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Abstract

The canonical view about the effect of thyroid hormones (THs) on thermogenesis 

assumes that the hypothalamus acts merely as a modulator of the sympathetic 

outflow on brown adipose tissue (BAT). Recent data have challenged that vision by 

demonstrating that THs act on the ventromedial nucleus of the hypothalamus (VMH) 

to inhibit AMP-activated protein kinase (AMPK), which regulates the thermogenic 

program in BAT, leading to increased thermogenesis and weight loss. Current data 

have shown that in addition to activation of brown fat, the browning of white adipose 

tissue (WAT) might also be an important thermogenic mechanism. However, the possible 

central effects of THs on the browning of white fat remain unclear. Here, we show that 

3,3′,5,5′ tetraiodothyroxyne (T4)-induced hyperthyroidism promotes a marked browning 

of WAT. Of note, central or VMH-specific administration of 3,3′,5-triiodothyronine (T3) 

recapitulates that effect. The specific genetic activation of hypothalamic AMPK in the 

VMH reversed the central effect of T3 on browning. Finally, we also showed that the 

expression of browning genes in human WAT correlates with serum T4. Overall, these 

data indicate that THs induce browning of WAT and that this mechanism is mediated via 

the central effects of THs on energy balance.

Introduction

Thyroid hormones (THs; 3,3′,5,5′ tetraiodothyroxyne 
or T4 and 3,3′,5-triiodothyronine or T3) exert important 
biological actions, not only modulating the development 
and growth but also regulating metabolism and energy 
balance (Brent 2012, Warner & Mittag 2012, Lopez et al. 
2013). Impaired function of the thyroid gland, by either 
hyperthyroidism or hypothyroidism, leads to alterations 
in metabolism and energy homeostasis. Hyperthyroidism 
is associated with an increase in the metabolic rate and 
the patients suffering from this condition undergo body 

weight loss, despite increased food intake; quite the 
opposite, hypothyroid patients show lowered metabolic 
rate and reduced food intake (Brenta  et  al. 2007, 
Kaptein et al. 2009, Pearce 2012).

THs are key regulators of thermogenesis, which 
represents a major component of the energy expenditure 
in homeothermic (‘warm-blooded’) animals (Cannon & 
Nedergaard 2004, Silva 2006). In mammals, including 
humans, thermogenesis occurs mainly in the brown 
adipose tissue (BAT) (Cannon & Nedergaard 2004,  
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Silva 2006, von Ballmoos et al. 2009). THs act on brown 
adipocyte thermogenesis by increasing the stimulatory 
action of norepinephrine (NE), as well as enhancing 
the cAMP-mediated acute rise in ucp1 gene expression  
(Bianco  et al. 1988, Silva 2006, Ribeiro  et al. 2010). The 
existence of central effects of THs in the regulation 
of BAT thermogenesis was proposed long time ago 
(Nedergaard et al. 1997). Recent evidence from our group 
has also shown a homeostatic link between the central 
effects of THs on hypothalamic AMP-activated protein 
kinase (AMPK), sympathetic tone and UCP1 expression in 
BAT (Lopez et al. 2010, Alvarez-Crespo et al. 2016).

Over the last years, accumulating evidence has 
demonstrated that activation of beige/brite (‘brown in 
white’) adipocytes in the white adipose tissue (WAT), a 
process known as browning (Fisher et al. 2012, Cohen et al. 
2014, Nedergaard & Cannon 2014, Contreras et al. 2016b), 
is responsible for a significant increase in total energy 
expenditure (Shabalina  et  al. 2013). Thus, stimulation 
of browning has therapeutic potential to promote body 
fat reduction (Yoneshiro  et  al. 2013, Beiroa  et  al. 2014). 
Several mechanisms have been proposed for WAT 
browning (Villarroya & Vidal-Puig 2013, Nedergaard 
& Cannon 2014), including prolonged cold exposure 
(Loncar  et al. 1986), adrenergic activation (Cousin  et al. 
1992, Ghorbani  et  al. 1997, Cao  et  al. 2011) and also 
thyroid hormone receptor (TR) agonism (Lin et al. 2015, 
Alvarez-Crespo et al. 2016). However, the role of central 
THs in the control of WAT browning remains unclear.

The aim of this study was to investigate the role of 
central THs on the browning of WAT and the mechanisms 
behind this action. Our data show that peripherally 
induced hyperthyroidism promoted browning of white 
fat and that this effect is recapitulated by central and 
specific administration of T3 in the ventromedial nucleus 
of hypothalamus (VMH), via a mechanism dependent of 
AMPK. Notably, we also demonstrate that the expression 
of browning markers in WAT correlates with serum T4 
levels in humans. Thus, in addition to the well-known 
effects of central THs on BAT (Lopez et al. 2010, Alvarez-
Crespo  et  al. 2016), our data indicate an additional 
mechanism by which central THs influence energy 
expenditure, namely browning of WAT.

Material and methods

Animals

Male Sprague–Dawley rats (200–250 g; Animalario General  
USC, Santiago de Compostela, Spain) were housed 

on a 12-h light (08:00–20:00), 12-h darkness cycle, 
in a temperature and humidity controlled room and 
maintained with chow (STD, SAFE A04: 3.1% fat, 59.9% 
carbohydrates, 16.1% proteins, 2.791 kcal/g; Scientific 
Animal Food & Engineering; Nantes, France) and water 
ad libitum. For all the procedures, the animals were 
individually caged and used for experimentation 7 days 
later. During all experimental approaches, animals 
and their respective food intake and body weight were 
monitored every day. The experiments were performed 
in agreement with the International Law on Animal 
Experimentation and were approved by the USC Ethical 
Committee (Project ID 15010/14/006).

Patients

A group of 163 (80 visceral, vWAT and 83 subcutaneous, 
sWAT) white adipose tissues from participants were 
analyzed (Table  1). These participants were recruited 
at the Endocrinology Service of the Hospital of Girona  
‘Dr Josep Trueta’. All subjects were of Caucasian origin and 
reported that their body weight had been stable for at least 
three months before the study. Subjects were studied in 
their post-absorptive state. They had no systemic disease 
other than obesity and all were free of any infections 
in the previous month before the study. Liver diseases 
(specifically tumoral disease and HCV infection) and 
thyroid dysfunction were exclusion criteria. All subjects 
gave written informed consent, validated and approved 
by the Ethics committee of the Hospital of Girona  
‘Dr Josep Trueta’, after the purpose of the study was 
explained to them.

Induction of hyperthyroidism

Hyperthyroidism in rats was induced by chronic 
subcutaneous (SC) administration of l-thyroxine  

Table 1 Anthropometric and clinical parameters.

Sex (men/women)† 14/69
Age (years) 45.24 ± 10.5
BMI (kg/m2) 42.3 ± 8.4
Fasting glucose (mg/dL) 95.5 (85.5–112.2)*
Total cholesterol (mg/dL) 186.3 ± 30.3
HDL cholesterol (mg/dL) 55.1 ± 16.5
LDL cholesterol (mg/dL) 108.9 ± 28.7
Fasting triglycerides (mg/dL) 102 (79–145)*
Serum free T4 (ng/dL) 1.21 ± 0.18

Mean ± s.d. for normal distributed variables.
*Median (interquartile range) for non-normal distributed  
variables. †Qualitative variables are expressed as frequencies.

http://dx.doi.org/10.1530/JOE-16-0425
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(T4, 100 µg/day, dissolved in 200 µL of saline; Sigma) for 
a period of three weeks (21 days), as previously described 
(Lopez et al. 2010, Gonzalez et al. 2012, Varela et al. 2012). 
Euthyroid (control) rats were treated with vehicle (saline).

Intracerebroventricular treatments

Intracerebroventricular (ICV) cannulas were stereotaxi-
cally implanted under ketamine/xylazine anesthesia, as 
previously described (Lopez et al. 2008, 2010, Whittle et al. 
2012, Contreras  et al. 2014, Martinez de Morentin  et al. 
2014, Alvarez-Crespo  et  al. 2016, Martins  et  al. 2016), 
using the following coordinates 1.6 mm lateral to bregma, 
0.6 mm posterior, 4.5 mm deep from the skull. Rats 
received a single ICV daily administration of T3 (4 ng/day, 
during 5 days) dissolved in 5 µL of saline.

Stereotaxic microinjection of T3 and viral vectors

Rats were placed in a stereotaxic frame (David Kopf 
Instruments; Tujunga, CA, USA) under ketamine/xylazine 
anesthesia. Nuclei-specific injections were delivered via 
a permanent 28-gauge stainless steel cannula (Plastics 
One, Roanoke, VA, USA) inserted bilaterally either in 
the VMH or the arcuate nucleus of the hypothalamus 
(ARC), following stereotaxic coordinates: (a) for the 
VMH: −2.8 mm posterior to the bregma, ±0.6 mm lateral 
to bregma and 10.1 mm deep from the skull; (b) for the 
ARC: −2.8 mm posterior to the bregma, ±0.3 mm lateral 
to bregma and 10.2 mm deep from the skull. A catheter 
tube was connected from each infusion cannula to an 
osmotic minipump flow moderator (Model 1007D; Alzet 
Osmotic Pumps, Cupertino, CA, USA). These pumps had 
a flow rate of 0.5 µL/h during 7 days of treatment. The 
osmotic minipumps were inserted in a subcutaneous 
pocket on the dorsal surface created using blunt 
dissection (Imbernon et al. 2013, Contreras et al. 2014, 
Martins et al. 2016).

Adenoviral GFP or constitutive active AMPKα 
isoforms (AMPKα-CA; Viraquest; North Liberty, IA, 
USA) vectors (Woods  et al. 2000, Minokoshi  et al. 2004, 
Lopez  et  al. 2008, 2010) were delivered in the VMH of 
rats using a 25-gauge needle (Hamilton; Reno, NV, USA) 
and the stereotaxic coordinates: −2.4 mm and −3.2 mm 
posterior to the bregma, ±0.6 mm lateral to bregma and 
10.1 mm deep at a rate of 200 nL/min for 5 min for rat 
(1 µL/injection site) as previously reported (Lopez  et  al. 
2008, 2010, Martinez de Morentin  et  al. 2012, 2014, 
Whittle et al. 2012, Beiroa et al. 2014, Contreras et al. 2014, 
Martins et al. 2016). Animals were treated for 6 days.

Blood biochemistry

For the rat samples, plasma levels of T3 and T4 were 
measured using rat ELISA kits (Crystal Chem Inc; Downers 
Grove, IL, USA) (Lopez et al. 2010, Gonzalez et al. 2012, 
Varela et al. 2012). For the human samples, serum glucose 
concentrations were measured in duplicate by the glucose 
oxidase method using a Beckman Glucose Analyser II 
(Beckman Instruments; Brea, CA, USA). Roche Hitachi 
Cobas c711 instrument (Roche) was used to perform HDL 
cholesterol and total serum triglycerides determinations. 
HDL cholesterol was quantified by a homogeneous 
enzymatic colorimetric assay through the cholesterol 
esterase/cholesterol oxidase/peroxidase reaction (Cobas 
HDLC3; Roche). Serum fasting triglycerides were 
measured by an enzymatic, colorimetric method with 
glycerol phosphate oxidase and peroxidase (Cobas 
TRIGL; Roche). LDL cholesterol was calculated using 
the Friedewald formula. Serum free T4 was measured by 
electrochemiluminescence (Roche Diagnostics) with 
intra- and inter-assay coefficients of variation less than 
5%. Methods have been previously reported (Ortega et al. 
2015, Gavalda-Navarro et al. 2016).

Sample processing

Rats were killed by cervical dislocation. From each animal, 
gonadal WAT (gWAT), subcutaneous inguinal WAT 
(sWAT) or both (only for the euthyroid and hyperthyroid 
animals) were harvested and immediately frozen in dry 
ice. Samples were stored at −80°C until further processing. 
Human adipose tissue samples were obtained from sWAT 
and vWAT depots during elective surgical procedures 
(cholecystectomy, surgery of abdominal hernia and gastric 
bypass surgery) (Ortega et al. 2015, Gavalda-Navarro et al. 
2016). Samples of adipose tissue were immediately 
transported to the laboratory (5–10 min). Tissue handling 
was carried out under strictly aseptic conditions. Adipose 
tissue samples were washed in PBS, cut off with forceps 
and scalpel into small pieces (100 mg), and immediately 
flash-frozen in liquid nitrogen before storage at −80°C.

Real-time PCR

We performed real-time PCR (TaqMan; Applied 
Biosystems) as previously described (Lopez  et  al. 2010, 
Martinez de Morentin  et  al. 2012, 2014, Whittle  et  al. 
2012, Contreras  et  al. 2014, Alvarez-Crespo  et  al. 2016, 
Martins  et  al. 2016), using specific sets of primers and 
probes for rat (Supplementary Table  1, see section on 
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supplementary data given at the end of this article). 
Values were expressed relative to hypoxanthine–guanine 
phosphoribosyltransferase (HPRT) levels. For the analysis of 
the human WAT samples, we used commercially available 
and pre-validated TaqMan primer/probe sets (Applied 
Biosystems) as follows: endogenous control peptidylprolyl 
isomerase A (cyclophilin A) (PPIA, 4333763), PR domain 
containing 16 (PRDM16, Hs00223161_m1), uncoupling 
protein 1 (UCP1, Hs00222453_m1) and cell death-
inducing DFFA-like effector a (CIDEA, Hs00154455_m1).  
Gene expression values were expressed relative to 
PPIA levels.

Histology and immunohistochemistry

Adipose tissue depots were fixed in 10% buffered 
formaldehyde. For the hematoxylin–eosin processing, 
the WAT sections were first stained with hematoxylin for 
5 min, washed and stained again with eosin for 1 min. The 
detection of UCP1 in WAT was performed using anti-UCP1 
(1:500; ab10983; Abcam) as previously reported (Alvarez-
Crespo et al. 2016, Martins et al. 2016). The specificity of 
the UCP1 antibody has been previously validated by using 
WAT samples from UCP1 KO mice (Alvarez-Crespo et al. 
2016). Images were taken with a digital camera Olympus 
XC50 (Olympus Corporation) at 20×. Digital images 
from WAT for immunohistochemistry were quantified 
with FRIDA image analysis software (FRIDA Software; 
The Johns Hopkins University; MD, USA); briefly, a color 
mask (pixel threshold masks) was set to define the UCP1 
staining. This color mask was applied to all photographs, 
and the software obtained a numeric value proportional to 
the color level in each image. These values are represented 
with respect to control (100%). For the adipocyte area, 
images were analyzed with ImageJ Software (National 
Institutes of Health; MD, USA). Direct detection of GFP 
fluorescence was performed after perfusion of the animals 
and detected with a fluorescence microscope Olympus 
IX51, at 4×.

Statistical analysis

For the rat experiments, data are expressed as mean ± s.e.m. 
(error bars represent s.e.m.), mRNA and protein data were 
expressed in relation (%) to control (euthyroid, vehicle-
treated or GFP) rats. Statistical significance was determined 
by Student’s t-test when two groups were compared or 
ANOVA followed by two-tailed Bonferroni post hoc test 
when more than two groups were compared. P < 0.05 was 

considered statistically significant. For the human studies, 
statistical analyses were performed using SPSS 12.0 
software (IBM). Descriptive results of continuous variables 
are expressed as mean and s.d. for Gaussian variables or 
median and interquartile range unless otherwise stated. 
Parameters that did not fulfill normal distribution were 
mathematically Log transformed to improve symmetry 
for subsequent analyses. The relation between variables 
was analyzed by simple correlation (Pearson’s test and 
Spearman’s test) and by multivariate regression analysis. 
Levels of statistical significance were set at P < 0.05.

Results

Hyperthyroidism induces browning of WAT in rats

T4-treated rats exhibited decreased weight gain (Fig. 1A) 
despite hyperphagia (Fig. 1B). Increased circulating levels of 
T4 (Fig. 1C) and T3 (Fig. 1D), confirmed their hyperthyroid 
status. Next, we analyzed whether hyperthyroidism 
induced browning of WAT in these animals. Our mRNA 
data showed that the mRNA expression of browning 
markers, such as UCP1, peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (PGC1α), CIDEA, 
PRDM16 and also of uncoupling protein 3 (UCP3) was 
significantly increased in the gWAT (Fig.  1E) and sWAT 
(Fig. 1H) of hyperthyroid rats. Histological analysis of WAT 
showed that hyperthyroid rats exhibited a ‘brown-like’ 
multilocular pattern, associated with decreased adipocyte 
area (Fig. 1F and I) and increased UCP1 immunostaining 
(Fig. 1G and J) in both gWAT and sWAT.

Central T3 induces browning of WAT in rats

Recent data have shown that the effect of THs on 
thermogenesis is centrally mediated (Lopez  et  al. 2010, 
Alvarez-Crespo  et  al. 2016). Therefore, we hypothesized 
that central chronic exposure of T3 may stimulate 
browning of WAT. ICV T3 administration induced a 
feeding-independent decrease in body weight (Fig.  2A 
and B). mRNA analysis of gWAT showed tendencies even 
though statistically non-significant for browning markers 
to be increased (Fig. 2C). Nevertheless, and more relevant, 
when histological analyses were assessed, our results 
were much clearer, indicating that ICV T3-treated rats 
displayed a ‘brown-like’ multilocular pattern, associated 
to decreased adipocyte area (Fig. 2D) and increased UCP1 
immunostaining (Fig. 2E).

http://dx.doi.org/10.1530/JOE-16-0425
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T3 in the VMH, but not in the ARC, induces browning of 
WAT in rats

Next, we aimed to identify the hypothalamic nucleus  
where T3 exerted its action on WAT. Therefore, we 

performed chronic stereotaxic administration of 
T3 into the VMH and the neighboring ARC. The 
correct position of the cannulae was verified by 
histological examination of coronal sections of the 
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Figure 1
Effect of hyperthyroidism on WAT browning. (A) Body weight change, (B) daily food intake, (C) T4 and (D) T3 circulating levels of euthyroid and 
hyperthyroid rats. (E and H) mRNA expression of browning markers, (F and I) representative H&E staining (left panels; 20×, scale bar: 100 μm) and 
adipocyte area (right panels), and (G and J) representative immunohistochemistry with anti-UCP1 antibody showing UCP1 staining (left panels; 20×, scale 
bar: 100 μm), UCP1 stained area (right panels) in gWAT and sWAT of euthyroid and hyperthyroid rats. Statistical significance was determined by Student’s 
t-test. N = 7 (only for the IHC analyses)-10 animals per group. Error bars represent s.e.m. *, ** and ***P < 0.05, 0.01 and 0.001 vs euthyroid.
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brains (data not shown). When given into the VMH,  
T3 promoted a feeding-independent weight loss (Fig. 3A 
and B). On the other hand, when T3 was administered 
into the ARC, there was a tendency to increase body 
weight at the end of the treatment, which was associated 
with hyperphagia (Supplementary Fig. 1A and B). mRNA 
analysis of gWAT showed significantly increased or clear 
trends toward increased levels of browning markers 
when T3 was delivered within the VMH (Fig.  3C), but 
not the ARC (Supplementary Fig. 1C). Again, histological 
analyses confirmed that VMH T3-treated rats displayed 
decreased adipocyte area (Fig.  3D) and increased UCP1 
immunostaining (Fig. 3E) in gWAT, confirming browning.

Central effects of T3 on browning of WAT depend on 
AMPK in the VMH

Next, we investigated the molecular mechanisms within the 
VMH leading to modulation of browning after central T3 
administration. Recent evidence has linked the inhibition 
of hypothalamic AMPK, and more specifically within the 
VMH, as a mechanism for the central regulation of BAT 

thermogenesis by THs (Lopez  et  al. 2010, 2016, Alvarez-
Crespo et al. 2016). Based on this evidence, we hypothesized 
that the central effect of T3 on browning might be mediated 
by specific inhibition of AMPK in the VMH. To test this, 
adenoviruses encoding either a constitutively active 
isoform of AMPKα (AMPKα-CA) or a GFP control vector 
were injected stereotaxically into the VMH of ICV T3-treated 
rats. The AMPKα-CA adenovirus was previously validated 
(Lopez et al. 2010, Martinez de Morentin et al. 2012, 2014, 
Whittle et al. 2012, Beiroa et al. 2014, Martins et al. 2016). 
Overexpression of AMPKα-CA in the VMH, confirmed by 
GFP immunofluorescence (Fig.  4A), blunted the weight 
loss caused by central T3 injection, without alteration in 
feeding (Fig. 4B and C). Of note, this effect was associated 
with the reversal of the T3-induced browning of gWAT, 
as demonstrated by increased adipocyte area (Fig.  4D) 
and decreased UCP1 staining (Fig.  4E) in T3-treated rats 
receiving AMPKα-CA adenoviruses in the VMH compared 
with those treated with control GFP adenoviruses. Together, 
these results are consistent with the observation that AMPK 
activity in the VMH mediates the central effects of T3 on 
browning of WAT.
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Figure 2
Effect of central T3 administration on WAT browning. (A) Body weight change, (B) daily food intake, (C) mRNA expression of browning markers (D) 
representative H&E staining (left panels; 20×, scale bar: 100 μm) and adipocyte area (right panels), and (E) representative immunohistochemistry with 
anti-UCP1 antibody showing UCP1 staining (left panels; 20×, scale bar: 100 μm), UCP1 stained area (right panels) in gWAT of vehicle- or T3 ICV-treated 
rats. Statistical significance was determined by Student’s t-test. N = 7 (only for the IHC analyses)-14 animals per group. Error bars represent s.e.m. 
*P < 0.05, **P < 0.01, ***P < 0.001 vs vehicle.
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Browning markers in WAT are positively correlated with 
circulating T4 in humans

Finally, we analyzed the relationship between T4 serum 
concentrations and the mRNA expression levels of 
browning marker in sWAT and vWAT, in samples derived 
from a large cohort of patients. Our data showed that 
the mRNA levels of UCP1 and CIDEA in sWAT (Fig. 5A 
and B, Supplementary Fig.  2) and PRDM16 in sWAT 
and vWAT (Fig.  5C and D), correlated with circulating 
free T4, showing a positive association between THs 
and browning in humans. Multivariate regression 
analysis indicated that serum free T4 levels contributed 
significantly to browning-related (PRDM16, CIDEA and 
UCP1) mRNA levels variation after controlling for age, 
gender and BMI (Table 2).

Discussion

In this study, we show that THs induce browning of 
WAT in rodents and circulating T4 levels correlate with 
the expression of browning markers in the WAT of 

humans. The effect of THs is centrally mediated involving 
specifically the VMH, a key nucleus modulating energy 
balance (Morrison  et  al. 2014, Contreras  et  al. 2015, 
Lopez et al. 2016). Notably, this hypothalamic mechanism 
is mediated through AMPK, which has been described as 
a key factor regulating the actions of THs at the central 
level (Lopez et al. 2010, 2016, Alvarez-Crespo et al. 2016).

It has been known for more than a century that THs 
increase the basal metabolic rate (Magnus-Levy 1895). 
Typically, most of these effects have been related to the 
direct actions of THs on metabolically active tissues,  
such as the liver (Yen 2001), BAT (Bianco  et  al. 2005, 
Lopez et al. 2010, Ribeiro et al. 2010, Alvarez-Crespo et al. 
2016), heart (Klein & Ojamaa 2001, Kahaly & Dillmann 
2005) and skeletal muscle (Short  et  al. 2001). In those 
tissues, THs increase metabolic rate and thermogenesis 
by promoting the generation of energy and also by 
reducing the thermodynamic efficiency, which lead to 
heat production and increased temperature (Hulbert & 
Else 1981, Silva 2006, Lopez et al. 2013).

The process in which precursor cells placed in WAT 
become beige/brite cells, instead of white adipocytes, 
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Figure 3
Effect of T3 in the VMH on WAT browning. (A) Body weight change, (B) daily food intake, (C) mRNA expression of browning markers, (D) representative 
H&E staining (left panels; 20×, scale bar: 100 μm) and adipocyte area (right panels), and (E) representative immunohistochemistry with anti-UCP1 
antibody showing UCP1 staining (left panels; 20×, scale bar: 100 μm), UCP1 stained area (right panels) in gWAT of vehicle- or T3-treated rats in the VMH. 
Statistical significance was determined by Student’s t-test. N = 7 (only for the IHC analyses)-18 animals per group. Error bars represent s.e.m. *, ** and 
***P < 0.05, 0.01 and 0.001 vs vehicle.
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panels) in gWAT of rats stereotaxically treated with GFP or AMPKα-CA adenovirus and ICV treated with vehicle or T3. Statistical significance was 
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is called browning (Fisher  et  al. 2012, Shabalina  et  al. 
2013). Consequently, certain WAT depots significantly 
increase gene expression for UCP1 and their thermogenic 
capacity (Shabalina  et  al. 2013). Although the sWAT 
from the inguinal area is the most classical fat pad 
where browning studies have been performed, it has 
also been described in other depots, such as gonadal 
(Plum  et  al. 2007, Tews  et  al. 2013, Neinast  et  al. 2015, 
Contreras  et  al. 2016a, Fulzele  et  al. 2016, Jia  et  al. 
2016, Lee  et  al. 2016, Martins  et  al. 2016, Shao  et  al. 
2016). In this sense, it has been recently demonstrated 
that when centrally induced, browning affects gWAT 
in a similar extent to inguinal sWAT (Contreras  et  al. 
2016a, Martins  et  al. 2016). However, despite the main 
thermogenic role of central THs, whether they are able 
to modulate the browning of WAT remains unclear. Here, 
we show that hyperthyroidism induces browning of WAT 
(sWAT from the inguinal area and gWAT) in rats. In our 
hyperthyroid model, T4 was administered peripherally, 
which might imply the existence of direct effects of THs 
on white adipocytes, known to express TRs (Brent 2012, 
Lopez et al. 2013). Alternatively, THs may exert a central 
action after crossing the blood–brain barrier (BBB), which 
would be in agreement with recent evidence from our 
group, demonstrating that the metabolic effects of THs 
on brown fat are centrally mediated (Lopez  et  al. 2010, 
Alvarez-Crespo et al. 2016). Therefore, we investigated the 

contribution of the central effects of THs on browning of 
WAT. Our data show that, when administered centrally, 
T3 promotes a similar pattern of browning of WAT as 
observed in the hyperthyroid model. Remarkably, the 
central action of T3 targets one particular hypothalamic 
nucleus, the VMH. Indeed, stereotaxic administration of 
the hormone into the ARC (a neighboring nucleus) did not 
recapitulate the effects on the browning program induced 
by T3 within the VMH. Considering that the VMH also 
plays a major role in the modulation of BAT function via 
THs (Lopez et al. 2010, 2013, 2016, Alvarez-Crespo et al. 
2016), our data suggest that this hypothalamic site is a 
key modulator of both white and brown fat activity.

Current evidence has demonstrated that inhibition 
of AMPK in the VMH plays a major role in mediating 
either the actions of THs on BAT (Lopez  et  al. 2010, 
2013, 2016, Alvarez-Crespo et al. 2016) or the browning 
of WAT, for example by glucagon-like peptide 1 (GLP-1) 
agonism (Beiroa et al. 2014). To elucidate the contribution 
of hypothalamic AMPK activity on the browning of WAT 
by THs, we genetically activated AMPK in the VMH of 
rats centrally treated with T3. Our data showed that 
activation of AMPK totally blunted the effects of T3 on 
WAT browning. Interestingly, this action was associated 
with a feeding-independent recovery of body mass, which 
was reduced by central T3. This evidence suggests that 
the augmented thermogenic capacity of brite adipocytes 

Figure 5
Correlation between T4 circulating levels and 
browning markers in human WAT. Correlation 
between UCP1 (A), CIDEA (B) and PRDM16  
(C) in sWAT and PRDM16 in vWAT (D) in  
human subjects.
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(Shabalina  et  al. 2013) participates together with the  
BAT-mediated action in the weight-reducing effects of 
central T3.

Finally, we aimed to investigate whether browning 
markers correlate with circulating THs levels in humans. 
Remarkably, our results indicate that serum levels of T4 
are positively associated with UCP1, CIDEA and PRDM16 
in WAT. To our knowledge, this is the first demonstration 
that THs modulate WAT browning in humans. Whether 
increased WAT browning is observed in hyperthyroid 
patients is not reported, but considering that THs also 
stimulate BAT in humans (Lahesmaa et al. 2014) and that 
most of the human BAT is actually beige fat (Jespersen et al. 
2013, Shinoda et al. 2015), it is tempting to speculate that 
browning of WAT may account for the increased energy 
expenditure that characterizes hyperthyroidism (Warner 
& Mittag 2012, Lopez et al. 2013). In this sense, we have 
performed some preliminary studies in hyperthyroid 
patients and detected a trend in the correlation between 
UCP1 mRNA expression and T4; however, further work 
will be necessary to properly investigate this association. 
If that is the case, strategies to modulate browning 
might be of therapeutic benefit in controlling the effects 
of thyrotoxicosis. This latter possibility is particularly 
relevant in the context of life-threatening conditions, 
such as thyroid storm, for which current treatments are 
not satisfactory. In addition, the induction of browning by 
TR agonism might be a suitable strategy for the treatment 
of obesity. In this regard, recent data have shown that 
treatment with the TR agonist GC-1 promotes browning 
of WAT and ameliorates obesity and diabetes in mice 
(Lin et al. 2015).

In summary, our results make evident the importance 
of THs in the browning of WAT in rodent and humans. 
This observation provides new insights into the 
physiological effects of THs and also in the pathogenesis 
of hyperthyroidism-induced effects on energy balance; it 

also suggests potential therapeutic strategies to counteract 
this disorder or other catabolic states.

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/
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