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Introduction: Previous observational studies have indicated that gut microbiota and

metabolites may contribute to heart failure and its risk factors. However, with the limitation

of reverse causality and confounder in observational studies, such relationship remains

unclear. This study aims to reveal the causal effect of gut microbiota and metabolites on

heart failure and its risk factors.

Methods: This study collected summary statistics regarding gut microbiota and

metabolites, heart failure, diabetes, hypertension, chronic kidney disease, myocardial

infarction, atrial fibrillation, hypertrophic cardiomyopathy, dilated cardiomyopathy,

coronary heart disease, valvular heart disease, and myocarditis. Two-sample Mendelian

randomization analysis was performed using MR-Egger, inverse variance weighted (IVW),

MR-PRESSO, maximum likelihood, and weighted median.

Results: Results from gene prediction showed that among all gut microbiota,

candida, shigella, and campylobacter were not associated with higher incidence of

heart failure. However, genetic prediction suggested that for every 1 unit increase

in shigella concentration, the relative risk increased by 38.1% for myocarditis and

13.3% for hypertrophic cardiomyopathy. Besides, for every 1 unit increased in candida

concentration, the relative risk of chronic kidney disease increased by 7.1%. As for

intestinal metabolites, genetic prediction results suggested that for every 1 unit increase

in betaine, the relative risk of heart failure and myocardial infarction increased by 1.4%

and 1.7%, separately.

Conclusions: This study suggested new evidence of the relationship between gut

microbiota and heart failure and its risk factors, which may shed light on designing

microbiome- and microbiome-dependent metabolite interventions on heart failure and

its risk factors in clinical trials in the future.
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INTRODUCTION

Heart failure is an intractable disease referring to ventricular
dysfunction caused by cardiac structure and function changes
and is a crucial part of the global prevention and treatment
of chronic cardiovascular diseases (1). Studies have shown that
the approximate prevalence of heart failure is 1% to 2%, and it
may increase continuously with age (2, 3). Patients with heart
failure are always accompanied by dyspnea, decreased exercise
tolerance, systemic fluid retention and other symptoms, resulting
in a serious decline in quality of life and even death (4). Although
a growing number of medications have been used for heart failure
currently, existing treatments target only a fraction of the putative
pathophysiological pathways, thus the overall prognosis of heart
failure remains unclear (5, 6). Therefore, early prevention and
diagnosis are the key to improving prognosis among patients
with heart failure.

Gut microbiota, as the most important active components in
the intestinal microecosystem, can not only participate in the
digestion of food and absorption of nutrients in order to provide
energy for the host, but act as endocrine organs to produce
various substances and then involve in various physiological
regulation of the host (7). In recent years, more and more
studies have proved that the intestinal tract plays an essential
role in the pathogenesis of heart failure. An observational study
from Pasini et al. reported that compared with the control
group, heart failure patients had more candida, campylobacter,
shigella, and yersinia, and these gut florae were closely associated
with the development and progression of the disease (8).
Furthermore, there is evidence that intestinal metabolites are
strongly associated with heart failure. For example, compared
with healthy population, trimethylamine N-oxide (TMAO) levels
were higher in chronic heart failure patients and were associated
with the New York Heart Association (NYHA) grades, ischemic
etiology and adverse outcomes (9). One meta-analysis of 19
prospective studies in 19,256 subjects indicated that elevated
plasma TMAO levels were related to an increasing relative risk
of major adverse cardiovascular events after adjusting for BMI,
diabetes, history of cardiovascular disease, renal dysfunction and
other variables (10). At present, most investigators are trying
to use gut hypothesis to explain the relationship between gut
microbiota and metabolites and heart failure (11). However,
research studies supporting the “gut hypothesis” thus far are
associative in nature. In addition, the current association was
mainly based on observational studies with limited sample size
and the presence of confounders.

Mendelian randomization (MR) has emerged as a powerful
method for identifying the causation between risk factors and
diseases using genetic variants as instrument variables (IVs)
(12). Genetic variation can be identified at conception and
is generally not susceptible to non-differential measurement
error or confounding, while MR meets the condition of causal
consequence which is particularly fundamental in inferring
causal inference (12). In this study we performed two-sample
MR analysis based on public data from genome-wide association
study (GWAS), so as to reveal the causal effect of gut microbiota
and metabolites on heart failure and its risk factors (i.e., type 2

diabetes (T2DM), hypertension, chronic kidney disease (CKD),
coronary heart disease (CAD), myocardial infarction (MI),
atrial fibrillation (AF), hypertrophic cardiomyopathy, dilated
cardiomyopathy, valvular heart disease, and myocarditis).

METHODS AND MATERIALS

Study Design
As shown in Figure 1, based on two-sample MR approach, this
study aims to investigate the causality between gut microbiota
and metabolites and heart failure and its risk factors (13).

Data Collection for Gut Microbial
Metabolites, Gut Microbiota, and Heart
Failure and Its Related Risk Factors
Pooled data of gut microbial metabolites (i.e., beta-hydroxy
butyric acid, betaine, TMAO, carnitine, choline, glutamate,
kynurenine, phenylalanine, propionic acid, serotonin,
tryptophan, tyrosine) was from GWAS which includes summary
data of human metabolome in 2,076 European participants
from Framingham Heart Study (14). Since gene loci identified
by GWAS for intestinal metabolites rarely reach genome-wide
significance levels, single-nucleotide polymorphisms (SNPs)
with suggestive genome-wide significance thresholds (i.e., P <

5∗10−5) were selected as instrumental variables (IVs) in this
study (Table 1).

Summary statistics of gut microbiota were from a large-
scale multiracial GWAS meta-analysis which consists of 18,340
individuals from 24 cohorts, with 211 taxa (i.e., 131 genera,
35 families, 20 orders, 16 classes, and 9 phyla) (15). Shigella,
campylobacter and candidawere included in this study, and SNPs
with suggestive genome-wide significance thresholds (i.e., P <

5∗10−5) were selected as IVs (Table 1).
Leading single-nucleotide polymorphisms (SNPs) as genetic

IVs were from the current largest available GWAS meta-analysis
on heart failure among individuals with European ancestry,
performed by the Heart Failure Molecular Epidemiology for
Therapeutic Targets Consortium. This GWAS meta-analysis
included 47,309 heart failure cases and 930,014 controls from
26 studies with adjustments for age, gender and other principal
components (16). Heart failure identification was from at
least one of the following databases in all cohort studies:
discharge registries, cause of death registries, and physician
adjudication/diagnosis. In this study, T2DM, hypertension,
CKD, CAD, MI, AF, hypertrophic cardiomyopathy, dilated
cardiomyopathy, valvular heart disease, and myocarditis were
considered as risk factors of heart failure. Summary-level data
was extracted from the Diabetes Genetics Replication and Meta-
analysis (DIAGRAM) Consortium for T2DM (n= 149,821)
(17), the Atrial Fibrillation Consortium (AFGen) for AF
(60,620 patients and 970,216 controls) (18), the Coronary
Artery Disease Genomewide Replication and Meta-analysis
(CARDIoGRAM) plus the Coronary Artery Disease (C4D)
Genetics (CARDIoGRAMplusC4D) Consortium for CAD
(60,801 patients and 123,504 controls) and MI (43,676 patients
and 128,197 controls) (19), the Chronic Kidney Disease
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FIGURE 1 | Directed acyclic graphs for the classical Mendelian randomization designs. The arrows denote causal relations between two variables, pointing from the

cause to the effect. The causal pathway is blocked if “X” is placed in the arrowed line. MR, Mendelian randomization.

TABLE 1 | Gut microbiota and metabolites and heart failure and heart failure risk

factors summary data sources.

Trait Year Sample Case Control

Gut Metabolites 2013 2,076 NA NA

Gut Microbiota 2021 18,340 NA NA

Heart failure 2020 977,323 47,309 930,014

Type 2 diabetes 2018 659,316 62,892 596,424

Atrial fibrillation 2018 1,030,836 60,620 970,216

Coronary artery disease 2018 396,525 34,541 261,984

Myocardial infarction 2018 171,875 43,676 128,199

Chronic kidney disease 2016 117,165 12,385 104,780

Hypertension 2018 757,601 NA NA

Heart valve disease 2020 647,853 27,065 620,788

Myocarditis 2020 605,758 735 605,023

Hypertrophic cardiomyopathy 2020 667,855 890 666,965

Dilated cardiomyopathy 2020 533,543 1,861 531,682

Valvular heart disease 2020 485,153 27,065 458,088

Consortium (CKDGen) for CKD (n = 133,814) (20), the
International Consortium of Blood Pressure-Genome Wide
Association Studies (ICBP) for hypertension (n = 299,024)
(21), the heart valve disease GWAS for valvular heart disease
(n = 178,726) (22), the myocarditis GWAS for myocarditis
(n = 177,847) (22), the hypertrophic cardiomyopathy GWAS
for hypertrophic cardiomyopathy (n = 177,745) (22), and the
dilated cardiomyopathy GWAS for dilated cardiomyopathy
(n= 353,937) (22) (Table 1).

Selection of Instrumental Variables
First, we used Plink Software to screen SNPs with P < 5∗10−5,
a genetic distance of 10,000 kb and a linkage disequilibrium
parameter (r2) of <0.001, from GWAS of gut microbiota and
metabolites. Second, we used catalog and PhenoScanner to
explore whether the above SNPs were associated with the known

confounding (obesity, dyslipidemia), and if yes, the SNPwould be
excluded. Last, F statistic was calculated for each SNP to test the
weak IV bias in this study (23). F statistic of SNP <10 indicated
the potential weak IV bias, and then such SNP was eliminated to
avoid its influence on results (24).

Statistical Analysis
This study focused primarily on inverse variance weighted
(IVW) approach (25), with IVW fixed-effect model used in the
absence of any potential horizontal multiplicity heterogeneity
and random-effect model used in the presence of heterogeneity.
As for the secondary analysis, MR-Egger, maximum likelihood,
weighted median and MR-PRESSO were conducted for
sensitivity analysis of IVW results (26–29). Maximum likelihood
approach estimates causal effect by the direct maximization
of the likelihood given the SNP-exposure and SNP-outcome
effects, and assumes a linear relationship between the exposure
and outcome. MR-Egger approach is based on the assumption
of InSIDE in order to perform weighted linear regression of
exposure results, but it is susceptible to IVs. Weighted median
approach can significantly improve the detection ability of causal
effects as well as reduce type I errors. To account for multiple
testing in our study, the Bonferronicorrected significance
level of P < 3.57×10−3 (0.05 divided by 18 risk factors) was
used. P-value between 3.57×10−3 and 0.05 were considered as
potential associations.

Pleiotropy and Heterogeneity Analysis
First, we used MR-PRESSO approach to detect outliers (29)
and re-analyzed after removal of outliers. The leave-one-out
sensitivity analysis was implemented by removing a single
SNP each time to assess whether the variant was driving the
association between the exposure and the outcome variable.
Second, MR-Egger regression test was also performed to
determine the horizontal multiplicity in MR analysis if the
intercept term had statistical significance (30). Last, Cochran Q
statistic was calculated to detect heterogeneity (31).
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The threshold for significance was P = 0.05. All statistical
analysis were conducted using R, Version 4.1.2 with the two-
sample MR and MRPRESSO packages.

RESULTS

Participants and Genetic Instrumental
Variables for Gut Microbiota and
Metabolites
In this study, we found 9SNPs were found to be closely
related to obesity, diabetes and dyslipidemia, so they were
excluded (see Supplementary 1). Finally, 631 independent
genome-wide significant SNPs associated with gut microbe-
dependent metabolites and gut bacteria traits were selected
for the construction of IVs, including 24 associated with
beta-hydroxy butyric acid, 41 associated with betaine, 29
associated with carnitine, 29 associated with choline, 23
associated with glutamate, 47 associated with kynurenine, 39
associated with phenylalanine, 24 associated with propionic
acid, 44 associated with serotonin, 56 associated with TMAO,
30 associated with tryptophan, 38 associated with tyrosine,
57 associated with candida, 60 associated with campylobacter,
and 90 associated with shigella. Total variance of gut microbe-
dependent metabolites and gut bacteria value explained by
genetic instruments was 37.14%-87.70%%, respectively. F values
were all greater than 18.77, indicating the research was not
susceptible to weak IVs. See Supplementary 1 for details
of each IV.

MR Analysis of Gut Microbiota and Heart
Failure and Its Risk Factors
No significant differences were found between candida (OR
0.990, 95% Cl: 0.965–1.016, P = 0.422), shigella (OR 0.993,
95% Cl: 0.981–1.005, P = 0.214) and campylobacter (OR 1.012,
95% Cl: 0.907–1.129, P = 0.824) and heart failure from IVW
results (Figure 2), and sensitivity analysis (see Supplementary 1)
yielded similar results.

We also found that some gutmicrobiota link strongly with risk
factors of heart failure (Figure 3), for example, for every 1 unit
increase in shigella concentration, relative risk increased by 38.1%
(OR 1.381, 95% Cl: 1.044–1.828, P = 0.024) for myocarditis,
and sensitivity analysis (see Supplementary 1) yielded similar
results. Besides, for every 1 unit increase in shigella concentration,
relative risk increased by 13.3% (OR 1.133, 95% Cl: 1.003–1.280,
P = 0.045) for hypertrophic cardiomyopathy; for every 1 unit
increased in candida concentration, relative risk of chronic kidney
disease increased by 7.1% (OR 1.071, 95% Cl: 1.004–1.430, P =

0.039). However, these two associations were not confirmed in
MR-Egger and weighted median method.

There were no directional pleiotropies but potential
heterogeneities for the analysis results (see Supplementary 1).
We replaced with random-effect model on heterogeneous results
for further analysis and found consistent results as before (see
Supplementary 1). MR-PRESSO test displayed that there were
significant outliers between some gut microbiota and CAD,
diastolic blood pressure, systolic blood pressure and T2DM, and

after removing those outliers, re-analysis revealed consistency
with the previous results (see Supplementary 1). In addition,
the leave-one-out analysis reported that the IVs did not have
significant impact on the results (see Supplementary 2–5).
Funnel plots suggested that points representing causal
association effects were symmetrically distributed when single
SNP was used as IV, indicating that causal associations were less
likely to be affected by potential biases (see Supplementary 2–5).

MR Analysis of Gut Microbial Metabolites
and Heart Failure and Its Risk Factors
With IVW approach, we observed some gut microbial
metabolites are not only closely related to heart failure
(Figures 4–6), but to its risk factors. (a) For every 1 unit increase
in betaine, relative risk of heart failure and MI increased by
1.4% (OR 1.014, 95% Cl: 1.002–1.026, P = 0.030) and 1.7% (OR
1.017, 95% Cl: 1.001–1.033, P = 0.034), separately, yet relative
risk of CKD decreased by 3.7% (OR 0.963, 95% Cl: 0.934–0.991,
P = 0.010). (b)For every 1 unit increase in phenylalanine, relative
risk of heart failure, hypertrophic cardiomyopathy and valvular
heart disease increased by 1.7% (OR 1.017, 95% Cl: 1.003–1.031,
P= 0.037), 8.0% (OR 1.080, 95% Cl: 1.003–1.164, P= 0.046) and
2.0% (OR 1.020, 95% Cl: 1.004–1.1036, P = 0.014), respectively.
(c) For every 1 unit increase in tryptophan, relative risk of heart
failure, elevated systolic pressure and diastolic pressure increased
by 2.1% (OR 1.021, 95% Cl: 1.003–1.039, P = 0.046), 14.8% (OR
1.148, 95% Cl: 1.037–1.271, P = 0.009) and 6.9% (OR 1.069,
95% Cl: 1.006–1.136, P = 0.029), respectively, while relative risk
of hypertrophic cardiomyopathy and dilated cardiomyopathy
decreased by 19.2% (OR 0.808, 95% Cl: 0.675–0.968, P = 0.007)
and 20.2% (OR 0.798, 95% Cl: 0.677–0.941, P = 0.007). (d) For
every 1 unit increase in propionic acid, relative risk of heart
failure decreased by 2.0% (OR 0.980, 95% Cl: 0.963–0.998, P =

0.042) while relative risk of MI increased by 2.8% (OR 1.028,
95% Cl: 1.003–1.055, P = 0.035). (e) For every 1 unit increase in
TMAO, relative risk of elevated systolic blood pressure, chronic
nephritis and T2DM increased by 7.1% (OR 1.071, 95% Cl:
1.010–1.136, P = 0.020), 3.1% (OR 1.031, 95% Cl:1.004–1.058,
P = 0.024) and 1.6% (OR 1.016 95% Cl: 1.002–1.033, P = 0.029),
respectively. (f) For every 1 unit increase in beta–hydroxy butyric
acid, relative risk of hypertrophic cardiomyopathy increased by
22% (OR 1.220, 95% Cl: 1.017–1.464, P = 0.031). (g) For every
1 unit increase in glutamate, relative risk of MI increased by
2.9% (OR 1.029, 95% Cl: 1.008–1.052, P = 0.008). (h) For every
1 unit increase in serotonin, relative risk of CKD, AF, T2DM,
MI and elevated systolic blood pressure decreased by 3.0% (OR
0.970, 95% Cl: 0.943–0.996, P = 0.035),1.1% (OR 0.989, 95% Cl:
0.979–0.998, P = 0.026), 2.7% (OR 0.973, 95% Cl: 0.956–0.991, P
= 0.002), 2.0% (OR 0.980, 95% Cl: 0.967–0.994, P = 0.003) and
6.2% (OR 0.938, 95%Cl: 0.881–0.999, P = 0.044). (i) For every
1 unit increase in kynurenine, relative risk of CKD decreased
by 3.0% (OR 0.970, 95% Cl: 0.944–0.997, P = 0.032). Some
above associations were proved by MR–Egger, MR–PRESSO,
maximum likelihood, weighted median (see Supplementary 1).

Pleiotropy and heterogeneity analysis reported the presence of
potential heterogeneities but absence of directional pleiotropies
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FIGURE 2 | Forest plot to visualize the causal effect of Gut microbiota on the risk of heart failure by inverse variance weighted method.

FIGURE 3 | Forest plot to visualize the causal effect of Gut microbiota on the risk of heart failure risk factors by inverse variance weighted method.

FIGURE 4 | Forest plot to visualize the causal effect of Gut metabolites on the risk of heart failure by inverse variance weighted method.

for the results. In view of some heterogeneous results, we
changed to random–effect model and found consistent results
except for the relationship between phenylalanine and systolic
blood pressure, and between beta–hydroxy butyric acid and
diastolic blood pressure (see Supplementary 1). In addition,
MR–PRESSO test revealed that there are no obvious outliers
for the instrumental variables in this study, and the leave–
one–out sensitivity alco confirmed the above conclusion (see
Supplementary 2–5). Funnel plots suggested that SNPs are
symmetrically distributed, indicating that causal associations
were less likely to be affected by potential biases (see
Supplementary 2–5).

DISCUSSION

This is the first MR analysis to examine the genetically predictive

ability of gut microbiota and metabolites on heart failure and

its risk factors. Our findings suggested a partial gut microbiota

and metabolites could promote or prevent heart failure or its

risk factors.
To draw causality conclusions from MR studies, it is crucial

to determine the bias introduced by potential violations of
MR assumption and to assess the result consistency with
observational literature. Therefore, we compared results from
previous observational studies with the purpose of reliability
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FIGURE 5 | Forest plot to visualize the causal effect of Gut metabolites on the risk of heart failure risk factors by inverse variance weighted method.

FIGURE 6 | Forest plot to visualize the causal effect of Gut metabolites on the risk of heart failure risk factors by invers variance weighted method.

assessment of our MR results. Betaine, a metabolic imperative,
was found to be strongly associated with MI in this study which
was generally consistent with the prior observational study with
1,876 participants who confirmed a dose–dependent relationship
(32). Animal studies have reported that the mechanism of betaine
on MI may refer to its up–regulation promotion of various
macrophage clearance receptors related to atherosclerosis, but
the exact mechanism required further exploration (32). In
addition, we observed a suggestive association of genetically
increased betaine with higher risk of heart failure and it has
been proved by studies of Michael et al. where plasma betaine
concentrations were independently associated with incidence
of heart failure (33, 34). Another PREDIMED study with
326 patients documented the close association between betaine
and heart failure even after adjusting for classical risk factors
(OR 1.65, 95% Cl: 1.00–2.71) (35). At present, mechanisms of
how betaine acts on the occurrence and development of heart
failure are still rudimentary understood. Tang et al. has reported
the increased betaine level can lead to further deterioration of
left ventricular diastolic and systolic function among heart failure
patients, while no clear link was found between betaine and
inflammatory and endothelial biomarkers (36). It was speculated
that betaine may mediate the occurrence of heart failure through
an independent metabolic pathway instead of inflammation
and endothelial injury pathways (36). Since another important
function of betaine is to maintain the relative stability of cellular
osmotic pressure, it has been pointed out that when betaine
concentration in the human body is too high, it will lead to

errors in the folding of cell membrane proteins, which in turn
affects the distribution of intracellular and extracellular fluids
(37). Whether there is a link between such mechanism and
heart failure is not clear and a large number of studies are
still needed to prove it. In conclusion, we found that betaine
can not only directly affect the occurrence of heart failure,
but indirectly promote it through myocardial infarction. The
phenomenon implied that in the treatment of MI or suspected
heart failure, we should particularly pay attention to patient’s
diet in terms of avoiding high betaine diet, so as to reduce the
incidence rate, and then reduce the mortality and disability rate
and improve the prognosis. This study also found metabolites
of betaine (i.e., TMAO) is strongly associated with an increase
in systolic blood pressure, which is similar as a previous meta–
analysis (38). However, the mechanism of TMAO leading to
elevated blood pression remains poorly understood, Brunt et
al. explained such relationship through the inhibition ability
of TMAO on the activity of eNOS and induced oxidative
stress, which contributed to impaired endothelial cell function
(39). Besides betaine, the most mentioned gut metabolites are
tryptophan and phenylalanine, which, in our study, both elevated
the risk of heart failure. This is similar to previous findings. For
example, using metabolomics, Tang and colleagues found that
tryptophanwas strongly associated with the development of heart
failure (40), which was also confirmed by other studies, and it
was thought that the link between the two was mainly dependent
on inflammation and oxidative stress (41). In a longitudinal
study, Cheng et al. used metabolomics and demonstrated that
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phenylalanine levels were significantly elevated in patients with
progressive heart failure (42). Furthermore, phenylalanine was
also found to be an independent predictor of heart failure in an
analysis of data from the PROSPER and FINRISK cohorts, even
after adjustment for confounders (43). Authors speculated that
phenylalanine may mediate inflammation to elevate the risk of
heart failure. However, phenylalanine may also directly predict
death of heart failure independent of traditional risk factors and
inflammation (44).

This study also showed that some gut microbial metabolites,
such as phenylalanine, tryptophan, propionic acid, beta–hydroxy
butyric acid, glutamate, serotonin, shigella, and candida are
closely related to the occurrence of heart failure and its risk
factors, but the exact mechanism remained unclear, which needs
further studies to verify.

Regrettably, candida, shigella, and campylobacter are not
associated with heart failure, although they may affect chronic
kidney disease and myocarditis in our study. This has some
conflict with previous findings (8). However, that study was only
an observational study, and a causal relationship between the two
could not be concluded. Moreover, it also suggested that single
bacteria may not affect the onset of HF, and the overall role
of the gut microbiota may have more important roles on heart
failure risk. Additionally, the role of gut metabolites associated
with heart failure also needs to be reconsidered. Therefore, the
incorporation of more potential bacteria to explore the risk of
heart failure should be needed by MR.

Our study has a few limitations. Firstly, although the GAWS
associated with heart failure that we included in this study had
the largest known sample size, the GWAS had a drawback in
that the study also included a small Asian population, which
may have affected the accuracy of our results. Secondly, we could
not completely rule out the possible interaction between diet–
gene or gene–environment, which might have an impact on
our results. Thirdly, most of the studies we included had case
and control groups. However, not all the participants included
in the study have been subject to strict quality control. And,
unlike other cardiovascular diseases, heart failure was not a single
homogenous cardiovascular disease. Moreover, the heart failure
risk factors may change with age, and the composition of gut
microbiota and metabolites may also change with age. Therefore,
we cannot ignore the critical role of age, which may affect
the stability of our results. Fourthly, after Bonferroni corrected,
we did not find a clear causal relationship between gut flora
and metabolites and heart failure and heart failure risk factors,
suggesting that more studies are still needed to confirm the
relationship between them. Fifthly, just as other MR studies, we
could not address unobserved pleiotropies. Last, it should be
acknowledged that IVW effect estimates are liable to be biased
when some instrumental SNPs exhibit horizontal pleiotropy (e.g.,
whenwe have genetically determined factors which are associated
with heart failure). Despite these limitations, our study has
several advantages. First, a large amount of data in this study
allowed us to perform comprehensive analysis for incident heart
failure and well–powered GWAS to obtain genetic instruments
for MR analyses. Besides, the consistent causal estimation across

five methods (i.e., MR–Egger, IVW, MR–PRESSO, maximum
likelihood, weightedmedian) suggests robustness of our findings.

CONCLUSION

In conclusion, we lent potential evidence for the first time
to the causal effect of gut microbiota and metabolites on
heart failure and its risk factors. However, more original
studies are still needed to explore the exact relationship
between gut flora and metabolites and heart failure and
heart failure risk factors. And further studies should
conduct a more thorough review of the exact mechanism
of such association.
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