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Abstract

We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally
connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-
scanning calcium imaging in islets from acute mouse pancreas tissue slices. Obtained functional networks are analyzed in
the light of known structural and physiological properties of islets. Focusing on the temporal evolution of the network
under stimulation with glucose, we show that the dynamics are more correlated under stimulation than under non-
stimulated conditions and that the highest overall correlation, largely independent of Euclidean distances between cells, is
observed in the activation and deactivation phases when cells are driven by the external stimulus. Moreover, we find that
the range of interactions in networks during activity shows a clear dependence on the Euclidean distance, lending support
to previous observations that beta cells are synchronized via calcium waves spreading throughout islets. Most interestingly,
the functional connectivity patterns between beta cells exhibit small-world properties, suggesting that beta cells do not
form a homogeneous geometric network but are connected in a functionally more efficient way. Presented results provide
support for the existing knowledge of beta cell physiology from a network perspective and shed important new light on the
functional organization of beta cell syncitia whose structural topology is probably not as trivial as believed so far.
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Introduction

Over the last decade, a new field of network science has emerged

and distinguished itself from preceding work in the realm of graph

theory by focusing on real-world networks and by understanding

networks as structures that can evolve in time and as frameworks

upon which dynamical systems can be distributed [1,2]. Most

importantly, it has recognized the importance of building on both

empirical observation and modeling for the development of new

graph-theoretic models and for the understanding of experimental

findings [2,3]. Due to its deep experimental roots and a powerful

armamentarium of analytical tools, network theory has become

integral in the study of complex systems.

Employing it, we are beginning to understand structural

properties and functional behaviors of systems at scales inacces-

sible to more classical approaches that handle complexity by

explaining structure and function of individual parts. Beyond that,

we are discovering common properties of real-world systems as

diverse as biological, computer, technical, communication, and

social networks [4–6]. The most abundantly present and

functionally important properties in these networks are the so

called small-world-ness [7] and scale-freeness [8]. If a network

satisfies the criteria required for either or both, it is endowed with

some characteristic properties. Small worlds display short inter-

nodal distances and highly clustered organization. In scale-free

networks, the degree distribution follows a power law, meaning

that these systems have no typical or mean node degree, i.e. they

are scale invariant. In real physically embedded networks, there

are constraints limiting the constant addition of new links and

preferential attachment to the most connected vertices, leading to

a cutoff of the power law regime in the connectivity distribution or

making it disappear altogether [9,10]. As a result, the so called

broad-scale or single-scale small-world networks emerge [9,11].

The presence of a small-world topology implies particular

dynamic properties, such as stability, local and global efficiency in

the interaction of their vertices, e.g. high signal-propagation speed

and a high degree of synchronizability [7,12]. Such characteristics

have many already established and possible advantages for a

number of complex systems, in particular for living organisms. To

date, studies taking a graph-theoretical approach to analyze

biological systems have predominantly dealt with intracellular

metabolic networks [13–15], protein-protein interactions

[14,16,17], signaling networks [14,18,19], transcription-regulatory

networks [14,20], interconnectedness of human diseases [21],

multi-target drug design [22], and neuronal networks, with

emphasis on brain network organization [23–25]. Since network

PLOS Computational Biology | www.ploscompbiol.org 1 February 2013 | Volume 9 | Issue 2 | e1002923



science essentially relies on empirical data, the above repertoire

reveals not only areas of greatest practical importance, but is

essentially limited to those fields of interest where high-throughput

experimental procedures and large databases, such as microarrays,

proteomic tools, electronic patient records, functional magnetic

resonance, electroencephalography etc. are available. These offer

a supply for the increasing demands of network science for

experimental evidence and conformation of predicted properties,

fuelling its progress in leaps and bounds.

However, with the exception of some of the neurophysiological

endeavors, so far all of the above applications gave only snapshot-

like insights into complex systems. Due to the very nature of

experimental methods they intrinsically missed out a system’s

temporal evolution and the fact that the nodes per se can be

dynamical systems. In the spirit of systems biology, these two

aspects, however, are of critical importance when it comes to the

understanding of the way living systems are organized and how

their anatomy supports their function. Even in neuroscience which

of all life-sciences has come furthest in graph-theoretical applica-

tions and has benefited most from employing network approaches

to structural and functional data, the above issues have been dealt

with only partially. Namely, at the lowest, cellular level of

investigation, structural data were used, inherently lacking the

temporal and dynamical components, whereas functional data,

e.g. from functional magnetic resonance imaging, electroenceph-

alography or electromagnetography, capture the behavior on a

significantly higher level of organization. Additionally, the latter

always describe the underlying system at the level of sensors,

making determination of source intrinsically complicated [26–29].

Functional studies on other tissues and at the lowermost level,

where individual cells are the nodes considered, are only beginning

to emerge [30]. Endocrine tissues are often organized as networks,

evolve in time and their cells can be regarded as dynamical

systems. Also, endocrine tissues are easier to probe than neural

networks, yet first studies of pituitary gland structural and

functional connectivity were conducted only recently [30–33].

This can at least partially be ascribed to the lack of experimental

approaches that would enable us to assess the function of a large

number of cells simultaneously, as noninvasively as possible and

over long periods of time.

Considering the advantages conferred by small-world properties

and emerging evidence on their presence in real biological

systems, our aim here is to extend and apply basic ideas of graph

theory and to seek for evidence of small-world-ness in beta cells

from islets of Langerhans. These endocrine cells reside in the

pancreatic tissue, synthesize and release insulin, and play a pivotal

role in normal and pathological whole-body nutrient homeostasis

[34]. Being dynamical systems, interconnected into a functional

syncitium by gap junctions that connect the cytoplasm of adjacent

cells, beta cells can serve as a paradigm of a biological network

[35–39]. More importantly, the level of their interconnectedness

appears to be crucial for their function. Specifically, optimal cell-

to-cell electrical coupling through the gap junction protein

Connexin36 (Cx36) seems to support coordinated plasma mem-

brane depolarization, calcium signaling patterns, and insulin

exocytosis in response to stimulation with secretagogues. Cell

coupling has been shown to improve insulin synthesis and

exocytosis, and uncoupling to lead to altered beta cell function

[40]. It has been suggested that functional cell-to-cell contacts

confine the stimulatory concentration range of glucose and make

the otherwise heterogeneous beta cell population function in

unison [41]. The idea has been put forward that this homogeni-

zation effect may explain the narrow, steep stimulus-response

curve of beta cells under normal conditions, presence of

hyperinsulinemia under basal glucose plasma concentrations in

diabetes and in experiments where Cx36 is ablated. Finally, it may

be particularly important for the prevention of hypoglycemia due

to its ability to rapidly turn off insulin secretion in the face of

lowering glucose [42]. Therefore, one of the central questions in

beta cell physiology remains how the functional syncitium is

organized under normal conditions in terms of its structure and

function and how it breaks down in disease.

In the present report, we first extract beta cell functional networks

by means of intracellular calcium signals from a population of beta

cells, obtained by confocal laser-scanning microscopy of fluores-

cently labeled acute pancreas tissue slices. Next, we statistically

characterize them with diagnostic tools from graph theory in view of

the current understanding of complex networks. To implement the

theoretical framework and measures of network theory for

discernment of the organization of beta cell network, a strategy to

represent physiological data in the form of graphs is required [29].

First, we measure the signal from individual network elements,

providing a reliable measure of their activity. An account of the first

step is provided in the chapter ‘‘Calcium Imaging’’. Second, the

relationship between elements is characterized and the level of

similarity between their signals quantified in the chapter ‘‘Network

Construction’’. Third, all pairwise interactions between individual

network elements are appreciated and investigated within the

network-theoretical frame of reference in ‘‘Network Construction’’

and in ‘‘Characterization of the functional network’’. Finally, the

relation between known structural foundations and the obtained

functional network characteristics is handled within the ‘‘Results’’

and ‘‘Discussion’’ sections, where also the importance of our

findings for the understanding of the functional organization of islets

of Langerhans will be discussed.

Materials and Methods

Ethics statement
The study was carried out in accordance with all national and

European recommendations pertaining to work with experimental

Author Summary

Complex network theory has provided new tools for
studying the structure and function of complex systems. A
particularly attractive avenue in this context is the analysis
of biological systems, since structural principles of com-
plex networks have been identified at all scales of
functioning of living organisms. In the present paper, we
propose a construction of a complex network representa-
tion of pancreatic islets of Langerhans. In this microorgan,
interconnected beta cells produce and secrete insulin, an
anabolic hormone that controls the level of nutrients in
the blood. We determine the functional connectivity on
the basis of patterns of correlations between experimen-
tally measured calcium dynamics in individual beta cells.
The extracted pattern of pairwise interactions between
network elements, i.e. beta cells, is then scrutinized with
conventional tools for network analysis. Our findings are
largely reconcilable with known structural and functional
properties but also point to the presence of unexpected
small-world attributes that appear to represent a general
organizational principle of the functional connectivity
between beta cells. We argue that complex network
analysis applied to islets of Langerhans is a valuable new
tool in the physiologist’s analytical repertoire, and in the
future it could help deepen our understanding of their
physiology.

Functional Connectivity in Islets of Langerhans
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animals, and all efforts were made to minimize suffering of

animals. The protocol was approved by the Veterinary Admin-

istration of the Republic of Slovenia (permit number: 34401-61-

2009/2).

Tissue slice preparation
Tissue slices (140 mm) were prepared from pancreata of 10–20

week old NMRI mice killed by cervical dislocation as described

previously [43]. Throughout preparation and during slicing, the

tissue was held in an ice-cold extracellular solution (ECS,

consisting of (in mM) 125 NaCl, 26 NaHCO3, 6 glucose, 6 lactic

acid, 3 myo-inositol, 2.5 KCl, 2 Na-pyruvate, 2 CaCl2, 1.25

NaH2PO4, 1 MgCl2, 0.5 ascorbic acid; ph 7.4) continuously

bubbled with a gas mixture containing 5% CO2 and 95% O2.

Slices were collected in 30 ml of HEPES-buffered saline at room

temperature (HBS, consisting of (in mM) 150 NaCl, 10 HEPES, 6

glucose, 5 KCl, 2 CaCl2, 1 MgCl2; pH 7.4) before they were

transferred to the dye-loading solution. All chemicals were

obtained from Sigma-Aldrich (St. Louis, Missouri, USA) unless

otherwise specified. 4–10 slices were simultaneously loaded with

the dye in a Petri dish, exposed to ambient air, protected from

light, and filled with 3.333 ml of HBS containing 6 mM Oregon

Green 488 BAPTA-1 AM calcium dye (OGB-1, Invitrogen,

Eugene, Oregon, USA), 0.03% Pluronic F-127 (w/v), and 0.12%

dimethylsulphoxide (v/v) for 1 hour on an orbital shaker (40

turns/min) at room temperature. Uptake of OGB-1 was limited to

the first two or three most superficial cell layers as described

previously for pituitary slices [30,44] and isolated islets [35,45].

Several-fold differences in fluorescence intensity were observed

between cells, most probably due to differences in viability,

enzyme activity, loading, and variable extrusion of the dye.

Different loading did not influence fluorescence time profiles. After

staining and before measurements, the slices were kept protected

from ambient light in 30 ml of fresh HBS for up to 12 hours at

room temperature. HBS was exchanged every 2 hours. Individual

slices were transferred to a temperature-controlled bath chamber

(37uC, Luigs & Neumann, Ratingen, Germany) continuously

perifused with bubbled (5% CO2, 95% O2) ECS and used in

imaging experiments.

Calcium imaging
Imaging was performed on a Leica TCS SP5 AOBS Tandem II

upright confocal system using a Leica HCX APO L water

immersion objective (206, NA 1.0). OGB-1 was excited by an

argon 488 nm laser and fluorescence detected by Leica HyD

hybrid detector in the range of 500–650 nm (all from Leica

Microsystems GmbH, Wetzlar, Germany). 8-bit 5126512 pixels

images were acquired at a frequency of 0.5 Hz. To avoid

recording from cells at the potentially damaged cut surface, cells

at 15 mm depth or more were imaged. Optical section thickness

was 4 mm which gave a reasonable trade-off between satisfactory

signal strength at lowest acceptable laser power (to avoid

photobleaching and prolong the maximum time of recording)

and the need to keep the section thickness as thin as possible to

assure recording from a single cell only. Before and after recording

each time series, a higher quality fluorescence image (102461024

pixels) was taken and used as a reference to assess motion artefacts

and regions of interest (ROIs) during analysis. Calcium kinetics

was measured off-line from ROIs and exported employing Leica

Application Suite Advanced Fluorescence software (Leica Micro-

systems GmbH, Wetzlar, Germany). Further analysis was

performed using custom-made scripts in MATLAB program

(The MathWorks, Inc., Massachusetts, USA). Photobleaching was

accounted for by a combination of linear and exponential fit.

Traces were rejected if extensive motion artefacts were observed.

The fluorescence signals of OGB-1 were expressed as F/F0 ratios,

F0 representing the initial level of fluorescence and F the

fluorescence signal recorded at individual time points during the

experiment, respectively.

Network construction
Beta cells were distinguished from other cells on the basis of

previous reports showing that cells within islets of Langerhans can

reliably be identified by their type-specific calcium responses to

stimulation with high glucose [46–48]. In cells identified as beta

cells, intracellular concentration of calcium ([Ca2+]i) was low and

rather stable under basal (6 mM) glucose. Upon stimulation with

12 mM glucose cells responded with a rapid increase in [Ca2+]i,

followed by a sustained plateau of elevated [Ca2+]i with

superimposed oscillations (Figure 1B). In different cells these

oscillations had practically identical frequencies, but were slightly

out of phase (Figure 1C). After the glucose was lowered back to

6 mM, [Ca2+]i rapidly returned to the prestimulatory level. In

further analyses, five different regimes will be considered: low

glucose prior to stimulation (LG1), activation of beta cells (ON),

high glucose regime (HG), deactivation of beta cells (OFF), and the

low glucose after stimulation (LG2) (Figure 1B). Video S1 features

responses of all cells in the islet.

To obtain a graph from temporal traces of a large number of

cells, we first define that two cells (ROIs) be functionally connected

if the Pearson product-moment correlation between their signals

over a certain time window exceeds a positive predetermined

threshold value Rth [49]. In particular, we define xi as the time

series to be examined, where xi stands for the fluorescence values

of the i-th cell, rescaled to the unit interval for simplicity, even

though without rescaling, identical results would be obtained. For

quantification of dynamical correlations between the cells, we

calculate the correlation matrix R, whose ij-th element is defined as

follows:

Rij~

P
�xxi{xi(t)½ � �xxj{xj(t)

� �
sxi

sxj

, ð1Þ

Where �xxi and �xxj are the mean values of the time series xi(t) and

xj(t), and sxi
and sxj

the corresponding standard deviations. If

Rij~0 then no correlation between the i-th and j-th cell exists,

whilst Rij~1 signifies completely synchronous dynamics.

The significance of obtained correlation coefficients was

estimated using the t-test [50]:

t~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rij

2 n{2½ �
1{Rij

2

s
, ð2Þ

where n signifies the number of compared data points and Rij the

value of the obtained correlation coefficient. From this, the critical

Rij at every sample size was calculated as follows:

Rij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

n{2zt2

s
, ð3Þ

All values of Rth used in the following analyses are statistically

significant at a level of p,0.001.

To convert the full connectivity matrix to a sparsely connected

undirected unweighted graph, we chose a threshold Rth (above the

level of significance), so that only pairs whose correlation Rij

Functional Connectivity in Islets of Langerhans
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exceeds this threshold are considered to be connected [51]. By

varying Rth, we can adjust the mean degree of the network kavg.

The methodological approach used to extract the functional

connectivity patterns is schematically presented in Figure 1.

Characterization of the functional network
In order to characterize the level of synchrony of [Ca2+]i

dynamics in the islet, we calculated the average correlation

coefficient for all possible pairs of cells, Ravg, which enabled us to

describe the coherence of [Ca2+]i dynamics in the islet with a

single parameter. Metrics for the exploration of structural

properties of the extracted networks included calculation of the

clustering coefficient, the network’s global efficiency, and the

analysis of the degree distribution [7,49,50]. The clustering

coefficient of the i-th node Ci is defined as the number of existing

connections between all neighbors of a node, divided by the

number of all possible connections between them. The average

clustering coefficient Cavg is estimated by simply averaging Ci over

all the vertices and thus represents a global measure for network’s

functional segregation [7]. The global efficiency Eglob is inversely

related to the average shortest path length. The latter is defined as

the average number of mediating links along the shortest path

between any two nodes and reflects the traffic capacity of a

network [50]. Node degree ki signifies the number of connections

of the i-th node. Useful information about structural principles of a

network can be gathered from the network’s degree distribution

P(k), i.e., the probability distribution of ki over the whole network.

The average degree kavg is obtained by averaging all ki over all the

vertices. Especially in relatively small networks, the cumulative

distribution G(k) is used for the characterization of the network,

since in this manner statistical fluctuations are alleviated [50].

Notably, small-world networks are expected to simultaneously

display both high integration and segregation, i.e. high global

efficiency and clustering. To quantify the extent of small-world-

ness in a network, one commonly compares Eglob and Cavg with the

clustering coefficient Crand and global efficiency Erand estimated in

a random network with the same number of nodes, links, and

average degree as the network of interest [7,52]. In particular, in

small-world networks the ratio
Erand

Eglob
e1 and

Cavg

Crand

w1. The extent

of small-world-ness can be quantified with a single parameter

S~

Cavg

Crand

Erand

Eglob

, which is typically .1 [53].

Results

We first calculated the linear correlation coefficient between all

pairs of N = 140 cells from a single islet of Langerhans, whose

average [Ca2+]i response was shown in Figure 1B. The upper row

Figure 1. Methodology used to extract functional connectivity
patterns from cytosolic Ca2+ traces. A Image of an islet of
Langerhans showing the relative intensity of fluorescence signal during
sustained activity (HG). Red circles indicate two cells, i and j, which we
regard in continuation. B Temporal evolution of global calcium activity
characterized by the mean-field of all beta cells in the islet. In the
intervals 0#t#150 and 754#t#1960 cells were exposed to 6 mM
glucose, whereas for 150#t#754 a stimulating concentration of

glucose (12 mM) was applied. Arrows above the temporal trace denote
five different dynamical regimes considered in this study: low glucose
prior to stimulation (LG1) – 0#t,300, activation of beta cells (ON) –
300#t,420, sustained activity in high glucose (HG) – 600#t,1000,
deactivation of beta cells (OFF) – 1080#t,1200, and the low glucose
after stimulation (LG2) – 1400#t,1800. Note that the calcium activity
pattern has been normalized to the unit interval. C Highlighted
dynamical responses of cells i and j during the HG regime. D Correlation
diagram for fluorescence signals of the i-th and j-th cell. E The
correlation matrix for all pair wise determined Rij. F The corresponding
connectivity matrix (thresholded matrix, Rth = 0.75). G Functional
connectivity map in the islet for the HG regime. Red circles indicate
cells i and j.
doi:10.1371/journal.pcbi.1002923.g001

Functional Connectivity in Islets of Langerhans
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in Figure 2 features the correlation matrices for all five dynamical

regimes (LG1, ON, HG, OFF, LG2), as defined in the caption of

Figure 1.

Evidently, the highest overall correlation between beta cells was

attained during the phases of activation (ON) and deactivation

(OFF). Furthermore, in the HG regime the coherence of [Ca2+]i

activity was obviously larger than in either of the low glucose

regimes (LG1 and LG2) and lower than during activation and

deactivation. To quantify this visual assessment, we calculated the

average correlation coefficient Ravg for all five regimes. In the low

stimulation regimes LG1 and LG2, the values of Ravg were 0.21

and 0.24, respectively. In the HG phase Ravg = 0.42, and in the

ON and OFF phases Ravg = 0.64 and Ravg = 0.83, respectively.

Next, we extracted networks from the correlation matrices as

described in the Materials and Methods section. For each of the

dynamical regimes we chose the same threshold Rth = 0.75.

Functional networks obtained by thresholding the correlation

matrix are shown in the lower row of Figure 2. As expected, the

density of connections in each network was higher in regimes with

well correlated cell behavior. In particular, there were more links

in the HG regime than in LG1 or LG2 regimes and on average,

they were darker, signifying a larger correlation under stimulation.

It can also be noticed that in the network constructed from the

dynamics in the low stimulation regimes, the functional connec-

tivity was roughly independent of the Euclidean distance between

the cells, whereas in the HG network there were a lot of highly

correlated groups of mostly nearby cells. Furthermore, in the ON

and OFF phase the resulting networks were very dense (the

average degrees in the ON and OFF phases were kavg~67 and

kavg~109, respectively), thus indicating that the cells were very

synchronous in these regimes.

To find out whether network analysis can provide evidence for

[Ca2+]i waves as the mechanistic substrate of beta cell synchro-

nization, we examined the relationship between the Euclidean

distances lij between beta cells and their dynamical correlations in

more detail, by making use of 2D binning. More specifically, we

calculated the number of cell pairs which fell within a given range

of lij and Rij. 2D histograms shown in Figure 3 reveal that in the

HG regime there is a strong tendency of nearby cells to be much

better correlated with each other than with the remote ones.

Interestingly, in none of the other regimes a similarly convincing

trend could be noticed.

Next we explored how the characteristics of the functional

network evolved with time. A visualization of the rewiring process

of functional connections within an islet throughout different

phases can be found in Video S2. Furthermore, we calculated the

evolution of Ravg as well as of several measures for network

characterization – the average degree kavg, the global efficiency

Eglob, and the average clustering coefficient Cavg, in order to trace

the evolution of the functional network structure. For this purpose,

we divided the time series of individual cells into intervals of length

Dt and calculated the quantities on given intervals, i.e. sliding

windows. Results presented in Figure 4 reveal that Ravg, kavg, Eglob,

and Cavg all displayed a similar behaviour, with a peak during

activation and deactivation, and with values during activity being

higher than during non-stimulatory conditions. The choice of

duration of Dt does not have a significant impact on the calculated

Ravg (Figure 4A). Furthermore, it can be noticed that the network

measures are qualitatively independent of the chosen threshold

Rth, since with increasing Rth only a monotonous decrease of all

quantities of interest is observed. To get a more precise insight into

the temporal evolution of correlation between cell pairs we

additionally calculated the sliding correlation with overlapping

intervals. In particular, we calculated the average correlation

within a constant interval Dt = 100 s, whereby the interval was

being slided along time series with a step Dt9 = 20 s. Results

showing a more detailed evolution of the average correlation

between beta cells are presented in Figure S1.

In order to strengthen the reliability of our findings, the

calculations that follow rely on 9 functional networks having

Figure 2. Correlation matrices R (upper row, images A1–A5) and network architectures (lower row, images B1–B5) for all regimes
considered in this study. Upper row: correlation matrices for low glucose before stimulation (A1), activation (A2), sustained activity in high glucose
(A3), deactivation (A4), and low glucose after stimulation (A5). The color mapping is linear, values of Rij = 0.0 and Rij = 1.0 depicted in blue and red,
respectively. Lower row: network architectures for low glucose before stimulation (B1), activation (B2), sustained activity in high glucose (B3),
deactivation (B4) and low glucose after stimulation (B5). Each red dot represents the physical position of a nucleus of a glucose glucose-responsive
cell inside the islet of Langerhans. Dashed lines correspond to cell outlines. Pairs of cells whose correlation exceeds Rth = 0.75 are connected with an
arrow. In addition, colors of arrows signify values of Rij: linear coding between 0.75 (yellow) and 1 (dark brown).
doi:10.1371/journal.pcbi.1002923.g002

Functional Connectivity in Islets of Langerhans
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alltogether 562 nodes, that were constructed in 9 islets of

Langerhans (from 6 animals). In all slices comparable [Ca2+]i

activity patterns were detected (the protocols of stimulation with

glucose were as similar as practically achievable), so that the same

five regimes could be identified in all of them.

First, we verified if the abovementioned findings can be

generalized to other islets. For that purpose we calculated the

distribution of pairs of cells that fall within a given range of Rij in

all five regimes. Results in Figure S2 clearly support the

genaralization of our results, since also in other islets the same

trend is observed. The ON and OFF phases exhibited very high

correlations and the correlations observed in the HG regime were

higher compared with the LG1 and LG2 regimes.

Extremely high correlations in the ON and OFF phases which

were found in signals from all slices led to very densely connected

networks (see lower row in Figure 2) whose structural properties

are quite similar to those in a fully connected graph. This, we

ascribe to the fact that during the ON and OFF phases, every beta

cell is independently driven by the external stimulus, i.e. by the

elevation or lowering of the concentration of glucose (see

Discussion). Due to this and because we were particularly

interested in the network behavior during activity (i.e. during the

HG regime), in the following analyses we focused on the analysis of

networks extracted from the LG1, HG, and LG2 regimes. The

calculation of Ravg between all pairs of cells within a given interval

of physical distance confirmed the previously described depen-

dence of correlation on Euclidean distance during the HG regime

(Figure S3).

To describe the average properties of the functional networks (9

datasets) in more detail, we calculated for the LG1, HG, and LG2

regimes the respective average correlation coefficient Ravg (as a

reference), the average physical distance between connected cells

lij, the average degree kavg, the average clustering coefficient Cavg,

the global efficiency Eglob, and the average lengths of connections

that originate from 20% of the most connected cells in the slice.

Results are presented in Figure 5. Comparisons between regimes

were done performing Friedman’s ANOVA in the first step and

post hoc Wilcoxon signed-rank test in the second to compare LG1

with HG, HG with LG2, and LG1 with LG2. A Bonferroni

correction for the number of post hoc pairwise comparisons was

applied and so all differences are reported at the level of

significance p,0.05/3 = 0.0167. For all 6 parameters the differ-

ences between groups were significant. Significant differences

obtained after pairwise post hoc comparisons are indicated by

asterisks. During HG regime, Ravg was significantly higher than in

LG1, lij significantly shorter than in LG2, kavg significantly higher

than in LG1, Cavg significantly higher than in either of the LG

regimes, further supporting the results obtained so far. To check

whether the nodes with the highest degrees connect predominantly

to physically close or distant cells, we calculated the average

Figure 3. 2D histograms showing the distribution of pairs of cells with regard to their Euclidean distance lij and correlation
coefficient Rij. From left to right, histograms illustrating the distribution in low glucose before stimulation (A), during activation (B), during sustained
activity in high glucose (C), during deactivation (D), and in low glucose after stimulation (E) are presented. The color profile is linear and the same in
all panels. Blue depicts 0 and red 520 pairs of connected cells in a given interval.
doi:10.1371/journal.pcbi.1002923.g003

Figure 4. Temporal evolution of the average correlation coefficient, average degree, global network efficiency, and average
clustering coefficient under stimulation with glucose. In this figure, temporal changes of the average correlation coefficient (A), average
degree (B), the global network efficiency (C) and the average clustering coefficient (D) are presented on a background of the mean-field calcium
signal. Parameters calculated for network architectures obtained at different thresholds Rth are color-coded as indicated in the figures. In panels B–D
Dt = 100 s. For this Dt, the number of degrees of freedom is such that significance at a level of p,0.001 is achieved for all Rij exceeding 0.62. Values of
all of the parameters increase during activation and even more so under deactivation. During sustained activity, values are higher than before or after
exposure to glucose. During activity, values tend to increase until the solution containing nonstimulatory glucose reaches the cells.
doi:10.1371/journal.pcbi.1002923.g004
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lengths of connections originating from 20% of the cells with the

highest degree. The latter were significantly shorter in HG than in

LG2. Additionally, by comparing panels B and F it appears that

the most connected nodes do not display any preference for either

short- or long-range connections in neither of the regimes

considered. For Eglob, differences between HG and LG1 and

HG and LG2 were not statistically significant (p,0.021 for LG1

vs. HG and p,0.086 for HG vs. LG2), but a trend towards higher

efficiency in HG is clearly visible. Notably, the differences between

both regimes in low glucose, LG1 and LG2, were never statistically

significant, strongly supporting the view that the effect of

stimulation was largely reversible.

To determine the scale of our networks we plotted the

cumulative degree distribution (Figure 6). In order to be able to

combine data from 9 islets with different numbers of responsive

cells, we normalized k of each cell to the maximal node degree kmax

in the respective islet. In this manner we obliterated the effect of

different network sizes and resulting maximal degrees and were

thus able to focus on the shape of the distribution only. We drew

the cumulative distributions for all 9 islets and three of the five

regimes (LG1, HG and LG2), which were then averaged (dark

circles). It can be observed that in all three regimes the averaged

values decay roughly linearly in the double logarithmic plot before

a drop-off in the tail. These results indicate that the functional

connectivity between beta cells displays a broad-scale nature.

Namely, such connectivity distributions are characterized by a

power-law regime followed by a sharp cutoff [9]. To quantify this

visual evaluation, we fitted the data with three possible models: a

power-law, an exponential decay and an exponentially decaying

power-law. Goodness-of-fit was tested using the coefficient of

determination r2, whereby a better fit is indicated by a value closer

to 1. Of all three model functions, the exponentially truncated

power law was the best-fitting model for the cumulative degree

distributions in all three regimes. It gave r2 values of 0.99, 0.99 and

0.98 for the LG1, HG and LG2 regime, respectively. The other

two fitting options yielded r2 values ranging from 0.8 to 0.98, thus

validating that the observed degree distributions are best described

by truncated power-laws which is a characteristic of broad-scale

networks.

Since in the HG regime a clear increase in correlation between

the nearest cells was visible, we further checked whether clustering

in this regime was also related to the physical distance between

cells. For this purpose we calculated the average length of

connections ,lij. originating from a cell with a given local

clustering coefficient Ci. The obtained values were then averaged

over all cells whose local clustering fell in a given range of Ci. In

Figure 7, we see that in the HG regime, high clustering was indeed

supported by short links. Taking into account a typical beta cell

diameter of 20 mm, these links existed between direct neighbors or

cells separated by the characteristic distance of one cell at most. As

detailed in Discussion, this distance was not necessarily spanned by

a beta cell. To sum up, the clustering was negatively related with

the connection distance, meaning that the cells with long

connections were linked with remote regions that were otherwise

not connected to each other.

Finally, to diagnose small-world properties in the networks we

compared Cavg and Eglob with the same metrics estimated in a

random graph configured with the same number of nodes and

mean degree krand, as the network of interest [7,52]. If the ratios
Erand

Eglob
e1 and

Cavg

Crand

w1, a network exhibits a large extent of small-

world-ness (see Materials and Methods). Table 1 summarizes the

results for the networks in all three regimes of interest (LG1, HG,

LG2). Note that the median values for all 9 networks as well as of

the values of the corresponding random networks are shown. The

results indicate that the functional connectivity patterns between

beta cells possess properties of small-world networks. These

features are especially well pronounced in networks extracted

from cellular responses in the HG regime. Under stimulating

conditions, the demand of having efficient communication abilities

seems to be particularly conspicuous. The increase in the extent of

small-world-ness S that we observed upon stimulation with glucose

Figure 5. Characteristics of functional networks of beta cells in 9 islets of Langerhans for three of the five regimes analyzed. A The
average correlation coefficient. B The average physical distance between connected cells. C The average node degree. D The average clustering
coefficient. E The global efficiency. F the average lengths of connections originating from 20% of the cells with the highest degree. In all panels red
circles denote the median values, whereas the yellow floating columns signify the broadness of intervals within which the values were detected in all
9 islets. Significant differences obtained after pairwise post hoc Wilcoxon signed-rank tests are indicated by asterisks.
doi:10.1371/journal.pcbi.1002923.g005
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occurred predominantly due to an increase in global efficiency,

which reflects shortening of the average path length.

Discussion

A number of previous studies employing tools developed in the

frame of complex network theory have suggested a strong global

structure-function correlation and the importance of small-world

features for optimal functional connectivity [7,53–55]. Addition-

ally, the level of synchronization of Ca2+ signals between different

regions of isolated mouse and human islets has been assessed

[56,57]. However, gaining insight into the beta cell network

organization at the level of a large number of individual cells has

so far been prevented by the inability of the classical physiological

model of isolated islets of Langerhans combined with calcium

imaging techniques to access cells in the core of an islet, where, at

least in mice, the majority of beta cells are located, due to uneven

loading of calcium indicators, presence of several cell layers, and

partially also by the lower spatial resolution of CCD-camera based

recording setups [35,46,56,58,59]. In the present work, we set out

to extract functional networks of beta cells from experimental data

obtained on a large number of individual cells from all cell layers

of an islet. By employing our experimental preparation, to the best

of our knowledge, we showed for the first time that laser-scanning

confocal microscopy of fluorescently labeled beta cells from acute

pancreatic tissue slices gives data of sufficient temporal and spatial

resolution to make feasible the analysis of cells from a whole cross-

sectional surface. The functional networks obtained from corre-

lated time series of beta cells under basal and stimulated conditions

support the view that the activity of different beta cells is not

completely synchronous but synchronized to a level determined by

[Ca2+]i waves spreading across the syncitium of beta cells. From

our study, the latter seems to obey small-world organizing

principles. Our work also opened some methodological questions

that will be discussed here and will need to be addressed during

future efforts in this field.

Calcium dynamics
Qualitatively, the dynamics of calcium responses we obtained

were in good agreement with what has been described in isolated

islets [56,60,61]. Since this is the first report of confocal calcium

imaging in the tissue slice preparation, which in its own right

constitutes a novel experimental approach to study beta cell

physiology under conditions very closely resembling the in vivo

environment, a more extensive and quantitative description of

beta cell behavior under our experimental setting will be provided

elsewhere.

In short, previous studies employing calcium imaging with

subsequent identification of types of cells by immunocytochemistry

Figure 6. Cumulative degree distributions of functional networks for three of the five regimes analyzed. Values obtained from all 9
islets are plotted in different colors and the larger black circles indicate their average for low glucose prior to stimulation (A), high glucose (B), and low
glucose after stimulation (C). The node degree distributions decay roughly linearly before a drop-off in the tail, thereby indicating a broad-scale
nature of the networks.
doi:10.1371/journal.pcbi.1002923.g006

Figure 7. Average length of links as a function of the local
clustering coefficient. Plotted are the values obtained for the HG
regime.
doi:10.1371/journal.pcbi.1002923.g007

Table 1. Table of small-world-ness values.

Cavg Eglob Crand Erand Cavg/Crand Erand/Eglob S

LG1 0.32 0.07 0.06 0.21 5.29 2.84 1.86

HG 0.67 0.29 0.12 0.41 5.59 1.41 3.96

LG2 0.39 0.15 0.09 0.36 4.28 2.48 1.73

Median values of statistical parameters indicative of small-world properties in 9
islets from 6 animals, for the functional networks obtained for low glucose
before stimulation (LG1), high glucose (HG), and low glucose after stimulation
(LG2). Cavg - average clustering coefficient for the real network considered in
this study, Eglob - global efficiency for the real network considered in this study,
Crand - average clustering for the reference random network, Erand - global
efficiency for the reference random network, Cavg/Crand - ratio between the
clustering coefficients of the real world and reference random network, Erand/
Eglob - ratio between the global efficiencies of the reference random and the
real world network, S- ratio between the latter two ratios. Note that in HG, S is
higher than in LG1 and LG2 predominantly due to a higher Eglob.
doi:10.1371/journal.pcbi.1002923.t001
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have shown that cells can reliably be identified by their type-

specific calcium responses to stimulation with high glucose [46–

48]. Taking advantage of this finding, we included in our analyses

only cells that showed responses characteristic of beta cells, i.e.

cells that showed no oscillations in low glucose, responded to

stimulation with high glucose with oscillations superimposed on a

sustained rise in [Ca2+]i, and displayed a return of [Ca2+]i back to

prestimulatory levels after the end of stimulation. Sometimes,

transient increases of [Ca2+]i could be observed in cells function-

ally identified as beta cells after [Ca2+]i had reached basal levels

(Figure 1B). Cells displaying oscillations in low glucose before

stimulation (characteristic of alpha and delta cells) could be

detected at the periphery of islets. This is in agreement with

previous studies showing sequestration of non beta cells to the

outermost layers in mice [62,63]. All of the latter cells were

excluded from our analyses.

Functional connectivity
Upon stimulation with glucose, the cytosolic calcium increased

and after lowering the glucose to basal concentration, it rapidly

returned to the prestimulatory level. Both activation and

deactivation were manifested as a prominent rise of the average

correlation between cell responses, with more cells reaching the

threshold value of Rth, leading to a change in network structure

characterized by more connections. The density of connections in

graphs obtained in ON and OFF regimes reflects that practically

all of the cells considered in analysis responded to the stimulus and

that this response was very well synchronized. Deactivation,

however, was even more synchronized than activation and

therefore, the OFF graph displayed an even higher correlation.

Time lags between individual cells during activation and

deactivation were at most a few tens of seconds. Moreover,

despite large changes in [Ca2+]i during these two phases, cells that

were close to the first-responding cells did not respond with an

increase in [Ca2+]i shortly after. In line with this, no [Ca2+]i waves

could be observed during the ON and OFF phases, but cells

responding individually or in small groups, with no clear

dependence on the Euclidean distance from the first responders.

We therefore conclude that during both activation and deactiva-

tion cells responded in synchrony not because of a large degree of

gap junctional coupling during these two transient phases, but

because each cell individually was forced to activate by high

glucose during beginning and to deactivate by lowering glucose at

the end of stimulation. The large amplitudes and long durations,

in combination with the chosen length of sampling interval, led to

a high correlation during both transitory phases, despite time lags

between different cells.

The larger correlation during deactivation in comparison with

activation is due to shorter time delays observed during this phase.

In an electrically coupled syncitium, the efficiency of spread of

electrical signals is expected to be determined by the gap

junctional and membrane conductance, such that the higher the

gap junctional conductance and the lower the membrane

conductance, the more efficient the transmission of stimuli.

Therefore, it is not surprising that deactivation, starting from a

well coupled state, was more synchronous than activation that

started from a state where membrane conductance of cells that

were not yet metabolically activated was high due to open KATP

channels. The high correlation during deactivation supports the

experimentally observed rapid termination of insulin secretion in

face of lowering glucose which probably helps prevent hypogly-

cemic episodes. The level of synchronization seemed independent

of Euclidean distance for both activation and deactivation. This is

probably due to poor coupling during activation with cells in

different parts of an islet responding independently from each

other, and due to deactivation starting simultaneously in more

than one part of the islet.

In contrast, during HG regime when cells displayed sustained

regular oscillations, the level of synchronization strongly depended

on physical distance, with correlation almost linearly falling with

increasing distance between cells. Obviously, this finding practi-

cally excludes the possibility that beta cells in different parts of an

islet show completely synchronous activity and strongly supports

the idea that calcium waves spread across the islet with a speed

sufficient to allow for the presence of oscillations in the mean field

signal, occurring with practically the same frequency as in

individual cells [64–66]. Interestingly, at every Rij, the range of

distances represented in Figure 3C is rather broad, pointing to the

possibility that some cells are very well synchronized despite large

internodal distances, implying, in turn, that the velocities of the

calcium waves probably encompass a broad range of values. From

this, it follows that not all beta cells are equal in terms of

conducting calcium waves and that a minority of faster than

average (or majority) conducting cells could ensure a rapid

activation of the whole islet. This prediction finds important

support after looking at the obtained efficiency, which together

with the relatively high clustering coefficient in comparison with

the random graph shows that the beta cell syncitium functions as a

small world. During the first half of the plateau phase, Ravg, kavg,

Cavg, and Eglob all tend to increase with time, highlighting that the

synchronization gradually improves, possibly due to an increase in

gap junctional conductance or due to a relative increase in gap

junctional conductance in comparison with the membrane

conductance which is expected to decrease in beta cells with

rising glucose and ATP (Figure 4). The same reasoning could also

serve to explain the decrease in the above parameters observed

after approximately 900 seconds, which coincides well with the

time when glucose and intracellular ATP concentration are

supposed to start decreasing. The observed small-world properties

might prove crucial for a rapid activation of beta cells after

exposure to higher glucose and for their synchronized activity

during stimulation. Additionally, the high clustering could confer

resilience to dysfunction of individual cells. From the relationship

between physical distance and clustering and taking into account

that a typical beta cell is around 20 mm in diameter it becomes

clear that the highest clustering occurs in cliques of closest cells.

In contrast to neurons that possess cellular processes encom-

passing a whole range of possible lengths and enable these cells

physical contact with nearest neighbors as well as with cells in

more distant parts of an organ or even body, beta cells are

typically of a polyhedral shape and make direct physical contact

with their nearest neighbors only. From a graph-theoretical

perspective, at first glance an islet of Langerhans might seem to

be an example of a regular network where all cells are only

coupled to their nearest neighbors [7,67]. This view is even

integrated in most of the modeling work on islets of Langerhans

[68]. Therefore, whilst for neuronal populations and organ systems

made of neurons, small-world-ness seems rather implicit, it can

only hardly be predicted for beta cells embedded in an islet of

Langerhans. However, bearing in mind that structural and

functional networks are fundamentally different and considering

more closely the way beta cells are coupled functionally might

provide an explanation for the observed, unexpectedly short path

length. It is widely recognized that beta cell electrical activity and

calcium oscillations that supposedly underlay the pulsatile insulin

secretion are synchronized via gap junctions [35–38,69–74]. Here,

we propose that a significantly higher conductivity than average in

a relatively small proportion of beta cells could defy strict physical
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boundaries of direct contact with nearest neighbors only and make

these cells serve as hubs, facilitating the signal spread between distant

parts of an islet. Some studies to date on dispersed pairs of cells [70],

microdissected islets [75], and isolated islets [35] partly support

evidence in favor of this possibility. In addition, it has been

demonstrated that spatial inhomogeneities, such as variations of

glucose concentration across the islet, can coordinate or suppress the

propagation of waves [76] and that heterogeneity of the coupling

strength can modulate excitation waves spreading throughout islets

of Langerhans [77]. However, a larger number of randomly chosen

beta cells in tissue slices will have to be investigated to explore this

idea into further detail. Noteworthy, in case that there is a rather

constant specific conductivity (per membrane area), the heteroge-

neity of cell surface sizes should be explored further to seek for

evidence for a possibly broad distribution in this regard.

Another possible explanation for the small-world-ness of a

structurally regular network is that our preparation spares some

parasympathetic ganglia and postganglionic nerve fibers and that

the synchronization of distant parts is mediated via nerve endings.

Also, the possibility of a paracrine, fast-acting synchronizing

mediator is worth exploring further.

Finally, we wish to emphasize that the presence of functional

connections between remote cells does not imply the existence of

direct physical connections between them but merely a high

degree of similarity between their [Ca2+]i signals. The latter can be

the consequence of a high degree of gap junctional coupling

between all the cells interposed between the observed pair of cells,

the presence of neuronal connections between cells or some other

as yet unidentified mechanism.

Methodological issues
Some technical constraints encountered during this study merit

additional attention, since they provide a fertile ground for future

improvements, and more importantly, because they influence the

interpretation of results. During staining the dye molecules

reached the cells via diffusion, consequently the outermost cell

layer was stained best. Unfortunately, this is also the layer that was

separated from the rest of the islet by the razor blade and therefore

experienced most of mechanical trauma during the cutting step.

An acceptable trade-off between maximum dye uptake and

minimum mechanical damage was achieved by setting the focal

plane so as to record from the second or third layer of cells below

the outermost one. Here, not all of the cells covering the cross-

sectional surface had taken up the calcium dye and second, of

those that showed stable basal calcium signals, not all responded to

elevated glucose. This could be attributed to suboptimal dye

concentration or time of incubation. Also, even in this somewhat

deeper layer, some residual damage due to mechanical trauma,

hypoxia, temperature susceptibility, toxicity of the detergent or the

dye itself etc., cannot be excluded.

An islet of Langerhans is made up of at least five different types

of endocrine cells (alpha, beta, delta, epsilon, PP) and non-

endocrine cells that include nerves, dendritic cells, macrophages,

fibroblasts, vascular endothelial cells, and pericytes [78]. Of the

endocrine cells, beta cells are by and large the most predominant

type of cells and are practically the only type of cell present in the

central portion of islets in mice [62]. Since our analyses relied on

responsive beta cells, it is not surprising that most of the cells in

Figure 1 are located in the center of the islet. Here, beta cells by no

means constituted a confluent surface but formed groups of a few

cells that were separated from each other by areas that did not

show responses characteristic of beta cells. We believe that aside

from poorly loaded and damaged beta cells, these areas

correspond to capillaries. Namely, islets of Langerhans are highly

vascularized organs, with each beta cell being in direct contact

with a capillary [79]. Apart from capillaries, towards the periphery

arterioles, lymphatic vessels, and other endocrine cells contribute

to the observed rarefaction of beta cells. However, between any

two cells on a plane, there are a great number of possible paths

from one to the other that go via cells lying in deeper layers from

which no direct recordings could be made. Therefore, at first

glance, it may seem hardly conceivable that a link connects two

physically distant but not two physically more proximate cells, but

after taking into account the above considerations, this cannot only

be explained but seems rather predictable. Non-excitable and non-

conducting cells can influence the patterns of excitation. Thus, in

addition to the already mentioned heterogeneity of beta cells, they

might contribute to the observed network properties.

Moreover, due to the rather homogeneous and radially

symmetrical islet architecture regarding distribution of endocrine

cells as well as capillaries, we believe that the findings obtained

from a certain transversal section do not importantly differ from

the ones we would obtain in a given islet in any other possible

transversal section of a comparable diameter. Due to this and due

to the consistency of findings from different islets, we strongly

doubt that the presented results were significantly influenced by

the technical limitations of our study.

Lastly, it needs to be acknowledged that we studied a two-

dimensional cross-section of a three-dimensional organ, which

implies that our findings may not firmly reflect the functional

connectivity between beta cells in the whole Islet. Unfortunately,

with the existing technology whole-islet calcium imaging is hardly

feasible. However, if we take into account that we scrutinize a

system with a rather isotropic cytoarchitecture and that in complex

networks with long-range connections (such as small-world

networks) the dimension of the space is more or less irrelevant

[80], we assume that qualitatively similar results would be

obtained, even if we were able to simultaneously trace the

dynamics of all cells in the whole Islet. Shall whole-islet calcium

imaging be feasible one day, most probably by employing two-

photon excitation of protein Ca2+ indicators, selectively expressed

in beta cells of transgenic animals, it would become possible to

experimentally verify these predictions.

Conclusion
Employing a novel approach to in situ study of islet physiology

we presented evidence that the functional connectivity of beta cells

reconstructed from cytosolic calcium time traces displays charac-

teristics of a small-world network, which might reflect an optimal

organization in terms of rapid synchronization, local redundance

of activating signals, resilience to certain types of damage, as well

as a balance between local and global processing. We hope that

our work will prompt researchers to seek for a structural

explanation of the observed small-world-ness of islets of Langer-

hans, as well as to use the approach presented in this study also on

other tissues to find out whether this type of organization

represents a principle, ubiquitous in assemblies of coupled cells.

Supporting Information

Figure S1 Temporal evolution of the average correla-
tion coefficient R9avg with overlapping intervals. Constant

time interval Dt = 100 s was being slided along time series with a

step Dt9 = 20 s.

(TIF)

Figure S2 Distribution of correlation coefficients for
562 cells from 9 different slices. Distribution of pairs of cells

that fall within a given range of Rij were calculated for the five
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different regimes considered in this study: low glucose before

stimulation (LG1), activation (ON), high glucose (HG), deactiva-

tion (OFF), and low glucose after stimulation (LG2), color-coded as

indicated in the figure. Evidently, in the ON and OFF phases most

of the pairs of cells exhibited a very high correlation (44% pairs in

the ON phase and 64% in the OFF phase have Rij.0.8).

Furthermore, a clear shift to higher correlations was observed in

the HG regime in comparison to LG1 and LG2 regimes, thus

indicating that cells were more synchronized with each other

during stimulatory than during unstimulatory conditions.

(TIF)

Figure S3 The average correlation coefficient Ravg for
all pairs of the 562 cells from 9 different slices within a
given interval of Euclidean distance. Three of the five

regimes are considered: LG1, HG and LG2. Evidently, in the low

stimulation regimes the coherence of cellular activity was weakly

dependent on the physical distance, whereas on the other hand, in

the HG regime an obvious trend of nearby cells being much better

correlated than distant ones is observed.

(TIF)

Video S1 Cytosolic calcium in cells of an islet of
Langerhans before, during, and after exposure to
12 mM glucose. LG1, ON, HG, OFF, and LG2 indicate the

five different dynamical regimes considered in this study: low

glucose prior to stimulation (LG1) – 0#t,300, activation of beta-

cells (ON) – 300#t,420, sustained activity in high glucose (HG) –

600#t,1000, deactivation of beta-cells (OFF) – 1080#t,1200,

and the low glucose after stimulation (LG2) – 1400#t,1800. The

red dot indicates the interval during which the cells were exposed

to 12 mM glucose. During the time intervals before and after

exposure to 12 mM glucose, cells were perifused with a solution

containing 6 mM glucose.

(WMV)

Video S2 Functional networks and the corresponding
2D histograms obtained before, during, and after
exposure to 12 mM glucose. In this movie, temporal changes

of the architectures of functional networks and of 2D histograms

can be seen in steps of Dt = 100 seconds. Note how the density

and color of connections change throughout the experiment.

During the ON and OFF phases, the respective graphs are almost

fully connected. In 2D histograms, there is a strong tendency of

nearby cells to be much better correlated with each other than

with the remote ones during the HG regime. Interestingly, in none

of the other regimes a similar trend can be noticed, as no

relationship exists between the distribution of correlation coeffi-

cients and the Euclidean distance.

(WMV)
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