain requires 

cataloging the regulatory elements that are active in every brain cell type in the correct 

organismal and regional context. These critical data hold the promise to illuminate the 

functional significance of genetic risk loci in the molecular pathogenesis of common 

neurodegenerative diseases.

Previous work has carefully mapped such cell type-specific gene regulatory landscapes in 

human brain, predominantly during early developmental time points10, in organoid culture 

systems11–13, or in induced pluripotent stem cell-derived cellular models14,15. Additional 

studies have profiled chromatin accessibility in macrodissected post-mortem adult human 
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brain16–19. Such data sets have provided a rich resource for the nomination of putative 

functional SNPs in neurologic disease using multi-omic approaches10,14,17,20. Moreover, 

recent work has profiled chromatin accessibility and 3D chromatin conformation in primary 

brain cell types from resected pediatric brain tissue to explore the roles of noncoding SNPs 

in AD9. Lastly, innovative analytical approaches, for example leveraging machine learning 

(ML), have greatly expanded our ability to predict the functional effects of noncoding 

SNPs21–25. Cumulatively, this work has provided important advances in our understanding 

of the role of noncoding SNPs in disease predisposition, particularly in neurological disease.

Here, we build on the current understanding of inherited variation in neurodegenerative 

disease through implementation of a multi-omic framework that enables accurate prediction 

of functional noncoding SNPs. This framework layers bulk Assay for Transposase-

accessible chromatin using sequencing (ATAC-seq)26, single-cell ATAC-seq (scATAC-

seq)27, and HiChIP enhancer connectome28,29 data over a ML classifier to predict putative 

functional SNPs driving association with neurodegenerative diseases. Through these efforts, 

we pinpoint putative target genes and cell types of several noncoding GWAS loci in AD and 

PD, providing a roadmap for application of these data and technology to other neurological 

disorders and enabling a more comprehensive understanding of the role of inherited 

noncoding variation in disease.

RESULTS

Bulk chromatin accessibility landscapes in macrodissected tissue identify brain regional 
epigenomic heterogeneity

We profiled the bulk chromatin accessibility landscapes of 7 macrodissected brain regions 

across 39 cognitively healthy individuals to characterize the role of the noncoding genome in 

neurodegenerative diseases (Supplementary Table 1). These brain regions include distinct 

isocortical regions [superior and middle temporal gyri (SMTG), parietal lobe (PARL), and 

middle frontal gyrus (MDFG)], striatal regions [caudate nucleus (CAUD) and putamen 

(PTMN)], the hippocampus (HIPP), and the substantia nigra (SUNI) (Fig. 1a; see Methods). 

From these bulk ATAC-seq libraries, we compiled a merged set of 186,559 reproducible 

peaks (Fig. 1b and Supplementary Data Set 1). Here, a reproducible peak is defined as any 

peak that is called in at least 30% of the bulk ATAC-seq samples from any given brain region 

(Supplementary Fig. 1a; see Methods). Dimensionality reduction via t-distributed stochastic 

neighbor embedding (t-SNE) identified 4 distinct clusters of samples, grouped roughly by 

major brain region (Fig. 1c). While many region-specific peaks in chromatin accessibility 

could be identified from these bulk ATAC-seq data, most of these peaks corresponded to cell 

types predominantly present in a single region (Fig. 1d). A detailed analysis of these bulk 

ATAC-seq data primarily revealed region-specific differences in chromatin accessibility 

(Supplementary Fig. 1b–h & Supplementary Note 1).

Single-cell ATAC-seq captures regional and cell type-specific heterogeneity

To better understand brain-regional cell type-specific chromatin accessibility landscapes, we 

performed single-cell chromatin accessibility profiling in 10 samples spanning the isocortex 

(N = 3), striatum (N = 3), hippocampus (N = 2), and substantia nigra (N = 2) 
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(Supplementary Table 1). In total, we profiled chromatin accessibility in 70,631 individual 

cells (Fig. 1e) after stringent quality control filtration (Supplementary Fig. 2a and 

Supplementary Data Set 2). Unbiased iterative clustering27,30 and Harmony-based batch 

correction of these single cells identified 24 distinct clusters (Fig. 1e and Extended Data Fig 

1a–b), which were assigned to known brain cell types based on gene activity scores 

compiled from chromatin accessibility signal in the vicinity of key lineage-defining 

genes30,31 (Fig. 1f and Extended Data Fig. 1c–d; see Methods). Additionally, 13 of the 24 

clusters showed regional specificity with some clusters composed almost entirely from a 

single brain region (Extended Data Fig. 1e–f and Supplementary Data Set 2). We did not 

identify any clusters that were clearly segregated by gender but the sample size used in this 

study was not powered to make such a determination (Extended Data Fig. 1g). Cumulatively, 

we defined 8 distinct cell classes, including the 6 main brain cell types (excitatory neurons, 

inhibitory neurons, microglia, oligodendrocytes, astrocytes, and OPCs), and identified one 

cluster (Cluster 18) as putative doublets that we excluded from downstream analyses (Fig. 1e 

and Extended Data Fig. 1h). These cell groupings varied largely in the total number of cells 

per grouping (Extended Data Fig. 1i) and showed distinct donor and regional compositions 

(Extended Data Fig. 1j–m).

Using these clusters, we then called peaks from scATAC-seq pseudo-bulk chromatin 

accessibility to create a union set of 359,022 reproducible peaks (Supplementary Data Set 

3). Overall, 89% of bulk ATAC-seq peaks were overlapped by a peak called in the scATAC-

seq data (Fig. 1g). Conversely, only 34% of scATAC-seq peaks were overlapped by a peak 

from the bulk ATAC-seq peak set (Fig. 1g). Consistent with a role for distal regulatory 

elements in cell type-specific gene regulation32, we found an enrichment in distal/intronic 

peaks and a depletion in promoter peaks in the peak set specifically identified via scATAC-

seq (Extended Data Fig. 2a). To better understand the cell type specificity of the scATAC-

seq peaks, we identified cell type-specific peaks through “feature binarization”, which 

identifies peaks that are uniquely accessible in a single cell type or subset of cell types33. 

This analysis identified 221,062 highly cell type-specific peaks within the 6 primary brain 

cell types, comprising > 60% of all peaks identified from our scATAC-seq data (Fig. 1h and 

Supplementary Data Set 4). These cell type-specific peaks were also enriched for distal/

intronic peaks and depleted for promoter peaks (Extended Data Fig. 2b). Some of these 

peaks were shared across the different neuronal cell types while others were shared across 

astrocytes, OPCs, and oligodendrocytes (Fig. 1h, Extended Data Fig. 2c, and Supplementary 

Data Set 4). However, 48% of peaks called in our single-cell ATAC-seq data were specific to 

a single cell type (N = 172,111 peaks; Fig. 1h and Supplementary Data Set 4) with the vast 

majority of these cell type-specific peaks remaining undetected in our bulk ATAC-seq 

analyses. Consistent with previous work34, we found an enrichment of peaks from less 

abundant cell types (less than 20% of cells; i.e. microglia, astrocytes, and OPCs) within the 

set of peaks identified via scATAC-seq but not bulk ATAC-seq (Fig. 1i and Extended Data 

Fig. 1l). Similarly, examining per-cell accessibility at the peaks specifically identified via 

scATAC-seq, we found significantly fewer cells supporting these peaks (Extended Data Fig. 

2d). These results highlight the utility of single-cell methods when cell type-specific peaks 

are difficult to identify from bulk tissues containing multiple distinct cell types at varying 

frequencies.
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To predict which TFs may be responsible for establishing and maintaining these cell type-

specific regulatory programs, we performed motif enrichment analyses of peaks specific to 

each cell type (Fig. 1j). We identified many known drivers of cell type identity, such as 

motifs specific to SOX9 and SOX10 in oligodendrocytes35,36, or to ASCL1 in OPCs37,38. 

Lastly, TF footprinting from our scATAC-seq-derived cell type-specific chromatin 

accessibility data showed enrichment of binding of key lineage defining TFs such as SPI1 in 

microglia39 and JUN/FOS in neurons40 (Fig. 1k). Notably, the three isocortical samples, 

derived from distinct brain regions, showed high similarity based on Pearson correlation, 

supporting their use as biological replicates (Extended Data Fig. 2e). These data provide 

reference cell profiles for cell type-specific deconvolution of bulk ATAC-seq data 

(Supplementary Fig. 3, Supplementary Data Set 5, and Supplementary Note 2) and identify 

brain regional heterogeneity in glial cells, such as astrocytes and OPCs (Supplementary Fig. 

4, Supplementary Data Set 6, and Supplementary Note 3).

scATAC-seq identifies diverse neuronal subpopulations

Given the well-understood diversity of neuronal types and functions, we sought to further 

subdivide our scATAC-seq data based on neuronal subtypes. Extracting all cells previously 

labeled as neurons (Clusters 1–7, 11, and 12; N = 21,116 cells), we performed unbiased 

iterative clustering followed by Harmony-based batch correction (Extended Data Fig. 3a–b), 

identifying 30 discrete neuronal clusters (Fig. 2a, Extended Data Fig. 3c, and Supplementary 

Data Set 2). For clarity, these are referred to as “neuronal clusters” to avoid confusion with 

the 24 clusters identified in our broad analysis above. Each neuronal cluster was interpreted 

to represent a unique neuronal cell type or cell state and annotated using gene activity scores 

for key lineage-defining genes (Fig. 2b and Extended Data Fig. 3d–e). This identified both 

broad neuronal classes (Extended Data Fig. 3f) and very granular neuronal subdivisions, 

even discriminating between striatopallidal (Neuronal Clusters 11–12) and striatonigral 

(Neuronal Cluster 21) medium spiny neurons, which both reside within the striatum but 

project to different brain areas (Fig. 2a and Extended Data Fig. 3g–h). These data identified 

neuronal cell class-specific peaks, genes, and TF activity (Supplementary Fig. 5, 

Supplementary Data Set 7, and Supplementary Note 4). While this analysis did identify a 

neuronal cluster corresponding predominantly to substantia nigra dopaminergic neurons 

(Neuronal Cluster 7), a key cell type lost in PD, we derived a more refined subset of tyrosine 

hydroxylase (TH)-positive dopaminergic neurons by sub-clustering only cells from the two 

substantia nigra samples (N = 403 dopaminergic neurons; Extended Data Fig. 4a–d).

Single-cell ATAC-seq pinpoints the cellular targets of GWAS polymorphisms

To understand if any particular cell type-specific regions of chromatin accessibility were 

enriched for neurodegenerative disease-associated SNPs, we performed LD score 

regression41 using a collection of relevant GWAS studies (Supplementary Table 2). Within 

the peak regions of our broad cell classes, cell type-specific LD score regression revealed a 

significant increase in per-SNP heritability for AD in the microglia peak set, reinforcing 

previous studies2,42,43 (Fig. 2c and Supplementary Data Set 8). Similar analyses in PD 

showed no significant enrichment in SNP heritability in any particular cell type, perhaps 

because the cellular bases of PD are more heterogeneous than AD (Fig. 2c). Though not a 

focus of the current study, we note that the data generated here can be used to inform the 

Corces et al. Page 5

Nat Genet. Author manuscript; available in PMC 2021 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cellular ontogeny of any brain-related GWAS (Fig. 2c). We also confirmed that the 

heritability of GWAS SNPs from traits not directly related to brain cell types, such as lean 

body mass and coronary artery disease, was not significantly enriched in any of the tested 

brain cell types. To ensure that the lack of significance in cell class-specific peaks was not 

due to obfuscation of neuronal sub-types, we performed the same LD score regression 

analyses within the peak regions for the neuronal cell classes identified through sub-

clustering (Fig. 2d and Extended Data Fig. 3h). This analysis confirmed our previous 

findings and showed no significant enrichment for AD or PD SNPs within the peak regions 

of any neuronal sub-classes (Fig. 2d).

Identification of putative enhancer-promoter interactions through chromatin conformation 
and cell type-specific co-accessibility

While our scATAC-seq data would enable us to identify the target cell types of functional 

noncoding SNPs, we sought to additionally identify the target genes of each GWAS locus. 

To do this, we mapped the enhancer-centric 3D chromatin architecture in multiple brain 

regions using HiChIP28 for histone H3 lysine 27 acetylation (H3K27ac), which marks active 

enhancers and promoters (Fig. 3a and Extended Data Fig. 5a). In total, we generated 3D 

interaction maps for 6 of the 7 regions profiled by ATAC-seq (putamen was excluded given 

the high overlap with the caudate nucleus), averaging 158 million valid interaction pairs 

identified per region (Extended Data Fig. 5b–c). We identified 833,975 predicted 3D 

interactions across all brain regions profiled, of which 331,730 (40%) were reproducible in 

at least two brain regions (Extended Data Fig. 5d and Supplementary Data Set 9). Of these 

loops, 67.4% had an ATAC-seq peak present in both anchors, 29.2% had an ATAC-seq peak 

present in one anchor, and 3.4% did not overlap any ATAC-seq peaks identified in either the 

bulk or scATAC-seq datasets (Extended Data Fig. 5e).

Additionally, correlated variation of chromatin accessibility in peaks across single cells has 

been shown to predict functional interactions between regulatory elements31,44. Using this 

co-accessibility framework, we predicted regulatory interactions from our scATAC-seq data 

from the variation across all cells (Extended Data Fig. 5f), identifying 2,822,924 putative 

pairwise interactions between regions of chromatin accessibility (Supplementary Data Set 

9). This set of interactions showed only moderate overlap (~20%) with our HiChIP data, 

consistent with the ability of this technique to identify cell type-specific regulatory 

interactions, whereas HiChIP of bulk brain tissue is better suited for identification of more 

shared regulatory interactions (Extended Data Fig. 5f–g). Together, these two techniques 

define a compendium of putative regulatory interactions in the various brain regions studied 

here, thus enabling downstream linkage of GWAS SNPs to putative target genes.

A tiered multi-omic approach to predicting functional noncoding SNPs

To annotate functional effects of GWAS polymorphisms, we first compiled a comprehensive 

set of putative disease-relevant SNPs in AD and PD, taking into account the propensity of 

nearby SNPs to be co-inherited based on linkage disequilibrium (LD). We identified (i) any 

SNPs passing genome-wide significance (P < 5 × 10−8) in recent GWAS1–3,5–7, (ii) any 

SNPs exhibiting colocalization of GWAS and eQTL signal (FINEMAP/eCAVIAR 

colocalization posterior probability > 0.01), and (iii) any SNPs in linkage disequilibrium 
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with a SNP in the previous two categories based off of an LD R2 value greater than or equal 

to 0.8 calculated from Phase 1 genotypes of individuals of European ancestry in the 1000 

Genomes dataset (Supplementary Table 2, see Methods). In total, this identified 9,707 SNPs 

including 3,245 unique SNPs across 44 loci associated with AD and 6,496 across 86 loci 

associated with PD, with a single locus containing 34 SNPs appearing in both diseases.

Using this catalog of putative disease-relevant noncoding polymorphisms, we developed a 

tiered multi-omic approach to predict functional noncoding GWAS polymorphisms by (i) 

overlapping these SNPs with peaks of chromatin accessibility in our bulk or scATAC-seq 

data (Tier 3), (ii) identifying the subset of Tier 3 SNPs that may also affect predicted 

regulatory interactions (Tier 2), and (iii) predicting which Tier 2 SNPs might directly affect 

TF binding (Tier 1) (Fig. 3a and Extended Data Fig. 6a).

To predict these Tier 1 SNPs that might directly affect TF binding, we implemented a ML 

framework to score the allelic effect of a SNP on chromatin accessibility. Using the gapped 

k-mer support vector machine (gkm-SVM) framework45, we trained predictive regulatory 

sequence models of chromatin accessibility from each of the 24 broad clusters derived from 

our scATAC-seq data (Fig. 3b and Supplementary Table 2; see Methods). The gkm-SVM 

models for all 24 scATAC-seq clusters exhibited high prediction performance on held-out 

test sequences (Extended Data Fig. 6b–c) and across a 10-fold validation scheme (Extended 

Data Fig. 6d). We used three complementary approaches, GkmExplain22, in silico 
mutagenesis46, and deltaSVM21 to predict the allelic impact of candidate SNPs on 

chromatin accessibility in each cluster by providing the sequences corresponding to both 

alleles of each SNP to the models for each of the 24 clusters. All three approaches showed 

high concordance of predicted allelic effects across all candidate SNPs (Extended Data Fig. 

6e).

As an orthogonal metric for Tier 1 SNPs, we performed allelic imbalance analyses with our 

bulk ATAC-seq data using the robust allele-specific quantification and quality control 

(RASQUAL) statistical framework23 (Extended Data Fig. 6f and Supplementary Data Set 

10; see Methods). Allelic imbalance refers to the differential chromatin accessibility 

observed between two alleles when one allele is more readily bound by a TF.

Using this tiered approach, we identified genes and molecular processes that could be 

implicated in AD and PD (Supplementary Fig. 6a–d & Supplementary Note 5). To avoid 

overinterpretation, we focused our downstream analyses on the subset of GWAS loci that 

were most likely to involve noncoding regulation based on absence of any LD SNPs in 

coding regions (Supplementary Fig. 6e and Supplementary Table 2).

Machine learning predicts putative functional SNPs and identifies the molecular ontogeny 
of disease associations

This multi-omic approach identified two main categories of novel associations within our 

Tier 1 SNPs: established disease-related genes where the precise causative SNP remains 

unknown, and genes previously not implicated in disease etiology. Many studies have 

investigated the role of genes such as PICALM47, SLC24A448, BIN19,49, and MS4A6A50 in 

AD since their implication in the disease by GWAS. However, it remains unclear which 
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polymorphisms drive these associations. In the case of PICALM, our models predicted a 

potential functional variant (rs1237999) disrupting a putative FOS/AP1 factor binding site 

within an oligodendrocyte-specific regulatory element 35 kb upstream of PICALM (Fig. 3c–

d). Moreover, rs1237999 showed significant allelic imbalance with the variant (effect) allele 

showing diminished accessibility in bulk ATAC-seq data from heterozygotes across multiple 

brain regions (Fig. 3e and Supplementary Data Set 10). Lastly, rs1237999 showed 3D 

interaction with both PICALM and the EED gene, a polycomb-group family member 

involved in maintaining a repressive transcriptional state. This expands the potential 

functional role of this association to a novel gene and specifically points to a role for 

oligodendrocytes which were not previously implicated in this phenotypic association47.

Similarly, the SLC24A4 locus harbors a small LD block with 46 SNPs that all reside within 

an intron of SLC24A4. Previous work has implicated both SLC24A4 and the nearby RIN3 
gene in this association but the true mediator remains unclear51,52. Our multi-omic approach 

identifies a single SNP, rs10130373, which occurs within a microglia-specific peak, disrupts 

an SPI1 motif, and communicates specifically with the promoter of the RIN3 gene (Fig. 3f–

g). This is consistent with the role of RIN3 in the early endocytic pathway which is crucial 

for microglial function and of particular disease relevance in AD53. We identify similar 

examples in the BIN1 and MS4A6A loci (Extended Data Fig. 7 & Supplementary Note 6).

Moreover, the true promise in studying these noncoding polymorphisms is the identification 

of novel genes affected by disease-associated variation. The ITIH1 GWAS locus occurs 

within a 600-kb LD block harboring 317 SNPs and no plausible gene association has been 

made to date. We nominate rs181391313, a SNP occurring within a putative microglia-

specific intronic regulatory element of the STAB1 gene (Fig. 4a). STAB1 is a large 

transmembrane receptor protein that functions in lymphocyte homing and endocytosis of 

ligands such as low density lipoprotein, two functions consistent with a role for microglia in 

PD54. This SNP is predicted to disrupt a KLF4 binding site, consistent with the role of KLF4 

in regulation of microglial gene expression55 (Fig. 4b). Similarly, the KCNIP3 GWAS locus 

resides in a 300-kb LD block harboring 94 SNPs. Our results identify two putative mediators 

of this phenotypic association with different functional interpretations (Fig. 4c). First, 

rs7585473 occurs > 250 kb upstream of the lead SNP and disrupts an oligodendrocyte-

specific SOX6 motif in a peak found to interact with the MAL gene, implicated in myelin 

biogenesis and function (Fig. 4d). Alternatively, we find rs3755519 in a neuronal-specific 

intronic peak within the KCNIP3 gene with clear interaction with the KCNIP3 gene 

promoter. While this SNP does not show a robust ML prediction, nor reside within a known 

motif, significant allelic imbalance supports its predicted functional alteration of TF binding 

(Fig. 4e and Supplementary Data Set 10). Furthermore, this SNP is associated with KCNIP3 
expression in three bulk brain regions from the GTEx database (frontal cortex, P = 4.04 × 

10−7; hippocampus, P = 1.45 × 10−7; cerebellum, P = 3.47 × 10−8) and fine-mapping 

analysis places rs3755519 within the 95% credible set of causal SNPs in all three brain 

regions. Together, these SNPs provide competing interpretations of this locus, implicating 

oligodendrocyte- and neuron-specific functions, and demonstrating the complexities of 

interpretation of functional noncoding SNPs. We additionally noted that many SNPs appear 

to disrupt binding sites related to CTCF (Extended Data Fig. 8 & Supplementary Note 6).
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Epigenomic dissection of the MAPT locus explains haplotype-specific changes in local 
gene expression

One of the strongest PD-associated risk loci is the MAPT gene, which encodes tau proteins 

whose pathological, hyperphosphorylated aggregates form neurofibrillary tangles in AD56. 

However, despite this long-known genetic association, it remains unclear how the MAPT 
locus may play a role in PD. The MAPT locus is present within a large 1.8-Mb LD block 

and manifests as two distinct haplotypes, H1 and H2, which differ by (i) > 2,000 SNPs 

across the two haplotypes and (ii) an ~1-Mb inversion that includes the MAPT gene57,58 

(Fig. 5a). Previous reports have nominated multiple explanations for how these alterations 

are associated with PD, including increased MAPT expression in the H1 haplotype59,60 (Fig. 

5b), different ratios of splice isoforms61–63, and the use of alternative promoters64. We 

created a haplotype-specific map of chromatin accessibility and 3D chromatin interactions at 

the MAPT locus (Fig. 5c). Using data from heterozygote H1/H2 individuals, we split reads 

into H1 and H2 haplotypes based on the presence of one of the 2,366 haplotype divergent 

SNPs (Supplementary Table 2; see methods). We tiled the region into non-overlapping 500-

bp bins (to avoid biases in peak calling) and performed a Wilcoxon rank sum test to identify 

regions differentially accessible both between H1/H1 and H2/H2 homozygotes and between 

split reads from H1/H2 heterozygotes (Extended Data Fig. 9a–b). This identified 28 

differentially accessible bins including an H1-specific putative regulatory element located 68 

kb upstream of the MAPT promoter and the promoter of the KANSL1 gene located 330 kb 

downstream of MAPT (Fig. 5d (asterisks) and Extended Data Fig. 9c). Using our HiChIP 

data, we performed haplotype-specific virtual 4C to determine if any changes in chromatin 

accessibility were accompanied by changes in 3D chromatin interaction frequency. We 

identified H2-specific 3D interactions between a putative domain boundary upstream of 

MAPT (labeled “A”) and the region surrounding the KANSL1 promoter (labeled “B”) 

spanning a distance of > 600 kb inside the inversion breakpoints (Fig. 5d). Additionally, the 

H1-specific putative regulatory element upstream of MAPT showed increased interaction 

with a second putative regulatory element intronic to MAPT as well as with the MAPT 
promoter (Fig. 5d).

To better understand how these epigenetic changes impact haplotype-specific gene 

expression, we used RNA-seq data from the GTEx database. In addition to the previously 

mentioned haplotype-specific differences in MAPT expression (Fig. 5b), we also identified 

significant changes in gene expression near the largest changes in chromatin accessibility 

and 3D interaction (“A” and “B”; Fig. 5e and Extended Data Fig. 9d–e). These increases in 

gene expression could play a functional role in MAPT haplotype-mediated pathologic 

changes or, more likely, be a non-functional byproduct of the genomic inversion.

These analyses illuminate how the genomic region inside the MAPT inversion breakpoints 

differs between the H1 and H2 haplotypes; alternatively, the inversion could alter MAPT 
gene expression by changing the relative orientation of the MAPT gene to enhancers and 

promoters outside of the breakpoints. In support of this, we identified a long-distance 

putative regulatory element located 650 kb upstream of the MAPT gene that showed 

elevated interaction with the MAPT promoter specifically in the H1 haplotype (Fig. 5f). 

Indeed, we found multiple neuron-specific putative regulatory elements in this upstream 
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region, consistent with the known neuron-specific expression of MAPT (Extended Data Fig. 

9f), and an increase in overall 3D interaction between this upstream region and the region 

surrounding MAPT inside of the inversion breakpoints (Extended Data Fig. 9g). Additional 

studies will be necessary to demonstrate functional effects of these predicted regulatory 

interactions (Fig. 5g).

DISCUSSION

Here, we provide a high-resolution epigenetic characterization of the role of inherited 

noncoding variation in AD and PD. Our integrative multi-omic framework and ML classifier 

predicted dozens of functional SNPs, nominating gene and cellular targets for each 

noncoding GWAS locus. These predictions both inform well-studied disease-relevant genes, 

such as BIN1 in AD, and suggest novel gene-disease associations, such as STAB1 in PD. 

This expands our understanding of inherited variation in AD and PD and provides a 

roadmap for epigenomic dissection of noncoding variation in neurodegenerative and other 

complex genetic diseases.

Together, this multi-omic resource captures the regional and cellular gene regulatory 

machinery that governs phenotypic expression of noncoding variation, thus allowing to the 

identification of the majority of polymorphisms that could putatively affect gene expression 

through overlap with peaks of chromatin accessibility (Tier 3). To further refine these 

putative functional variants, we identified the subset of polymorphisms that could be 

mapped to gene targets through 3D chromatin interactions or co-accessibility networks (Tier 

2). Finally, we employed a ML approach to predict the subset of polymorphisms likely to 

perturb TF binding and validated these predictions with measurements of allelic imbalance 

(Tier 1). In total we implicate ~5 times as many genes in the phenotypic association of AD 

and PD and nominate functional noncoding variants for dozens of previously orphaned 

GWAS loci. Additionally, through our integrative analysis, we provide a comprehensive 

epigenetic characterization of the MAPT gene locus (discussed in detail in the 

Supplementary Note 7). The functional predictions made through our ML classifier and 

integrative analytical approach greatly expand our understanding of noncoding contributions 

to AD and PD. More broadly, this work represents a systematic approach to understanding 

inherited variation in disease and provides an avenue towards the nomination of novel 

therapeutic targets that previously remained obscured by the complexity of the regulatory 

machinery of the noncoding genome.

METHODS

Code Availability

All custom code used in this work is available in the following GitHub repository: https://

github.com/kundajelab/alzheimers_parkinsons.

Publicly Available Data Used In This Work

All QTL analysis was performed using GTEx v8. Additionally, we downloaded full-genome 

summary statistics of GWAS associations for three Alzheimer’s cohorts1–3 and two 

Parkinson’s cohorts6,65; however, it should be noted that these cohorts are not all mutually 
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exclusive. The Parkinson’s disease full GWAS summary statistics from Chang et al. were 

obtained through a research agreement with 23andMe. These summary statistics included 

those generated by 23andMe (N = 6,476 PD-affected individuals and 302,042 disease-free 

controls) but not summary statistics from individuals incorporated into meta-analysis from 

the original publication. All GWAS data used in this study (except the data protected 

through our research agreement with 23andMe) have been compiled for ease of 

reproducibility and is available under doi 10.1101/2020.01.06.896159 here: https://

zenodo.org/record/3817811. Additionally, we obtained MAPS-based loop calls directly from 

published PLAC-seq data from microglia, neurons, and oligodendrocytes9.

Genome Annotations

All data are aligned and annotated to the hg38 reference genome.

Sequencing

Bulk ATAC-seq, and HiChIP were sequenced using an Illumina HiSeq 4000 with paired-end 

75-bp reads. Single-cell ATAC-seq was sequenced using an Illumina NovaSeq 6000 with an 

S4 flow cell with paired-end 99 bp reads.

Sample acquisition and patient consent

Primary brain samples were acquired post-mortem with IRB-approved informed consent 

from Stanford University, the University of Washington, or Banner Health. Human donor 

sample sizes were chosen to provide sufficient confidence to validate methodological 

conclusions. Human brain samples were collected with an average post-mortem interval of 

3.9 hours (range 2.0 – 6.9 hours). These brain regions include distinct isocortical regions 

[superior and middle temporal gyri (SMTG, Brodmann areas 21 and 22), parietal lobe 

(PARL, Brodmann area 39), and middle frontal gyrus (MDFG, Brodmann area 9)], striatum 

at the level of the anterior commissure [caudate nucleus (CAUD) and putamen (PTMN)], 

hippocampus (HIPP) at the level of the lateral geniculate nucleus, and the substantia nigra 

(SUNI) at the level of the red nucleus. Macrodissected brain regions were flash frozen in 

liquid nitrogen. Some samples were embedded in Optimal Cutting Temperature (OCT) 

compound. All samples were stored at −80°C until use. Due to the limiting nature of these 

primary samples, this unique biological material is not available upon request.

Isolation of nuclei from frozen tissue chunks and bulk ATAC-seq data generation

Nuclei were isolated from frozen tissue as described previously19,33. This protocol, 

including the transposition reaction, is now available on protocols.io (dx.doi.org/10.17504/

protocols.io.6t8herw). Briefly, frozen tissue fragments were Dounce homogenized to create 

a suspension of nuclei. Nuclei were purified using an iodixanol gradient and washed in 

resuspension buffer (RSB). Nuclei were counted and, for each replicate, 50,000 nuclei were 

aliquoted into a separate tube containing RSB with 0.1% Tween-20. Nuclei were pelleted 

and transposed as described in the protocol linked above according to the Omni-ATAC 

transposition conditions19. Transposed fragments were purified and amplified as described 

previously26 with slight modification. Briefly, transposed fragments were pre-amplified for 3 

cycles. The concentration of pre-amplified fragments was determined by qPCR and this 
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concentration was used to estimate the total number of cycles required to obtain 160 fmol of 

fragments. A second PCR was performed to amplify the pre-amplified fragments for the 

desired number of cycles. Final libraries were again purified. Prior to sequencing, libraries 

were pooled and run on a 6% PAGE gel and excess primers and primer dimers below 125 bp 

were removed. Libraries were sequenced on an Illumina HiSeq4000 instrument as described 

above. After isolation and bulk ATAC-seq, remaining nuclei were cryopreserved in BAM 

Banker (Wako Chemicals) and stored at −80°C for use in other assays such as scATAC-seq 

and HiChIP.

Statistics

All statistical tests performed are included in the figure legends or methods where relevant.

ATAC-seq Data Processing

The ENCODE DCC ATAC-seq pipeline (doi:10.5281/zenodo.211733) (V1.1.7) was used to 

process bulk ATAC-seq samples, starting from fastq files. The pipeline was executed with 

IDR enabled and the IDR threshold set to 0.05. The GRCh38 reference genome assembly 

was used, keeping only the primary chromosomes chr1 - chr22, chrX, chrY, chrM. The 

pipeline was executed with ATAQC enabled, using GENCODE version 29 TSS annotations. 

Biological replicates were analyzed individually, with the two technical replicates for each 

bio-rep provided as inputs to the “atac.bams” argument of the pipeline. Other arguments to 

the pipeline were kept at their defaults.

ATAC-seq Peak Calling

Pipeline peak calls underwent several levels of filtering to identify credible peak sets. The 

IDR optimal peak set from the DCC pipeline for each biological replicate was determined. It 

was observed that although the IDR peaks for individual biological replicates were corrected 

for multiple testing, the high number of biological samples in the dataset served as another 

source of multiple testing error. To address this source of error, tagAlign files for all 

biological replicates for a given brain region/ condition were concatenated. The DCC 

pipeline (v1.1.7) was subsequently executed on the merged tagAlign files as single-replicate 

inputs. The pipeline generated pseudo-replicates from the input tagAlign files for each brain 

region/condition. Optimal IDR peaks were called from the pseudo-replicates. This set of 

IDR peaks was filtered to keep peaks supported by 30% or more of IDR peaks from the 

pipeline runs on individual biological replicates.

Sample-by-peak count matrices were then generated from the resulting set of filtered peaks. 

Filtered peaks from the pooled tagAlign files were concatenated and truncated to within 200 

bp of the summit (100 bp flank kept upstream and downstream of the peak summit). These 

200-bp regions were merged with the bedtools66 merge command to avoid merging peaks 

with low levels of overlap. The bedtools coverage -counts was used to compute the number 

of tagAlign reads that overlapped each peak region in the pseudo-replicates in the merged 

tagAlign dataset. This analysis yielded a total of n = 186,559 peaks combined across the 

brain regions.
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Motif enrichment

Motif enrichment was performed using the hypergeometric test as described previously33,67.

Feature Binarization

Identification of “unique” peaks from ATAC-seq data was performed as described 

previously33. Briefly, for each of the cell classes (termed “groups” here), we created 3 

pseudo-bulk replicates which were used to create a counts matrix of insertion counts within 

each peak of the scATAC-seq peak set. This counts matrix was then log-normalized using 

‘edgeR::cpm(mat,log = TRUE,prior.count = 3)’. We then calculated the intra-group mean 

and intra-group standard deviation across every peak in the scATAC-seq peak set. Then, for 

each peak, we rank the groups by their intra-group mean. Then, we iterate from the second 

lowest group asking whether the mean of that group is greater than the maximum intra-

group mean plus the intra-group standard deviation of the next-lowest sample. This iterative 

process proceeds until a group is identified that meets this criterion. This point is defined as 

the break point and all groups with a higher intra-group mean are classified as positive for 

this peak and given a value of “1”. All groups below the break point are given a value of “0”. 

If a peak does not have a break point it is discarded. This peak “binarization” procedure 

classifies all “1s” as being higher than every individual “0”. This also captures the peaks that 

are unique to multiple groups. We kept all combinations that were unique to 3 or fewer 

groups. To facilitate multiple hypothesis testing, we computed a contrast matrix for all 

observed combinations and ran limma’s eBayes test on the log-normalized counts matrix. 

We then extracted all of the FDR-adjusted P values from differential testing keeping those 

peaks that were below an FDR of 0.001. This resulted in the classification of 221,062 peaks.

Sequencing Tracks

Sequencing tracks were created using the WashU Epigenome Browser. All sequencing 

tracks of a given locus have the same y-axis. All tracks show data that have been normalized 

by “reads-in-peaks” (for ATAC-seq) or “reads-in-loops” for HiChIP to account for 

differences in signal-to-background ratios across multiple samples, unless otherwise stated. 

For all sequencing tracks, genes that are on the plus strand (i.e. 5’ to 3’ in the left to right 

direction) are shown in red and genes that are on the minus strand (i.e. 5’ to 3’ in the right to 

left direction) are shown in blue to enable identification of the TSS.

LD score regression

We apply stratified LD score regression, a method for partitioning heritability from GWAS 

summary statistics, to sets of cell type-specific ATAC-seq peaks to identify disease-relevant 

cell types for Alzheimer’s and Parkinson’s diseases along with other brain-related GWAS 

traits. Using our single-cell ATAC-seq data, peak coordinates were first converted from hg38 

to hg19 for analysis with GWAS data. We followed the LD score regression tutorial (https://

github.com/bulik/ldsc/wiki) as used previously41 for single-cell specific analysis68. We used 

brain related GWAS summary statistics such as Alzheimer’s1, Parkinson’s6, 

Schizophrenia69, Anorexia Nervosa70, Attention Deficit Hyperactivity Disorder (ADHD)71, 

Anxiety72, Neuroticism73 and Epilepsy74 (Supplementary Table 2 and https://zenodo.org/

record/3817811). To serve as controls, we also used summary statistics for GWAS of traits 
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not obviously linked to brain tissues such as Lean Body Mass75, Bone Mineral Density76 

and Coronary Artery Disease77. In particular, we looked at the regression coefficient P 
value, indicative of the contribution of this annotation to trait heritability, conditional on the 

baseline model described previously41.

Allele counts from ATAC-seq data

The WASP mapping pipeline (https://github.com/bmvdgeijn/WASP/tree/master/mapping) 

was used to reduce biases in mapping and in filtering duplicate reads. Reads were mapped 

using bowtie2 to the UCSC hg38 reference genome. Variants were called on the resulting 

bam files using bcftools mpileup (v1.9) to produce VCF files. These VCF files and the 

WASP-corrected bam files were used as input for the GATK ASEReadCounter tool to obtain 

allele counts and their mapping quality. These allele counts were used to visualize 

significant allelic imbalance as determined by RASQUAL (see below). For plotting, samples 

that lacked at least 3 read counts for both the reference and alternate alleles were inferred to 

be either homozygous or too low coverage to presume heterozygosity. However, we note that 

these allele counts were only used for display purposes and did not contribute to any 

determination of significance for allelic imbalance.

Allelic imbalance from ATAC-seq data using RASQUAL

We intersected the coordinates of all LD-expanded candidate AD and PD GWAS and 

colocalization SNPs with peaks from our ATAC-seq data to obtain the candidate SNPs that 

we tested for allele-specific effects on chromatin accessibility. We used the createASVCF.sh 

script from the RASQUAL23 GitHub repository (https://github.com/natsuhiko/rasqual) to 

obtain the allele-specific counts at each candidate SNP for all samples. We used the 

fitAseNullMulti function from the QuASAR78 GitHub repository to calculate for each donor 

the posterior probability of the three possible genotypes at all of the candidate SNP positions 

using all available brain region samples from that donor and assigned the genotype at each 

position to be the one with the highest posterior probability. Next, using these allele-specific 

counts and genotypes and the allele frequencies from the 1000 Genomes Project79 for each 

candidate SNP, we created a VCF file for each brain region, which included the allele-

specific counts and genotypes from only the samples that originated from those respective 

regions. Similarly, we created region-specific counts matrices, which contain columns of 

ATAC-seq read counts for each feature only from the samples that originated from the 

respective regions. We also ran the makeOffset.R script from the RASQUAL repository with 

a list of GC contents, corresponding to the GC content of each feature in the counts matrix, 

as an argument to generate the sample specific offset terms file for each brain region. Since 

RASQUAL is run on each feature from the counts matrix independently of other features, 

we further split the region-specific input VCF files, counts matrices, and offset files by 

chromosome and used the text2bin.R script from the RASQUAL repository to convert the 

region and chromosome-specific input counts matrices and offset files into the binary format 

required by RASQUAL.

Finally, we ran RASQUAL using the input VCF file, counts matrix, and offset file from each 

of the 22 chromosomes (chromosomes 1 – 22; chromosome X and chromosome Y did not 

have any candidate SNPs) from each of the brain regions and tested each candidate SNP 
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present in each feature in the counts matrix. To test for genome-wide significance of each 

putative chromatin accessibility QTL (caQTL), we ran RASQUAL with the --random-

permutation option along with the same inputs 10 times to generate a background set of null 

q-values. For each brain region, we used the empirical distribution of null q-values to 

identify those SNPs that have a q-value lower than the 10% False Discovery Rate (FDR) 

threshold as significant caQTLs as recommended by the authors (https://github.com/

natsuhiko/rasqual/issues/21).

Selection of candidate SNPs for ATAC-seq overlap analysis, HiChIP interaction tests, and 
gkm-SVM model-based allelic effect scores

Our goal was to identify SNPs with a causal effect on any of the selected GWAS traits. To 

minimize the chances of excluding causal GWAS SNPs, we selected the set of all variants 

achieving a genome-wide significant P value < 5 × 10−8 for any GWAS trait. We then added 

in any lead SNPs from the colocalization analysis that achieved CLPP score of > 0.01, even 

those that did not pass the genome-wide significance value of P < 5 × 10−8. We also 

included all trait-associated SNPs curated from two other Parkinson’s studies6,7. In these 

studies, full summary statistics were not publicly available for the entire genome because 

meta-analysis was applied only to the subset of SNPs reaching genome-wide significance in 

a previous Parkinson’s GWAS. We then computed the full set of SNPs that had LD R2 ≥ 0.8 

with at least one of the SNPs in the set selected above. These LD calculations were 

performed on Phase 1 genotypes of individuals of European ancestry in the 1000 Genomes 

dataset, provided in full here (https://zenodo.org/record/3404275#.Xlw62XVKhhE). 

Pairwise LD values of all variants in the above subset were calculated via plink (v.1.90). 

These pairwise LD values were used to identify 1000 Genomes SNPs with R2 ≥ 0.8 with the 

SNPs in our dataset. Together, these LD buddies plus the original set of trait-relevant SNPs 

comprised the set of SNPs tested in our subsequent functional analyses.

Testing GWAS loci for overlap with ATAC-seq peaks

We tested all SNPs in the above set for overlap with ATAC-seq peaks from two different 

annotation formats. The first annotation consisted of bulk ATAC-seq peaks identified in one 

of 7 brain regions. The second annotation consisted of cluster-specific peaks from single-cell 

ATAC-seq data. For each variant selected for functional analysis, we determined all cellular 

contexts in which an ATAC-seq peak contained this variant, as well as the nearest peak if no 

peak contained the variant.

Single-cell ATAC-seq library generation

Cryopreserved nuclei were thawed on ice and 65,000 nuclei were transferred to a tube 

containing 1 ml of RSB-T [10 mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% 

Tween]. Nuclei were pelleted at 500 RCF for 5 minutes at 4°C in a fixed angle rotor. The 

supernatant was fully removed using two pipetting steps (p1000 to remove down to the last 

100 μl, then p200 to remove all remaining supernatant). This pellet was then gently 

resuspended in 12 μl of 1× Nuclei Buffer (10x Genomics). To transpose, 5 μl of this nuclei 

suspension (containing 27,000 nuclei) was transferred to a tube containing 10 μl of 

transposition mix (10x Genomics). This reaction mixture was incubated at 37°C for 1 hour 
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to transpose. The remainder of library generation was completed as described in the 10x 

Genomics Single Cell ATAC Regent Kits User Guide (v1 Chemistry).

Single-cell ATAC-seq LSI clustering and visualization

Single-cell ATAC-seq clustering analysis was performed using an alpha version of the 

ArchR software80. To cluster our scATAC-seq data (for both broad clustering and neuronal 

sub-clustering), we first identified a robust set of peak regions followed by iterative LSI 

clustering27,30. Briefly, we created 1-kb windows tiled across the genome and determined 

whether each cell was accessible within each window (binary). Next, we identified the top 

50,000 accessible windows across all samples (accounting for GC bias) and performed an 

LSI dimensionality reduction (TF-IDF transformation followed by Singular Value 

Decomposition SVD) on these windows followed by Harmony batch correction81. We then 

performed Seurat82 clustering (FindClusters v2.3) on the harmonized LSI dimensions at a 

resolution of 0.8, 0.4 and 0.2, keeping the clustering for which the minimum cluster size was 

greater than 100 cells (0.2 if this condition is not met). For each cluster, we called peaks on 

the Tn5-corrected insertions (each end of the Tn5-corrected fragments) using the MACS2 

callpeak command with parameters ‘--shift −75 --extsize 150 --nomodel --call-summits --

nolambda --keep-dup all -q 0.05’. The peak summits were then extended by 250 bp on either 

side to a final width of 501 bp, filtered by the ENCODE hg38 blacklist (https://

www.encodeproject.org/ annotations/ENCSR636HFF/), and filtered to remove peaks that 

extend beyond the ends of chromosomes. We then created a non-overlapping set of extended 

summits across all of these peaks as described previously27,30.

We then counted the accessibility for each cell in these peak regions to create an 

accessibility matrix. We then adopted the iterative LSI clustering approach27,30 to 

unbiasedly identify clusters that are due to biological vs. technical variation. Briefly, we 

computed the TF-IDF transformation as described by Cusanovich et al.83. To do this, we 

divided each index by the colSums of the matrix to compute the cell “term frequency”. Next, 

we multiplied these values by log(1 + ncol(matrix)/rowSums(matrix)), which represents the 

“inverse document frequency”. This yields a TF-IDF matrix that can be used as input to 

irlba’s SVD implementation in R. We then used Harmony to batch correct the LSI 

dimensions in R. Using the first 25 reduced dimensions as input into a Seurat object, crude 

clusters were identified using Seurat’s (v2.3) SNN graph clustering FindClusters function 

with a resolution of 0.2. We then calculated the cluster sums from the binarized accessibility 

matrix and then log-normalized using edgeR’s ‘cpm(matrix, log = TRUE, prior.count = 3)’ 

in R. Next, we identified the top 25,000 varying peaks across all clusters using ‘rowVars’ in 

R. This was done on the cluster log-normalized matrix rather than the sparse binary matrix 

because: (1) it reduced biases due to cluster cell sizes, and (2) it attenuated the mean-

variability relationship by converting to log space with a scaled prior count. The 25,000 

variable peaks were then used to subset the sparse binarized accessibility matrix and 

recompute the TF-IDF transform. We used SVD on the TF-IDF matrix to generate a lower 

dimensional representation of the data by retaining the first 25 dimensions. We then used 

Harmony to batch correct the LSI dimensions in R. We then used these reduced dimensions 

as input into a Seurat object and crude clusters were identified using Seurat’s (v.2.3) SNN 

graph clustering FindClusters function with a resolution of 0.6. This process was repeated a 
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third time with a resolution of 1.0. Then, these same reduced dimensions were used as input 

to Seurat’s ‘RunUMAP’ with default parameters and plotted in ggplot2 using R.

Single-cell ATAC-seq gene activity scores

Gene activity scores are based on the observation that chromatin accessibility within the 

gene body, at the promoter, and at distal regulatory elements is correlated with gene 

expression30,31,80,84. Gene scores were calculated using ArchR v0.9.480 with default 

parameters. Briefly, ArchR infers gene activity scores using a distance-weighted 

accessibility model that aggregates accessibility signal inside the gene body and in the local 

genomic region. The resulting gene activity scores were additionally imputed using 

MAGIC85 to reduce noise due to scATAC-seq data sparsity.

Identification of clusters and cell types from scATAC-seq data

Different clusters and cell types were manually identified using promoter accessibility and 

gene activity scores for various lineage-defining genes. Microglia (Cluster 24) were 

identified based on accessibility near the IBA1, CD14, CD11C, PTGS1, and PTGS2 genes. 

Astrocytes (Clusters 13–17) were identified based on accessibility near the GFAP and 

FGFR3 genes. Excitatory neurons (Clusters 1, 3, and 4 were identified based on accessibility 

near the SLC17A6 and SLC17A7 genes. Inhibitory neurons (Cluster 2, 11, and 12) were 

identified based on accessibility near the GAD2 and SLC32A1 genes. Medium spiny 

neurons (most of Cluster 2) were identified based on accessibility near the DARPP32 gene. 

Oligodendrocytes (Clusters 19–23) were identified based on accessibility near the MAG and 

SOX10 genes. OPCs (Clusters 8–10) were identified based on accessibility near the 

PDGFRA gene. All neuronal subsets were identified primarily as neurons based on 

accessibility near the NEFL, RBFOX3, VGF, and GRIN1 genes and then subdivided based 

on the region of origin and the accessibility near other genes mentioned above.

Single-cell ATAC-seq peak calling

For scATAC-seq peak calling from clusters or manually defined cell types, all single cells 

belonging to the given group were pooled together. These pooled fragment files were 

converted to the paired-end tagAlign format and processed with version 1.4.2 of the 

ENCODE DCC ATAC-seq pipeline. The conversion to tagAlign was performed as follows. 

For fragments on the positive strand, the read start coordinate was the fragment start 

coordinate, zero-indexed. The read end coordinate was the fragment start coordinate plus the 

read length (99 bp). For fragments on the negative strand, the read start coordinate was the 

fragment end coordinate, zero-indexed. The read start coordinate was the fragment end 

coordinate minus the read length (99 bp). Then, these tagAlign files were used as input to 

the DCC ATAC-seq pipeline. IDR optimal peak sets with an IDR threshold of 0.05 were 

determined for each cluster by the pipeline, using pseudo-bulk replicate tagAligns for the 

cluster. Other pipeline parameters were the same as for bulk ATAC-seq data (see above).
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Single-cell ATAC-seq pseudo-bulk replicate generation and differential accessibility 
comparisons

For differential comparisons of clusters or cell types, including Pearson correlation 

determination, non-overlapping pseudo-bulk replicates were generated from groups of cells. 

For each cell grouping (i.e a cluster or a cell type), a minimum of 300 cells was required in 

order to make at least two non-overlapping pseudo-bulk replicates of 150 cells each. A 

maximum of 3 pseudo-bulk replicates was made per group if the total number of cells per 

group was greater than 450 cells. Cells were randomly deposited into one of the pseudo-bulk 

replicates and all available cells were used. In this way, the non-overlapping pseudo-bulk 

replicates are agnostic to which donor the cell came from but aware of individual cells (i.e. 

all reads from a given cell are deposited into the same pseudo-bulk replicate). These pseudo-

bulk replicates were then used for differential comparisons using DESeq286.

Identification of neuronal cell class-specific peaks, TF motifs, and genes

ArchR (version 0.9.4) was used to call peaks (using “addReproduciblePeakSet) and identify 

cell class-specific peaks and genes (using “getMarkerFeatures”). The cell class-specific 

peaks were tested from motif enrichment (using “peakAnnoEnrichment”).

Transcription factor footprinting

TF footprinting was performed as described previously33.

HiChIP library generation

HiChIP library generation was performed as described previously28. One million 

cryopreserved nuclei were used per experiment. Enzyme MboI was used for restriction 

digest. Sonication was performed on a Covaris E220 instrument using the following settings: 

duty cycle 5, peak incident power 140, cycles per burst 200, time 4 minutes. All HiChIP was 

performed using H3K27ac as the target (Abcam ab4729).

HiChIP data analysis

HiChIP paired-end sequencing data were processed using HiC-Pro87 version 2.11.0 with a 

minimum mapping quality of 10. FitHiChIP88 was used to identify “peak-to-all” interactions 

using peaks called from the one-dimensional HiChIP data. A lower distance threshold of 20 

kb and an upper distance threshold of 2 Mb were used. Bias correction was performed using 

coverage-specific bias.

HiChIP linkage of SNPs to genes

To link SNPs to genes, we identified FitHiChIP loops that contained a SNP in one anchor 

and a TSS in the other anchor. This was performed for all LD-expanded SNPs to identify the 

full complement of genes that could be putatively implicated in AD and PD.

gkm-SVM machine learning classifier training and testing

See Supplementary Methods.
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Identification of MAPT haplotypes

The MAPT haplotype block is part of one of the largest LD blocks in the human genome. To 

identify SNPs that belong exclusively to either the H1 or H2 haplotype, we used minor allele 

frequencies from dbSNP version 151. SNPs were required to be within the coordinates of 

the MAPT inversion breakpoints (hg38 chr17:45551578–46494237) and to have a minor 

allele frequency between 8.4% and 9%. While there are undoubtedly haplotype specific 

SNPs outside this frequency range, we chose this range to be as conservative as possible and 

to pick SNPs that showed minimal haplotype switching. Each SNP was verified to track with 

the predicted haplotype using LDLink89. This resulted in 2,366 SNPs that could be 

confidently called as haplotype divergent.

MAPT locus differential expression analysis

A 900-kb block of variants in strong LD at the MAPT locus hampered the resolution of 

colocalization methods for identifying causal variants and/or genes at this locus. To probe 

this locus more deeply, we assembled a list of 2,366 variants uniquely found in either the H1 

or the H2 haplotype of the MAPT locus (described above). For each of the 838 individuals 

genotyped in GTEx v8, we counted the number of variants in support of either haplotype. 

We designated individuals as homozygous if they possessed less than 1% of variants 

favoring the opposite haplotype and heterozygous if 45% to 55% of variants supported either 

haplotype. This determined the individual’s haplotype in all but six cases, which were 

excluded from the remainder of the MAPT analysis. In total, we identified 539 individuals 

with the H1/H1 haplotype, 260 with H2/H1, and 33 with H2/H2. Our a priori gene of 

interest was MAPT, whose expression had previously been demonstrated to be higher in H1 

than H2 haplotypes. At a nominal cutoff of P < 0.05, we confirmed this expected direction of 

differential MAPT expression (higher in H1 haplotypes) in multiple tissues, with the 

strongest contrasts in “Brain - Cortex”.

We then extended our analysis to include all genes expressed in any of the brain tissues from 

GTEx v8. We compared the log2-fold change of gene expression (TPM) between H1/H1 and 

H1/H2 individuals, given that these subgroups had the largest sample size. A change was 

considered statistically significant if a Wilcoxon rank-sum test between the two groups 

produced a P value of < 0.05 / (total # genes) / (total # tissues). We also performed pairwise 

Wilcoxon rank-sum test comparisons for each gene in each brain tissue between all 3 

pairings of haplotypes.

MAPT haplotype-specific ATAC-seq and HiChIP analysis

For both ATAC-seq and HiChIP, reads from heterozygote donors were re-mapped to an N-

masked genome (using bowtie2 or HiCPro, respectively) where all dbSNP v151 positions 

were masked to “N”. After alignment, SNPsplit90 was used to divide reads mapping to either 

the H1 or H2 haplotypes based on the presence of one of the 2,366 haplotype-divergent 

SNPs identified above. In this way, reads mapping to regions that lack a haplotype-divergent 

SNP could not be assigned in an allelic fashion to either the H1 or H2 haplotypes and were 

ignored. For track-based visualizations of haplotype-specific data, all available data from a 

given haplotype were merged agnostically to what brain region the data were derived from. 

For visualtization of ATAC-seq and HiChIP data from H1/H2 heterozygotes, no 
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normalization was performed because each sample is internally controlled for allelic depth. 

To identify regions with haplotype-specific chromatin accessibility in the MAPT locus, the 

entire locus was tiled into non-overlapping 500 bp bins and the number of Tn5 transposase 

insertions were counted for each haplotype in each bin for each sample. A Wilcoxon signed-

rank test was used to determine if the difference between H1 and H2 for each bin was 

significant after multiple hypothesis correction (FDR < 0.01).
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Extended Data

Extended Data Fig. 1. Region-centric scATAC-seq identifies cellular and regional heterogeneity 
in chromatin accessibility in adult brain
a-b, UMAP dimensionality reduction (a) prior to and (b) after batch correction with 

Harmony of scATAC-seq data from 10 different samples. Each dot represents a single cell 

(N = 70,631). Dots are colored by the sample of origin. Color labels are shown in Extended 

Data Figure 1b. c, The same UMAP dimensionality reduction shown in Extended Data 

Figure 1b but each cell is colored by its gene activity score for the annotated lineage-
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defining gene. Gene activity scores were imputed using MAGIC. Grey represents the 

minimum gene activity score while purple represents the maximum gene activity score for 

the given gene. The minimum and maximum scores are shown in the bottom left of each 

panel. The gene of interest and the cell type that it identified are shown in the upper left of 

each panel. MSNs – medium spiny neurons. d, Heatmap of cell type-specific markers used 

to define the cell type corresponding to each cluster. Color represents the row-wise Z-score 

of chromatin accessibility in the vicinity of each gene for each cluster. e, Cluster residence 

heatmap showing the percent of each cluster that is composed of cells from each sample. 

Cell numbers were normalized across samples prior to calculating cluster residence 

percentages to account for differences in total pass filter cells per sample. f-h, UMAP 

dimensionality reduction as shown in Extended Data Figure 1b but colored by (f) the gross 

brain region from which each cell was obtained, (g) the biological sex of the donor for each 

cell, or (h) the predicted cell class for each cell. i-k, Bar plot showing the number of cells 

identified in our scATAC-seq data from (i) each of the annotated cell classes, (j) each of the 

annotated donors/samples, or (k) each of the gross brain regions subdivided based on cell 

class. Color represents the predicted cell class as shown in the legend of Extended Data 

Figure 1h. l-m, Bar plot showing the percentage of cells in our scATAC-seq data from (l) 
each of the gross brain regions subdivided based cell class or (m) each of the annotated cell 

classes subdivided based on donor/sample of origin. Color represents (l) the predicted cell 

class as shown in the Extended Data Figure 1h or (m) the biological sample from which the 

cells were obtained.
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Extended Data Fig. 2. Cellular heterogeneity in brain tissue necessitates single-cell approaches to 
capture biological complexity
a-b, Bar plot of the log2(Fold Change) in the percent of peaks mapping to various genomic 

annotations comparing peaks from (a) the scATAC-seq peak set that are not overlapped by a 

peak from the bulk ATAC-seq peak set to peaks that are overlapped by a peak from the bulk 

ATAC-seq peak set or (b) the scATAC-seq peak set that are were identified as cell type-

unique through feature binarization to all peaks from the scATAC-seq peak set. c, 

Sequencing tracks of lineage-defining factors shown across all 24 scATAC-seq clusters 

(except Cluster 18 – putative doublets). From left to right, NEFL (neurons; chr8:24933431–

24966791), AIF1 (aka IBA1, microglia; chr6:31607841–31617906), MOG 
(oligodendrocytes; chr6:29652183–29699713), GJB6 (astrocytes; chr13:20200243–

20239571), and PDGFRA (OPCs; chr4:54209541–54303643). d, Box and whiskers plots 

showing the distribution of the number of single cells from our scATAC-seq data showing 

accessibility within (left) each peak from the set of peaks from the scATAC-seq peak set that 
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overlap a peak from the bulk ATAC-seq peak set (N = 120,941 peaks) and (right) each peak 

from the set of peaks from the scATAC-seq peak set that do not overlap a peak from the bulk 

ATAC-seq peak set (N = 238,081 peaks). The lower and upper ends of the box represent the 

25th and 75th percentiles and the internal line represents the median. The whiskers represent 

1.5 multiplied by the inter-quartile range. P-value determined by Kolmogorov–Smirnov test. 

e, Dot plot showing the inter-region Pearson correlation of pseudo-bulk replicates comprised 

of all cells from either SMTG, PARL, or MDFG within each of the clusters shown. The 

clusters shown were selected based on biological relevance (i.e. clusters annotated as 

“substantia nigra astrocytes” should not be compared across isocortical regions) and on 

cluster size (i.e. clusters with small numbers of isocortical cells would not provide robust 

comparisons).
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Extended Data Fig. 3. Neuronal sub-clustering identifies diverse biologically relevant populations 
of neurons
a-d, UMAP dimensionality reduction of neuronal cells (identified as Clusters 1, 2, 3, 4, 5, 6, 

7, 11, and 12 from Figure 1e) (a) prior to or (b-d) after batch correction with Harmony of 

scATAC-seq data from 10 different samples. Each dot represents a single cell (N = 21,116). 

Dots are colored by (a-b) the sample of origin, (c) the neuronal sub-cluster (repeated from 

Figure 2a), or (d) its gene activity score for the annotated lineage-defining gene. In (d), gene 

activity scores were imputed using MAGIC. Grey represents the minimum gene activity 
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score while purple represents the maximum gene activity score for the given gene. The 

minimum and maximum scores are shown in the bottom left of each panel. The gene of 

interest is shown in the upper right of each panel. e, Heatmap of gene activity scores for all 

neuronal markers used in identifying relevant cell types for neuronal sub-clusters. Color 

represents the column-wise z-scores for each gene across all neuronal sub-clusters with 

values thresholded at −2 and +2. Neuronal cluster “major annotation” is shown by color 

along with a cluster description to the right of the plot. f-h, The same UMAP dimensionality 

reduction shown in Extended Data Figure 3c but cells are colored by (f) the major cell class 

annotation, (g) a more granular neuronal sub-annotation, or (h) the neuronal cell class 

annotation. Assignment was made based on gene activity scores of lineage-defining genes. 

The cell class annotation shown in (h) was used to perform LD score regression analysis.

Extended Data Fig. 4. Sub-clustering of cells from the substantia nigra identifies TH-positive 
dopaminergic neurons
a-d, UMAP dimensionality reduction after iterative LSI of scATAC-seq data from substantia 

nigra cells from 2 different samples. Each dot represents a single cell (N = 11,199). Dots are 

colored by (a) their corresponding substantia nigra sub-cluster, (b) the sample of origin, or 

(c-d) its gene activity score for (c) the tyrosine hydoxylase (TH) gene, a specific marker of 

dopaminergic neurons or (d) other lineage-defining genes. In (c-d), gene activity scores 

were imputed using MAGIC. Grey represents the minimum gene activity score while purple 

represents the maximum gene activity score for the TH gene. In (a-c), the minimum and 

maximum scores are shown in the bottom left of the figure. Predicted cluster cell type 

identities are overlaid on the UMAPs.
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Extended Data Fig. 5. HiChIP and co-accessibilty predict enhancer-promoter interactions in 
primary adult human brain
a, Heatmap representation of HiChIP interaction signal at 100-kb, 25-kb, and 5-kb 

resolution at the OLIG2 locus. Sample shown represents the substantia nigra from donor 03–

41. Signal is normalized to the square root of the coverage. The maximum value of the color 

range and the coordinates along chromosome 21 are shown below each panel. b, Bar plots 

showing the total number of paired-end reads sequenced for each HiChIP library generated 

in this study. Color represents the brain region from which the data was generated. c, Bar 

plots showing the number of valid interaction pairs identified in HiChIP data from all 

samples profiled in this study. Color represents the type of interaction identified. d, Bar plot 

showing the overlap of FitHiChIP loop calls from the 4 gross brain regions profiled. Color 

indicates whether the loop was identified in a single region (unique) or more than one region 

(shared). e, Bar plot showing the classification of FitHiChIP loop calls based on whether the 

loop call contained an ATAC-seq peak (from either the bulk ATAC-seq peak set or the 

scATAC-seq peak set) or TSS in one, both, or no anchor. f, Bar plots showing the number of 

Cicero-predicted co-accessibility-based peak links that are observed in HiChIP (left) or the 

number of HiChIP-based FitHiChIP loop calls that are predicted as peak links by Cicero. g, 

Bar plot showing the number of cell type-specific peaks (defined as peaks identified through 

feature binarization; N = 221,062) or non-cell type-specific peaks (defined as scATAC-seq 

peaks that were not identified through feature binarization; N = 137,960) that overlap or do 

not overlap a Cicero-predicated co-accessibility linkage. Significance determined by 

Kolmogorov-Smirnov test.
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Extended Data Fig. 6. A multi-omic tiered approach leverages machine learning to predict 
functional noncoding SNPs in AD and PD
a, Flow chart of the analytical framework used to prioritize noncoding SNPs and predict 

functionality. The highest confidence SNPs (Tier 1) are supported by either machine 

learning predictions, allelic imbalance, or both. Moderate confidence SNPs (Tier 2) are 

supported by the presence of the SNP within a peak and a HiChIP loop or co-accessibility 

peak link that connects the SNP to a gene. Lower confidence SNPs (Tier 3) are only 

supported by the presence of the SNP in a peak. b-c, Box plot showing the area under (b) the 
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precision-recall curve or (c) the receiver-operating characteristics curve for the gkm-SVM 

machine learning classifier. Performance for each of the 24 broad clusters is shown with dots 

representing outliers. The lower and upper ends of the box represent the 25th and 75th 

percentiles. The whiskers represent 1.5 multiplied by the inter-quartile range. The center line 

represents the median. d, GkmExplain importance scores shown across all 10 folds for each 

base across a 100-bp window surrounding rs636317 for the effect (left) and noneffect (right) 

bases. e, Dot plots showing comparison of the GkmExplain score, ISM score, and deltaSVM 

score. Each dot represents an individual SNP test in a given fold. Dot color represents the 

GWAS locus number. The only off-diagonal dots (circled) correspond to repetitive regions 

within the MAPT locus where the deltaSVM score appears to be particularly sensitive. f, 
Dot plot showing allelic imbalance assessed by RASQUAL across all bulk ATAC-seq data 

used in this study from a region-specific analysis. Significance is assessed by RASQUAL 

(see Methods). Dot color indicates the brain region found to have significant allelic 

imbalance. Grey dots do not pass significance testing based on an empircal distribution of 

permuted null q-values and a 10% false discovery rate. A RASQUAL effect size greater than 

0.5 indicates that the alternate allele is enriched while less than 0.5 indicates that the 

reference allele is enriched. The plot is divided to show SNPs within the MAPT and 

DNAH17 loci (bottom) and SNPs in all other loci (top). SNPs mentioned in downstream 

analyses are highlighted by red text.
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Extended Data Fig. 7. Multi-omic characterization of well-studied AD-related GWAS loci 
pinpoints putative functional noncoding SNPs
a,c, Normalized scATAC-seq-derived pseudo-bulk tracks, H3K27ac HiChIP loop calls, co-

accessibility correlations, and publically available H3K4me3 PLAC-seq loop calls (Nott. et 

al. 2019) in (a) the BIN1 gene locus (chr2:127045000–127182000) and (c) the MS4A gene 

locus (chr11:60023000–60554000). scATAC-seq tracks represent the aggregate signal of all 

cells from the given cell type and have been normalized to the total number of reads in TSS 

regions, enabling direct comparison of tracks across cell types. For HiChIP, each line 

represents a FitHiChIP loop call connecting the points on each end. Red lines contain one 

anchor overlapping the SNP of interest while grey lines do not. For co-accessibility, only 

interactions involving the accessible chromatin region of interest are shown. For PLAC-seq, 

MAPS loop calls from microglia (blue), neurons (orange), and oligodendrocytes (purple) are 

shown. b,d, GkmExplain importance scores for each base in the 50-bp region surrounding 
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(b) rs13025717 or (d) rs636317 for the effect and non-effect alleles from the gkm-SVM 

model for microglia (Cluster 24). The predicted motif affected by the SNP is shown at the 

bottom and the SNP of interest is highlighted in blue. e, Dot plot showing allelic imbalance 

at rs636317. Significance of allelic imbalance was determined by RASQUAL. The bulk 

ATAC-seq counts determined by WASP and ASEReadCounter for the reference/non-effect 

(A) allele and variant/effect (T) allele are plotted. Each dot represents an individual bulk 

ATAC-seq sample (N = 140) colored by the brain region from which the sample was 

collected. Samples where fewer than 3 reads were present to support both the reference and 

variant allele (i.e. presumed homozygotes or samples with insufficient sequencing depth) are 

shown in grey. The blue line represents a linear regression of the non-grey points and the 

grey box represents the 95% confidence interval of that regression.
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Extended Data Fig. 8. Multi-omic characterization of noncoding SNPs identifies novel genes 
implicated in PD
a,c, Normalized scATAC-seq-derived pseudo-bulk tracks, H3K27ac HiChIP loop calls, co-

accessibility correlations, and publically available H3K4me3 PLAC-seq loop calls (Nott. et 

al. 2019) in (a) the IP6K2 gene locus (chr3:48671000–49205000) or (c) the TMEM163 gene 

locus (chr2:134429000–134905000). scATAC-seq tracks represent the aggregate signal of all 

cells from the given cell type and have been normalized to the total number of reads in TSS 

regions, enabling direct comparison of tracks across cell types. For HiChIP, each line 

represents a FitHiChIP loop call connecting the points on each end. Red lines contain one 
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anchor overlapping the SNP of interest while grey lines do not. For co-accessibility, only 

interactions involving the accessible chromatin region of interest are shown. For PLAC-seq, 

MAPS loop calls from microglia (blue), neurons (orange), and oligodendrocytes (purple) are 

shown. b,d, GkmExplain importance scores for each base in the 50-bp region surrounding 

(b) rs6781790 or (d) rs7599054 for the effect and non-effect alleles from the gkm-SVM 

model for (b) astrocytes (Cluster 15) or (d) microglia (Cluster 24). The predicted motif 

affected by the SNP is shown at the bottom and the SNP of interest is highlighted in blue. e, 

Dot plot comparing the –log10(p-value) from 23andMe PD GWAS data with the –log10(p-

value) from GTEx Caudate eQTL data of SNPs in the TMEM163 locus. Each dot represents 

an individual SNP. Dot color represents the r2 value of LD with the lead SNP (rs7599054 – 

purple diamond) within a European reference population. f-g, Dot plots showing the 

genomic coordinates of each SNP and the –log10(p-value) from (f) 23andMe PD GWAS 

data or (g) GTEx Caudate eQTL data. Dots are colored as in Extended Data Figure 8e. In (e-
g), p-values are based on genome-wide chi-squared statistics from the relevant GWAS and 

eQTL studies.

Extended Data Fig. 9. Epigenomic dissection of the MAPT locus
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a, Flowchart illustrating the analytical scheme used to identify bins with significant allelic 

imbalance across the H1 and H2 MAPT haplotypes. b, Heatmaps showing chromatin 

accessibility in 500-bp bins identified as having significantly different accessibility across 

MAPT haplotypes. Regions are shown for homozygous samples without allelic read splitting 

(left) and for heterozygous samples after allelic read splitting (right). Bin start coordinates 

are shown to the right. c, Box and whiskers plots for multiple regions which show 

differential chromatin accessibility across the H1 and H2 MAPT haplotypes. Each dot 

represents a single homozygous H1 (N = 91) or homozygous H2 (N = 12) sample. 

Heterozygotes are not shown. The lower and upper ends of the box represent the 25th and 

75th percentiles. The whiskers represent 1.5 multiplied by the inter-quartile range. The 

center line represents the median. d-e, Gene expression of (d) the KANSL1-AS1 gene or (e) 

the MAPK8IP1P2 gene shown as a box plot from GTEx cortex brain samples subdivided 

based on MAPT haplotype. The lower and upper ends of the box represent the 25th and 75th 

percentiles. The whiskers represent 1.5 multiplied by the inter-quartile range. The center line 

represents the median. ***p < 10−5 based on Wilcoxon rank sum test. N = 117 H1/H1, 78 

H1/H2, and 10 H2/H2. f, Sequencing tracks from pseudo-bulk data derived from predicted 

cell types in scATAC-seq data. This region represents a zoomed in view of the predicted 

distal regulatory region (chr17:45216500–45324000) that interacts with the MAPT promoter 

in the H1 haplotype. Putative neuron-specific regulatory elements are highlighted in blue. g, 

Box plots showing differential HiChIP interaction signal occurring between regions within 

the MAPT inversion and regions outside the inversion (“left” or “right”). The schematic at 

the top explains the analysis performed. The box plots show normalized HiChIP interaction 

counts for the H1 (N = 6) and H2 (N = 6) haplotypes for upstream/“left” interactions and 

downstream/“right” interactions. P-value determined by paired two-sided t-test.

Supplementary Material
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Fig. 1 –. Single-cell ATAC-seq identifies cell type-specific chromatin accessibility in the adult 
brain
a, Brain regions profiled in this study. b, Bar plot showing the number of reproducible peaks 

identified from samples in each brain region. The “Merged” bar represents the final merged 

peak set. The numbers above each bar represent the total number of biological samples 

profiled for each brain region. c, t-SNE dimensionality reduction of bulk ATAC-seq data. 

Each dot represents a single piece of tissue with technical replicates merged where 

applicable. d, Sequencing tracks of region-specific ATAC-seq peaks. From left to right, 
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DRD2 (striatum-specific; chr11:113367951–113538919), IRX3 (substantia nigra-specific; 

chr16:54276577–54291319), and KCNS1 (isocortex-specific; chr20:45086706–45107665). 

Tracks have been normalized to the total number of reads in TSS regions. e, Left; UMAP 

dimensionality reduction after iterative LSI of scATAC-seq data from 10 different samples. 

Each dot represents a single cell (N = 70,631), colored by its corresponding cluster. Right; 

Bar plot showing the number of cells per cluster. f, Same as Figure 1e but each cell is 

colored by its gene activity score for the annotated lineage-defining gene. The minimum and 

maximum gene activity scores are shown in the bottom left of each panel. g, Bar plot 

showing the overlap of bulk ATAC-seq and scATAC-seq peak calls. “Bulk ATAC-seq” 

represents the number of peaks from the bulk ATAC-seq merged peak set that are overlapped 

by a peak called in our scATAC-seq merged peak set. “Single-cell ATAC-seq” represents the 

number of peaks from our scATAC-seq merged peak set that are overlapped by a peak called 

in our bulk ATAC-seq merged peak set. Overlap is considered as any overlapping bases. h, 

Heatmap representation of chromatin accessibility in binarized peaks (N = 221,062) from 

the scATAC-seq peak set. Each row represents an individual pseudo-bulk replicate (3 per cell 

type) and each column represents a peak. i, Bar plot of the percent of peaks from the 

scATAC-seq binarized peak set that overlap peaks identified by bulk ATAC-seq (“Overlap 

Bulk”) or are uniquely identified by scATAC-seq (“scATAC Only”). Only peaks found to be 

unique to a single cell type (N = 172,111) were used in this analysis. Bars are colored 

according to the legend above Fig. 1h. j, Motif enrichments of binarized peaks identified in 

Figure 1h. Due to redundancy in motifs, TF drivers were predicted using the average gene 

expression in GTEx brain samples and accessibility at TF promoters in cell class-grouped 

scATAC-seq profiles. k, Footprinting analysis of the SPI1 (left; CIS-BP M6484_1.02) and 

JUN/FOS (right; CIS-BP M4625_1.02) TFs across the 6 major cell classes.
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Fig. 2 –. Sub-clustering identifies diverse biologically relevant neuronal cell types in the adult 
brain
a, Left; UMAP dimensionality reduction after iterative LSI of scATAC-seq data from 

neuronal cells from 10 different samples. Each dot represents a single cell (N = 21,116). 

Dots are colored by their corresponding neuronal sub-cluster. Neuronal cluster numbers are 

overlaid on the UMAP above each neuronal cluster centroid. Right; Bar plot showing the 

number of cells per cluster. Each neuronal cluster sub-annotation is labeled to the right of 

the bar plot and indicated by color. b, The same UMAP dimensionality reduction shown in 

Figure 2a but each cell is colored by its gene activity score for the annotated lineage-
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defining gene. The minimum and maximum gene activity scores are shown in the bottom 

left of each panel. c-d, LD score regression identifying the enrichment of GWAS SNPs from 

various brain-related and non-brain-related conditions in the peak regions of various (c) cell 

classes from the broad scATAC-seq clustering or (d) neuronal cell classes identified from the 

neuronal sub-clustering analysis. The dotted line represents the Bonferroni-corrected 

significance threshold for the LDSC coefficient P value (see Methods), adjusted for the 

number of cell classes tested. The size of the point for each cell class indicates whether this 

cell class passes the Bonferroni-corrected significance threshold (larger) or not (smaller).
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Fig. 3 –. Machine learning predicts functional polymorphisms in AD and PD
a, Schematic of the overall strategy for tiered identification of putative functional SNPs and 

their corresponding gene targets. b, Schematic of the gkm-SVM machine learning approach 

used to predict which noncoding SNPs alter TF binding and chromatin accessibility. c,f, 
Normalized scATAC-seq-derived pseudo-bulk tracks, H3K27ac HiChIP loop calls, co-

accessibility correlations, and publicly available H3K4me3 PLAC-seq loop calls (Nott et al. 

2019) in the (c) PICALM gene locus (chr11:85599000–86331000) and (f) SLC24A4 locus 

(chr14:91998000–92729000). scATAC-seq tracks represent the aggregate signal of all cells 
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from the given cell type and have been normalized to the total number of reads in TSS 

regions. For HiChIP, each line represents a FitHiChIP loop call connecting the points on 

each end. Red lines contain one anchor overlapping the SNP of interest. For co-accessibility, 

only interactions involving the accessible chromatin region of interest are shown. For PLAC-

seq, MAPS loop calls from microglia (blue), neurons (orange), and oligodendrocytes 

(purple) are shown. d,g, GkmExplain importance scores for each base in the 50-bp region 

surrounding (d) rs1237999 and (g) rs10130373 for the effect and non-effect alleles from the 

gkm-SVM model corresponding to (d) oligodendrocytes (Cluster 21) and (g) microglia 

(Cluster 24). The predicted motif affected by the SNP is shown at the bottom and the SNP of 

interest is highlighted in blue. e, Dot plot showing allelic imbalance at rs1237999. The bulk 

ATAC-seq counts for the reference/non-effect (G) allele and variant/effect (A) allele are 

plotted. Each dot represents an individual bulk ATAC-seq sample (N = 140) colored by brain 

region. Samples where fewer than 3 reads were present to support both the reference and 

variant allele (i.e. presumed homozygotes or samples with insufficient sequencing depth) are 

shown in grey. The blue line represents a linear regression of the non-grey points and the 

grey box represents the 95% confidence interval of that regression.
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Fig. 4 –. Vertical integration of multi-omic data and machine learning nominates gene targets in 
AD and PD
a,c, Normalized scATAC-seq-derived pseudo-bulk tracks, H3K27ac HiChIP loop calls, co-

accessibility correlations, and publically available H3K4me3 PLAC-seq loop calls (Nott et 

al. 2019) in (a) the ITIH1 gene locus (chr3:52168000–52890000) or (c) the KCNIP3 locus 

(chr2:94994000–95394000). scATAC-seq tracks represent the aggregate signal of all cells 

from the given cell type and have been normalized to the total number of reads in TSS 

regions. For HiChIP, each line represents a FitHiChIP loop call connecting the points on 

each end. Red lines contain one anchor overlapping the SNP of interest. For co-accessibility, 

only interactions involving the accessible chromatin region of interest are shown. For PLAC-

seq, MAPS loop calls from microglia (blue), neurons (orange), and oligodendrocytes 

(purple) are shown. b,d, GkmExplain importance scores for each base in the 50-bp region 

surrounding (b) rs181391313 or (d) rs7585473 for the effect and non-effect alleles from the 
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gkm-SVM model corresponding to (b) microglia (Cluster 24) or (d) oligodendrocytes 

(Cluster 21). The predicted motif affected by the SNP is shown at the bottom and the SNP of 

interest is highlighted in blue. e, Dot plot showing allelic imbalance at rs3755519. The bulk 

ATAC-seq counts for the reference/non-effect (A) allele and variant/effect (T) allele are 

plotted. Each dot represents an individual bulk ATAC-seq sample (N = 140) colored by brain 

region. Samples where fewer than 3 reads were present to support both the reference and 

variant allele (i.e. presumed homozygotes or samples with insufficient sequencing depth) are 

shown in grey. The blue line represents a linear regression of the non-grey points and the 

grey box represents the 95% confidence interval of that regression.
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Fig. 5 –. Epigenetic deconvolution of the MAPT locus explains haplotype-associated 
transcriptional changes
a, The MAPT locus (chr17:44905000–46895000) showing all genes, the predicted locations 

of the inversion breakpoints, and the 2,366 haplotype-divergent SNPs used for haplotype-

specific analyses. b, Gene expression of the MAPT gene from GTEx cortex brain samples 

subdivided based on MAPT haplotype (N = 117 H1/H1, 78 H1/H2, 10 H2/H2). The lower 

and upper ends of the box represent the 25th and 75th percentiles and the internal line 

represents the median. The whiskers represent 1.5 multiplied by the inter-quartile range. 
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Outliers are shown as individual dots. Significance determined by Wilcoxon rank sum test. 

c, Schematic for the allelic analysis of the MAPT region. d, HiChIP (top) and bulk ATAC-

seq (middle) sequencing tracks of the region representing the MAPT locus inside of the 

predicted inversion breakpoints (chr17:45510000–46580000; bottom). Each track represents 

the merge of all available H1 or H2 reads from all heterozygotes. HiChIP and ATAC-seq 

tracks represent unnormalized data from heterozygotes where reads were split based on 

haplotype. HiChIP is shown as a virtual 4C plot where the anchor is indicated by a dotted 

line and the signal represents paired-end tag counts overlapping a 10-kb bin. Regions 

showing significant haplotype bias in ATAC-seq are marked by an asterisk (Wilcoxon rank 

sum test). e, GTEx cortex gene expression of genes in the MAPT locus comparing H1 

homozygotes (N = 117) to H1/H2 (N = 78). Regions A and B are shown as in Figure 5d. * P 
< 0.05 by Wilcoxon rank sum test after multiple hypothesis correction. f, HiChIP (top) and 

cell type-specific scATAC-seq (middle) sequencing tracks of the region representing the 

MAPT locus outside of the predicted inversion breakpoints (bottom). HiChIP tracks for bulk 

homozygote H1 or H2 samples (normalized based on reads-in-loops) are shown at the top 

while haplotype-specific tracks from heterozygotes (unnormalized) are shown below. In 

each HiChIP plot, the anchor represents the MAPT promoter. scATAC-seq tracks represent 

the aggregate signal of all cells from the given cell type and have been normalized to the 

total number of reads in TSS regions. g, Schematic illustrating the predicted haplotype-

specific change in long-distance interaction between the MAPT promoter and the predicted 

distal regulatory element identified in Figure 5d. Regions marked A and B represent the 

same regions marked in Figure 5d-e.
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