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Pancreatic b-cells within the islets of Langerhans respond to rising blood glucose levels by
secreting insulin that stimulates glucose uptake by peripheral tissues to maintain whole
body energy homeostasis. To different extents, failure of b-cell function and/or b-cell loss
contribute to the development of Type 1 and Type 2 diabetes. Chronically elevated
glycaemia and high circulating free fatty acids, as often seen in obese diabetics, accelerate
b-cell failure and the development of the disease. MiRNAs are essential for endocrine
development and for mature pancreatic b-cell function and are dysregulated in diabetes.
In this review, we summarize the different molecular mechanisms that control miRNA
expression and function, including transcription, stability, posttranscriptional
modifications, and interaction with RNA binding proteins and other non-coding RNAs.
We also discuss which of these mechanisms are responsible for the nutrient-mediated
regulation of the activity of b-cell miRNAs and identify some of the more important
knowledge gaps in the field.
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INTRODUCTION

Over 8.5% of the world’s adult population suffer diabetes, which causes annually more than 1.5
million deaths (1). Type 1 diabetes (T1D) is a chronic autoimmune disease that usually leads to a
severe loss of insulin-secreting pancreatic b-cells, whereas type 2 diabetes (T2D) is generally
characterized by a reduced capability of peripheral tissues to respond to insulin and the incapacity of
b-cells to secrete enough hormone to compensate for the higher demand. Both forms of the disease,
if untreated, result in chronic hyperglycaemia that strongly contributes to the development of
cardiovascular, neurological, kidney, and other complications. These result in significant morbidity,
a strong reduction in life quality and expectancy, and colossal costs to health services (1).

Besides the relevance of loss in b-cell mass for the development of both T1D and, to a lesser
extent, T2D (2), recent studies have suggested that impaired b-cell function plays a key role in early
stages of both diseases (3). Whilst glucose metabolism in the b-cell is an important positive regulator
of b-cell survival and regeneration (4), chronic hyperglycaemia impacts both b-cell function and
survival (5). Adipose tissue secretes adipokines and sequesters fatty acids (FA) such as triglycerides
to maintain glucose homeostasis (6). Obesity can cause adipose tissue dysfunction that contributes
to peripheral insulin resistance (6). Furthermore, b-cell failure can result from the deleterious effects
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of high circulating free fatty acid levels, inflammation, and as
recently proposed, pancreatic lipid deposition (7, 8).

Since their discovery less than 30 years ago, microRNAs
(miRNAs) have been studied under each conceivable
experimental condition and cellular context and are now well
established as essential regulators of cellular function and
important contributors to human disease (9). It was almost
20 years ago that the first islet-specific miRNA, miR-375, was
identified and characterized by the Stoffel lab (10) and that Lynn
et al. demonstrated that miRNAs are essential for the
development of pancreatic islet cells (11). Islets contain
hundreds of different miRNAs, and great efforts have been
made to identify those dysregulated in diabetes and to
understand their function in these cells. This has been
extensively reviewed by others and us during the past few
years (12–14). Nevertheless, the molecular and cellular
mechanisms leading to the regulation of miRNA expression
and action in these cells remain elusive. In this review, we aim
to discuss the different molecular mechanisms that control
miRNA function and their contribution to the regulation of
miRNA expression and action in b-cells and islets. Given the
central role that glucose and fatty acids play in b-cell survival and
function, we will pay special attention to those mechanisms
involved in nutrient-mediated regulation of miRNAs.
CANONICAL MiRNA BIOGENESIS AND
MECHANISM OF ACTION

Genomic organization of miRNA genes occurs in multiple
configurations (Figure 1). On one hand, animal miRNAs can
be encoded by individual genes or in clusters with other
miRNAs. While clustered, miRNAs are often transcribed as a
common polycistronic transcript though miRNAs inside the
cluster can additionally contain independent transcription start
sites (TSS). On the other hand, individual and clustered miRNA
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genes can be intergenic or intragenic, as defined by their location
within other protein coding genes, often within their introns.
Adding further complexity, intragenic miRNAs can be expressed
with and processed from the host gene or be generated
independently from independent TSS. Alternative splicing of
the host primary transcript can also lead to additional layers of
regulation (15).

Most mammalian miRNAs are transcribed by RNA polymerase
II as capped and polyadenylated primary transcripts (pri-miRNAs)
(16–18). Pri-miRNAs contain at least one hairpin with the mature
miRNA sequence inside the stem and are often up to hundreds of
kilobases long (16, 18, 19). Pri-miRNAs are recognized by the
microprocessor complex, consisting of the RNAse III enzyme
DROSHA and the double-stranded RNA binding protein
DGCR8, between other proteins (20, 21). The microprocessor
complex very rapidly cleaves the base of the hairpin to generate
~70 nucleotide miRNA precursors with a 2-nt 3’ overhang (pre-
miRNAs) (22, 23). Pre-miRNAs are exported to the cytoplasm via
exportin-5 (24, 25) where they are recognized and processed by the
RNase III enzyme DICER into 20–25 nucleotides RNA duplex with
~2-nt 3’ overhang at each end, containing the mature miRNA (26,
27). The short miRNA duplex will bind a protein of the Argonaute
(AGO) family in an ATP-dependent manner (28) that will promote
the expulsion of one of the miRNA strands [the “passenger” or “star
(*)”] (29). Which one of the strands is degraded depends on the
orientation of the duplex within Argonaute as determined by the
most 5’ nt sequence and the stability of the 5’ terminal pairing (30,
31). In some cases, both strands can work as mature miRNAs (32)
(Figure 2). Consequently, DICER is dissociated from this complex
known as the miRNA-induced silencing complex (miRISC).
MiRNAs guide miRISC to partially complementary sequences in
the 3’ untranslated region (3’UTR) of target mRNAs or, less
frequently, their coding region (CDS) and, rarely, the 5’UTR (33).
It is now well established that most miRNA binding sites contain
extensive complementarity to nucleotides 2–8 of the miRNA (the
“seed” region) and that an adenine opposite to position 1 of the
FIGURE 1 | Genomic organization of miRNA genes. MiRNAs can be intergenic or be encoded within introns or overlapping exons of other genes. In both cases,
they can be in clusters with other miRNAs. Mirtrons are generated from spliced-out introns and do not require the action of the Microprocessor. The arrows indicate
the possibility of more than one transcription start site for both intergenic or intragenic miRNAs.
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miRNA enforces target recognition (34, 35). Nevertheless, non-
canonical binding sites, with little or no seed-complementarity, can
alsomediate effectivemRNA target recognition (33, 36, 37). MiRNA
action results in silencing of gene expression through mainly two
mechanisms in mammals: inhibition of translation and/or mRNA
destabilization. MiRNAs recruit TNRC6 (orthologue to
Drosophila’s GW182 and nematodes’ AIN-1/2), which interacts
with the poly(A)-associated protein PABPC that recruits
deadenylase complexes PAN2-PAN3 and CCR4-NOT resulting in
poly(A) tail shortening, often followed by DCP1/DCP2-mediated
decapping and 5’-to-3’ exonucleolysis by XRN1 of the target
mRNA. TNRC6-CCR4-NOT can also recruit the helicase DDX6
resulting in inhibition of mRNA translation. Additional
mechanisms contributing to inhibition of translation include the
interference with initiation factor eIF4E and ribosome recruitment
and scanning (Figure 3). The specific molecular mechanisms of
repression and their relative contribution to gene silencing remain
Frontiers in Endocrinology | www.frontiersin.org 3
debated and can be cell- and miRNA-specific (9, 38). It is worth
noting that while mRNA decay has been proposed to be the
dominant mechanism for biologically meaningful gene silencing
in mammalian cells (39), translational repression is the main
mechanism regulating zebrafish development (40). Moreover,
there are multiple examples of differentiated mammalian cells in
which translational repression regulates the expression of key
miRNA targets (41–45).

A given mRNA can be simultaneously targeted by several
different miRNAs, and conversely, miRNAs usually target several
mRNAs at the same time. This often results in small effects in the
expression of several genes on the same biological pathway and
contributes to fine-tune and reinforce cellular identity and states
(46–48).

In addition, non-canonical mechanisms of miRNA biogenesis
have been described that bypass one or more of the canonical
steps mentioned above (49). For excellent comprehensive
FIGURE 2 | MiRNAs biogenesis. MiRNAs are transcribed as longer primary transcripts (pri-miRNAs) that are first processed in the nucleus by the Microprocessor
complex to generate ~70-nucleotides pre-miRNAs that are exported to the cytosol by exportin-5 (XPO5). Pre-miRNAs are further processed by Dicer and TRBP into
small RNA duplex. The mature miRNA is loaded with Argonaute proteins into the miRISC. Created with Biorender.com. See the main text for further details.
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reviews on miRNA biogenesis and mechanisms of action, we
refer the reader to Treiber et al. (50), Bartel (9), and Gebert and
MacRae (38).
BETA-CELL MicroRNAs AND THEIR
REGULATION BY NUTRIENTS

Studies based on Dicer deletion at different stages during
pancreas development and in the adult b-cell have extensively
demonstrated that miRNAs are essential for endocrine cell
differentiation (11, 51–53) and mature b-cell function and
survival (54, 55). In the adult b-cell, miRNAs play a plethora
of roles that range from control of insulin production (54, 56–
59), insulin exocytosis (60, 61), apoptosis (62, 63), growth (64),
repression of disallowed genes (55, 65, 66), and maintenance of
b-cell identity (54, 67, 68). Others and we have comprehensively
reviewed this work before (12, 13, 69), so here we will focus on
the influence that nutrients have in islet miRNA expression and
function and, more specifically, the molecular mechanisms
underlying this regulation.
Hyperglycaemia/Lipidaemia
Chronic hyperglycaemia impacts both b-cell function and
survival (5) and is a critical contributor to the development of
over diabetes (70). Hyperglycaemia exerts a strong effect on gene
expression, which contributes to loss of b-cell identity and
function in diabetes (71–73). Very recently, Ebrahimi et al.
(74) performed RNAseq in islets from partially pancreatectomized
rats subjected to different levels of hyperglycaemia and
demonstrated that whereas changes in gene expression correlated
with diabetes severity, even a very mild hyperglycaemia was
sufficient to alter the expression of genes important for b-cell
identity, insulin secretion, and mitochondrial function (74).

Obesity is strongly associated with insulin resistance and
increased risk of T2D (75), and chronic exposure to free fatty
acids (FFA), specially saturated fatty acids, leads to lipotoxicity
that affects b-cell functionality and survival and contributes to
the development of hyperglycaemia (76).
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Whereas Goto-Kakizaki (GK) rats represent a non-obese
model of T2D, db/db and ob/ob mice spontaneously develop
severe hyperphagia leading to obesity and T2D (77). These
models have been widely used to determine, both by high-
throughput and targeted experiments, whether miRNAs
contribute to glucolipotoxicity. Other studies have assessed the
expression of miRNAs in islets of mice fed a high-fat diet or in
cell lines and murine or human islets cultured under lipotoxic
and/or glucotoxic conditions. Table 1 contains a comprehensive
list of glucose and fatty acid-regulated miRNAs and a summary
of their key functions in pancreatic b-cells/islets. Nutrient-
regulated miRNAs, such as for example miR-130a/d and miR-
152 (81, 95), are also often dysregulated in diabetes in humans
(Table 1, “Human T2D” column), supporting their contribution
to the development of the disease. On the other hand, it remains
contested whether the expression of other glucose-regulated
miRNAs with important roles for b-cell function is dysregulated
in T2D. For example, b-cell-specific miR-375 is an important
regulator of b-cell mass and insulin secretion (153, 156, 168–170)
upregulated by glucose in murine cell lines and islets, as well as in
islets from ob/ob mice (64, 156). Nevertheless, only one study
reported increased miR-375 in pancreatic tissue from T2D human
donors (154) with most studies finding identical expression in islets
from T2D and healthy human donors (95, 122, 123) and in other
murinemodels of diabetes (81, 97). Another example is miR-184, an
important mediator of compensatory b-cell secretion and expansion
during insulin resistance in the face of obesity and pregnancy (64,
119). MiR-184 is strongly downregulated by glucose in MIN6 cells
and mouse, rat and human islets (64, 97, 118), reduced in islets of
prediabetic, db/db mice and mice fed a HFD (97) and strongly
upregulated in islets of mice starved for 24 h or kept on a (low-
sugar) ketogenic diet (64). Nevertheless, although Tattikota et al.
observed downregulation of miR-184 in islets from human T2D
donors, our group failed to confirm these differences, as so did
others, perhaps concealed by the sex-dimorphism observed in miR-
184 expression (118, 122, 123).

Low-Protein Diet
Feeding a low-protein (LP) diet during gestation represents a
model of intrauterine growth restriction (IUGR) characterized
FIGURE 3 | MiRNA mechanism of gene silencing. Following loading into miRISC, the miRNA guides the complex to partially complementary target mRNAs. MiRISC
recruits TNRC6, PABPC, and deadenylase complexes CCR4-NOT and PAN2-PAN3, shortening the poly(A) tail. This can be followed by decapping and 5’-to-3’
exonucleolytic degradation and/or recruitment of the helicase DDX6 to inhibit translation. Other mechanisms of translational repression include inhibition of the
recruitment of initiation factors (eIF4) and ribosome scanning. Created with Biorender.com.
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TABLE 1 | Glucose/lipid regulated islet miRNAs.

Name High glucose Fatty acids Diet Animal model Human T2DM Function

miR-107-3p ↑ MIN6 (78) ↑ GK rat (79) ↑ In peripheral blood (80) Unknown
miR-124-3p ↓ Rat islets (24 h)

(81)↑ MIN6 (78,
81)

↑ GK rat (81) ↑ (82) Negative regulation of GSIS (82)

miR-125b-5p ↑ Human islets
↑Mouse islets (83)

↓Ketogenic
(Mouse islets)
(83)

↑ In peripheral blood (84) b-cells identity maintenance by
repressing c-Maf (85)
Promotion of b-cells survival by
targeting Dact1 (86)

miR-126-5p ↑ B6 and BTBR
ob/ob mouse (87)

↓ In peripheral blood (88–
90)
↑ In peripheral blood (91,
92)
↓ (80)

Unknown

miR-127-3p ↓ MIN6 (24h) (93) ↓HFD
(Mouse islets)
(93)

↑ GK rat (81) ↑ In islets of glucose-
intolerant individuals (94)

Negative regulation of b-cell
proliferation and GSIS (93)

miR-130a-3p ↑ Human islets (95)
↑ GK rat islets (95)
↓ Wistar rat islets
(81)

↓ HFD and
HSD
(Rat circulation)
(96)

↑ GK rat (95) ↑ (95) Negative regulation of GSIS and
insulin content (95)

miR-130b-3p ↑ Human islets (95)
↑ GK rat islets (95)

↑ HFD
(Mouse islets)
(97)

↑ GK rat (95)
↑HFD-induced
mouse model (97)

↑ (95) Negative regulation of GSIS and
insulin content (95)

miR-132-3p ↑ GK rat islets
(24h) (81)

↑ Palmitate
(Rat islets under
glycolipotoxic
conditions for 48 and
72h) (97)

↑ HFD
(Mouse islets)
(97)

↑ GK rat islet (81)
↑ B6 and BTBR
ob/ob mouse (87)
↑ db/db mouse
(97)
↑ HFD-induced
mouse model (97)

↑ In peripheral blood and
peripheral tissues (80)

Negative regulation of insulin
secretion (98)

miR-133a-3p ↑ Human islets (99) ↑ B6 and BTBR
ob/ob mouse (87)
↑ ZFD rat (100)

↑ In peripheral blood (101) Negative regulation of insulin
biosynthesis (99)

miR-141-3p ↓ HFD
(Mouse islets)
(102)

b-cell survival (102)

miR-142-5p ↓ Rat islets (24h)
(81)

↑ GK rat (81) ↑ In peripheral blood
(miR-142-3p) (80)

b-cell survival (103)

miR-143-3p ↑ db/db mouse
pancreatic tissue
(104)

Impairs glucose metabolism (104)

miR-145-5p ↑ db/db mouse
pancreatic tissue
(104)

Negative regulation of GSIS (105)

miR-146a-5p ↓ Human islets (99) ↑ Palmitate
(Rat islets) (63)
↑ Palmitate (MIN6B1)
(63)

↑ db/db mouse
(63, 97)
↓ HFD, STZ-
induced rat (islets
and circulation)
(106)

↑ In peripheral blood
(107–109)
↓ In peripheral blood (110,
111)

b-cells survival (63, 97)

miR-152-3p ↑ Human islets (95)
↑ GK rat islets (95)

↑ GK rat (95)
↑ B6 and BTBR
ob/ob mouse (87)

↑ (95)
↓ Peripheral blood (112)

Negative regulation of GSIS and
insulin content (95)

miR-153-3p ↑ Mouse islets
(72h) (113)
↑ MIN6 (4h)

↑ db/db mouse
(114)

Negative regulation of GSIS and
KCL stimulated insulin secretion
(113, 115)

miR-15a-5p ↓ Mouse islets
(1 h)
↑ Mouse islets
(prolonged
exposure) (116)

↓ In peripheral blood (88) Positive regulation of insulin
biosynthesis (116)

(Continued)
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TABLE 1 | Continued

Name High glucose Fatty acids Diet Animal model Human T2DM Function

miR-17-5p ↓ Rat and mouse
islets (at weaning)
(117)

↓ HFD and
HSD
(Rat circulation)
(96)

↓ In peripheral blood (81) b-cell fate acquisition and maturation
(117)

miR-184-3p ↓ Human islets
(118)
↓Mouse islets (64,
118, 119)
↓ MIN6 cells (119)

Unchanged—Palmitate
(MIN6 cells) (119)
↓ Palmitate
(Rat islets under
glycolipotoxic
conditions for 48 and
72h) (97)

↑ Ketogenic
diet (Mouse
islets) (64, 119)
↑ Fasting
(Mouse islets)
(119)
↓ HFD
(Mouse islets)
(97)

↓ db/db and ob/ob
mouse (64, 97)
↓HFD-induced
mouse model (97)
↓B6 and BTBR ob/
ob mouse (87)

↓ (64) Expansion of b-cells to compensate
for insulin resistance and insulin
secretion regulation (97, 120)

miR-185-5p ↑ B6 and BTBR
ob/ob mouse (87)
↓ STZ mice islets
(121)
↓ ZDF rat (100)

↓ In peripheral blood (121)
↑ (80)

Possible positive regulator of GSIS
and b-cell proliferation.
Protects from apoptosis (121)

miR-187-3p ↑ (122, 123) Negative regulation of GSIS (123)
miR-199a-3p ↑ Mouse islets

(124)
↑ MIN6 (124)

↓ Palmitate
(Rat islets under
glycolipotoxic
conditions for 72h) (97)

↑ db/db mouse
(97)
↑ GK rat (81)

↑ Peripheral blood (125) Induces b-cell apoptosis (97)

miR-199a-5p ↑ Mouse islets
(124)
↑ MIN6 (124)

↑ db/db mouse
(97)
↑ GK rat (81)

↑ Peripheral blood (125) Negative regulation of GSIS and
insulin content (97)

miR-200a/b-
3p

↓ HFD
(Mouse islets)
(102)

↑ db/db mouse (12
weeks, very
diabetic) (102)

↓ In peripheral blood (126) b-cell survival (102)

miR-203-5p ↓ Palmitate
(Rat islets under
glycolipotoxic
conditions for 48 and
72h) (97)

↓ HFD
(Mouse islets)
(97)

↓ db/db mouse
(97)
↓ HFD-induced
mouse model (97)
↓ ZDF rat (100)

b-cell proliferation (117)

miR-204-5p ↑ ob/ob and db/db
mouse (127, 128)

Unchanged (122) Insulin transcription regulation (127)
Apoptosis and ER stress (129–131)
Negative regulator of insulin
exocytosis (130)

miR-206-3p ↑ HFD
(Mouse islets)
(132)

Unchanged (133) Unclear

miR-210-5p ↓ HFD
(Mouse islets)
(97)

↓ db/db mouse
(97)
↓HFD-induced
mouse model (97)
↑ ZDF rat (100)

Unknown

miR-212-5p ↑ Rat islets (24 h)
(81)

↑ GK rat (81)
↑ B6 and BTBR
ob/ob mouse (87)

Regulator of GSIS and GLP-1
induced insulin secretion (134)

miR-21-5p ↑ db/db mouse
(97)

↑ In peripheral blood (for
miR-21) (91)
↓ In peripheral blood (for
miR-21-5p) (92)
↑ In islets of glucose
intolerant individuals (94)

b-cell proliferation and survival (135,
136)

miR-223-3p ↑ MIN6 (137) ↓ HFD
(Mouse islets)
(97)

↓ HFD-induced
mouse (97)

↓ In peripheral blood (88,
138)

b-cell proliferation and GSIS (137)

miR-25-3p ↓ Rat and mouse
islets (at weaning)
(117)

↓ HFD and
HSD
(Rat circulation)
(96)

↑ In peripheral blood of
T1DM (139, 140)

Negative regulation of GSIS (58)
Possibly regulate b-cell proliferation
(141, 142)

(Continued)
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TABLE 1 | Continued

Name High glucose Fatty acids Diet Animal model Human T2DM Function

miR-26a-5p ↓ HFD
(Mouse islets
and serum)
(143)

↓ db/db mouse
(97)
↓ HFD-induced
mouse (islets and
serum) (143)

Promotes b-cell differentiation (144)
Positive regulator of insulin gene
expression (54, 78)
Positive regulator of insulin secretion
under HFD (143)

miR-296-5p ↓ MIN6 (78) Unknown
miR-297-5p ↓ Stearic acid (Mouse

islets) (145)
↓ Stearic acid
(Beta-TC6 cells) (145)

b-cell survival (145)

miR-29a-5p ↑ Human islets
(146)
↑ Rat islets (146)
↑ INS-1E cells
(146)

↓ HFD, STZ-
induced rat (islets
and circulation)
(106)

↓ In peripheral blood (88) Negative regulation of GSIS and b-
cells proliferation (146)

miR-29b-3p ↑ Rat and mouse
islets (at weaning)
(117)

↓ HFD and
HSD
(Rat circulation)
(96)

↓ In peripheral blood (138) b-cell differentiation, maturation and
identity maintenance (117)
Insulin signalling (147)

miR-30a-5p ↑ Rat islets (3 days
exposure to
glucotoxicity) (148)
↑ MIN6 (78)
↑ INS-1E cells
(148)

↓ HFD and
HSD
(Rat circulation)
(96)

↑ db/db mouse
(148)

↑ In peripheral blood (88) Mediator of glucotoxicity, negative
regulator of GSIS (148)

miR-30d-5p ↑ Mouse islets
(149)
↑ MIN6 (78)

↓ db/db mouse
(149)
↓ HFD, STZ-
induced rat (islets
and circulation)
(106)

↑ In peripheral blood of
glucose-intolerant
individuals (106)
↓ In peripheral blood (106)

Regulation of insulin gene expression
but not secretion (78)
Favours insulin production by
promoting Mafa expression (149)

miR-335-5p ↑ Rat islets (1h)
↓ Rat islets (24h)
(81)

↑ GK rat (81) Negative regulation of insulin
exocytosis (150)

miR-338-3p ↓ HFD
(Mouse islets)
(97, 151)

↓ db/db mouse
(151)
↓ HFD-induced
mouse model (97)

Islet cell proliferation (151)
Compensatory expansion of b-cell
during insulin resistance (97)

miR-345-5p ↑ (123) Unknown
miR-34a-5p ↑ Palmitate

(Rat islets) (63)
↑ Palmitate (MIN6B1)
(63)
↑Stearic acid
(Mouse islets) (152)
↑ Stearic acid
(INS-1) (152)

↑ HFD - both in
stearic and
palmitic acids
(Mouse islets)
(152)

↑ db/db mouse
(63, 97)
↑ B6 and BTBR
ob/ob mouse (87)

↑ In peripheral blood (84,
91, 108)

b-cells survival and proliferation (63,
97, 135)

miR-34b-5p ↑ B6 and BTBR
ob/ob mouse (87)

Unknown

miR-375-3p ↓ Rat islets (2 h)
(153)
↑ Rat islets (72 h)
(153)
↓INS-1E (1–48 h)
(153)

↑ HFD
(Mouse islets)
(64)
↑ HFD and
HSD
(Rat circulation)
(96)

↓ GK rat (153)
↑ ob/ob mouse
(64)

↑ (154, 155)
Unchanged (81, 91, 95)
(82)
↓ In peripheral blood (88)

Maintenance of b-cell mass (156)
Glucose regulation of insulin gene
expression (153)

miR-376a-3p ↓ Rat islets (24h)
(81)

↑ GK rat (81) ↓ (122) Apoptosis (122)

miR-383-5p ↓ MIN6 (157) ↓ Palmitate
(Rat islets under
glycolipotoxic
conditions for 48 and
72 h) (97)

↓ HFD
(Mouse islets)
(97)

↓ db/db mouse
(97)
↓HFD-induced
mouse model (97)

↓ In serum (157) Ameliorates hyperglycaemia-
mediated apoptosis (157)

(Continued)
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by decreased placental leucine transport and reductions in
essential amino acids in dams (171). Alejandro et al. (172)
found that several miRNAs, including miR-7, -199a-3p, miR-
152 and miR-342-5p were increased and others, such as miR-
30b, miR-487b and miR-224, decreased in adult islets from mice
born to LP-fed dams. Although the function of all these miRNAs
was not interrogated, the authors demonstrated that miR-199a-
3p and -342 regulated mTOR protein levels and insulin secretion
in b-cells and their inhibition was able to rescue the secretory
defects observed in these islets.

In another study, altered miR-375 levels were increased in
neoformed islets from foetuses and in adult islets from the
progeny of female dams fed a LP diet during pregnancy. These
islets had impaired b-cell mass and function that was rescued by
restoration of miR-375. Of note, an additional 43 miRNAs were
upregulated while four were downregulated in the foetal
pancreas of LP-fed mothers (173). In a similar study, Su et al.
identified upregulation of miR-15 in offspring of LP-fed dams,
and the inhibition of this miRNA corrected the defects in beta-
cell proliferation observed in the islets (174). More recently,
Alejandro and colleagues assessed the effect of the LP diet
administered only during the last week of gestation. This was
sufficient to induce glucose intolerance in offspring at age older
than 12.5 weeks and to increase the sensitivity of HFD-mediated
diabetes. On the contrary to what they had previously observed
Frontiers in Endocrinology | www.frontiersin.org 8
when LP diet was administered during the whole pregnancy,
these defects occurred without changes in mTOR and resulted in
dysregulation of a completely different subset of miRNAs,
including miR-342, miR-143, miR-338, miR-335, and miR-184
(175). It is worth noting that even though very little is known on
the effects of LP diet in maternal islet miRNAs, de Siqueira et al.
observed a reduction in miR-124a that may contribute to defects
in insulin release, possibly via regulation of the exocytotic
machinery (176). Nevertheless, these studies were performed in
murine models, and therefore further investigation is required to
determine whether these effects are sustained in humans.

Weaning
It has been demonstrated that the nutritional changes associated
with weaning are essential to trigger complete b-cell maturation,
develop b-cell capacity of compensatory proliferation, and
improve glucose-stimulated insulin secretion (177). Interestingly,
the expression of several miRNAs such as miR-25, miR-17, and
miR-29b changes during this process and may contribute to the
improvement in glucose-induced secretory response (117).

It is important to acknowledge that there is often little overlap
in the differentially expressed miRNAs under diabetic/
glucolipotoxic conditions between studies. Underlying these
discrepancies are the use of low number of samples (specially
for human islets), heterogeneity of the samples (i.e., origin,
TABLE 1 | Continued

Name High glucose Fatty acids Diet Animal model Human T2DM Function

miR-409-3p ↑ Rat islets (24h)
(81)

↑ GK rat (81) ↑ In peripheral blood
(gestational diabetes
mellitus, miR-409-5p)
(158)

Regulator of apoptosis and GSIS
(159)

miR-429-3p ↓ HFD
(Mouse islets)
(102)

↑ db/db (12
weeks, very
diabetic) (102)

b-cell survival (102)

miR-433-3p ↓ MIN6 (24 h)
(160)

↑ GK rat (81) Negative regulation of b-cell growth
(160)

miR-451-5p ↑ HFD (Mouse
islets) (151)

Unknown

miR-484-5p ↓ MIN6 (78) Unknown
miR-690-5p ↓ MIN6 (78) Likely to impair maturation and

insulin biogenesis (161)
miR-708-5p ↑ Rat islets

↓ Rat islets (24 h)
(81)

↓ GK rat (81) Negative regulator of GSIS and cell
growth (162)

miR-802-5p ↑HFD (Mouse
islets) (97)

↑ db/db mouse
(97) (163)
↑HFD-induced
mouse model (97)

Negative regulator of insulin
expression (164)
Impairs glucose metabolism` (163)

miR-9-5p ↑ Mouse islets
(1 h after IP
glucose injection)
(165)
↓ Mouse islets (4 h
after IP glucose
injection) (165)

↑ Peripheral blood of pre-
T2DM and T2DM (166)
↓ In peripheral blood (88)

Negative regulation of GSIS (60,
165, 167)
Novembe
The table shows the direction of the glucose and fatty acid–dependent regulation by glucose and/or fatty acids (↑: upregulated, ↓: downregulated with high glucose and/or high fatty acid
concentration, columns 2 and 3) in rodent (orange) and human (blue) cell lines (pale colour) and islets (dark colour). Column 4 (Diet) represents whether changes in miRNA expression have
been observed in islets of rodents fed specific diet (high fat: HFD, high sugar: HSD, or ketogenic) and column 5 (Animal models) in murine models of diabetes. Column 6 indicates changes
in expression associated with T2D in human islets or, where indicated, in the circulation. Column 7 briefly indicates the main proposed miRNA function in islets/b-cells.
r 2021 | Volume 12 | Article 704824

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Sałówka and Martinez-Sanchez Mechanisms Regulating b-cell miRNAs
purity, sex, age, and other characteristics of the donors),
experimental conditions (i.e., concentration and duration of
the glucolipotoxic insult, or diet composition), or the use of
different detections systems (i.e., qPCR, arrays, high-throughput
sequencing). Moreover, b-cell lines represent a de-differentiated
system that only partially preserves the original characteristics of
primary b-cells. Additionally, cell lines are removed from the
natural tissue architecture and therefore lack cell-cell interactions
with other endocrine, and non-endocrine, cells. Many studies
have on the other hand been performed in full islets, where
b-cells only represent a proportion (50–80%, humans-mice) of
the cellular population. Islets might also respond differently
to treatments in isolation or to diets administration in vivo.
Finally, even though mature miRNA sequences are generally
highly conserved amongst mammals, different levels of
expression often occur between homologous tissues of mice
and humans, especially for late-emerging miRNAs (178).
Rodent and primate islets not only differ in innervation and
architecture, but the b-cells contain significant transcriptome
differences that involve species-specific transcription factors and
long non-coding RNAs (lncRNAs) (179). It is therefore
imperative that nutrient-dependent regulation of miRNA
expression is validated in human islets, facilitated by the
significant improvement of human islets availability during the
past decade. Moreover, “humanized”mouse models for the study
of human b-cell function in vivo are now well established in
several laboratories around the globe. In these models, human
islets are transplanted into mice, often following drug-mediated
elimination of their own islets. This approach has been
previously used to identify human islet miRNAs associated
with b-cell destruction in mouse models of T1D. The effect of
experimental diets fed to the recipient mice could also be
investigated in the transplanted human islets. Whereas
standard protocols involve transplantation under the renal
capsule and the effects on transplanted-islet miRNAs can only
be measured at specific end-points, recent developments use
transplantation in the anterior chamber of the eye, which allow
in vivo, longitudinal imaging of the implanted islets, often
exploited to interrogate functionality and engraftment (180).
Recent advances in miRNA monitoring in vivo, such as the use
of fluorescently labelled miRNA activity reporters or molecular
beacons which activity depends on the presence of the miRNA
(181), could be incorporated to allow the interrogation of
miRNA function in the transplanted beta cells.
MOLECULAR MECHANISMS
UNDERLYING NUTRIENT-MEDIATED
REGULATION OF miRNA ACTION

Despite the great effort dedicated to identify glucose- and
diabetes-regulated miRNAs, little information is available
regarding the cellular and molecular mechanisms underlying
changes in islet miRNA expression. Cellular expression of mature
miRNA is determined by the rates of miRNA transcription,
processing, and decay, each of which can be globally or
Frontiers in Endocrinology | www.frontiersin.org 9
specifically regulated. Moreover, miRNAs’ capacity to bind and
silence their target can be modulated by additional factors such as
post-transcriptional modifications and interaction with proteins
and other non-coding RNAs (Figure 4).

MiRNAs Transcription
As is the case for messenger RNAs, the transcription of each pri-
miRNA is tightly controlled by epigenetic and transcription
factors. Epigenetic regulation of miRNA expression has been
widely studied in tumours and involves DNA methylation and
histone modifications that often contribute to miRNA
dysregulation during tumour progression (182). It is well
established that miRNAs form tightly coordinated regulatory
networks with transcription factors, which contribute to
reinforce cellular states (47).

Several examples of nutrient-dependent regulation of miRNA
transcription have been described in pancreatic islets. MiR-204 is
an intronic miRNA located within and sharing a common
promoter with Trpm3 (183) and upregulated in islets of ob/ob
(127) and db/db mice (128). In pancreatic islets, TXNIP
stimulates the expression of both miR-204 and TRMP3
through, at least in part, inhibition of STAT3 (signal
transduction and activator of transcription 3) activity (127).
MiR-204 blocks insulin production via direct targeting of
Mafa, contributing to the development of diabetes (127), and
its inhibition improves glycaemic control in db/db mice (128).
Another interesting example is miR-124 (miR-124-3p/miR-
124a), which is a negative regulator of insulin secretion (82)
upregulated by glucose in MIN6 cells (78), islets of GK rats (81),
and T2D human islets (82). In a recent study, Yang
and colleagues demonstrated that b-cell miR-124a expression
is negatively regulated by EGFR signalling through MEK/ERK
and PI3K/AKT downstream signalling cascades leading to ETS2
(E26 transformation-specific 2) activation and association with
miR-124a promoters on chromosomes 2,3 and 14 (184). Glucose
(185), HFD, and pregnancy (186) have been previously shown to
modulate EGFR signalling, and it is therefore tempting to
hypothesize that this EGFR-MEK/PI3K-ETS2 pathway
contributes to the regulation of miR-124 by nutrients.
Interestingly, miR-124 targets ionotropic glutamate receptors
iGluR2 and iGluR3 in islet a-cells, and the expression of this
miRNA and iGluR2/3 was strongly inhibited and upregulated,
respectively, following fasting. Thus, miR-124 might additionally
contribute to glucotoxicity by impairing glucagon release by a-
cells (187).

Recently, Werneck-de-Castro et al. explored the mechanisms
underlying the regulation of miR-199-5p and miR-199-3p in
murine b-cells. As previously mentioned and summarized in
Table 1, these miRNAs are upregulated in islets from mouse
models of diabetes and in the progeny of LP-fed dams and have
been implicated in impaired b-cell function and survival (81, 97,
172). Werneck-de-Castro et al. found that pri-miR-199
abundance is also regulated by glucose in MIN6 cells and
mouse islets and that membrane depolarization-induced
calcium release modulates Mir199a-2 promoter activity and
mature miR-199 expression acutely, though the exact
molecular mechanisms remain to be elucidated (124).
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Additionally, miR-34a is increased in INS-1 cells cultured
with palmitate and stearic acid, as well as in islets frommice fed a
high-stearic acid or a high-palmitic acid diet and db/db mice.
Inhibition of this miRNA reduced lipotoxicity-induced islet
b-cell death and rescued insulin content (152). These authors
also demonstrated that pERK-p53 mediated miR-34a
upregulation. They suggested that this occurs at the level of
miR-34a transcription since p53 is a well-established
transcriptional activator of this miRNA in cancer and other
cell types (188, 189).

Other interesting examples of transcriptional regulation are
miR-132 and miR-212. Both miRNAs are upregulated in GK rats
(81) and induced by glucagon-like peptide 1 (GLP-1) in mouse
and human islets (134). GLP-1 is an incretin hormone produced
by the L-cells in the gastrointestinal track upon oral nutrient
administration and a potent insulin secretagogue (190). GLP-1
Frontiers in Endocrinology | www.frontiersin.org 10
activates GLP-1R triggering the activation of adenylate cyclases
and the generation of cAMP that promotes granules exocytosis
(191). Malm and colleagues demonstrated that the CREB
(cAMP-responsive element binding protein) transcriptional
co-activator CRTC1 (cAMP-regulated transcriptional
Co-activator-1) and the CRTC inhibitors SIK1-3 (salt-
inducible kinases) mediate cAMP-co-regulation of miR-212/
miR-132 in rat b-cells (192). In a separate study (193), the
same group showed that hyperglycaemia increased the
expression of both mature and primary miR-212/-132.
Interestingly, knockdown of calmodulin binding transcription
activator 1 (Camta1) increased the expression of primary and
mature miR-212/132 in rat islets and clonal b-cell and reduced
the increase in pri-miR-212/132 levels mediated by the adenylate
cyclase activator foskolin (193). Intriguingly, pri-miR-212/132
remained unchanged following stimulation with GLP-1, perhaps
FIGURE 4 | Molecular mechanisms of miRNA regulation. MiRNA levels can be control at the level of transcription, processing, and stability. MiRNA transcription is
regulated by epigenetic modifications (histone modifications and DNA methylation) and by the action of transcription factors (TF). The action of proteins important for
RNA processing is regulated by post-translational modifications (P, phosphorylation; U, Ubiquitination; S, Sumoylation) and by RNA-binding proteins (RBPs). Circular
RNAs (cirRNAs) can promote miRNA degradation. TDMD, target-directed miRNA degradation, can occur dependently or independently of miRNA tailing and
trimming. The capacity of miRNAs to bind and repress their targets can be modulated by miRNA modifications and by RBPs, lncRNAs, and circRNAs. Examples of
islet miRNAs regulated at each level are included in the figure. Created with Biorender.com. See text for more details.
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due to the complex kinetics of cAMP signalling in these cells
(194). To the best of our knowledge a high-throughput screen of
miRNAs regulated by GLP-1 (and/or cAMP) in islets has not
been performed. Nevertheless, mTOR upregulation and
concomitant decrease of miR-7, miR-375, and miR-9 was also
observed in islets of HFD-fed mice treated with the GLP-1
analogue exendin-4 (195, 196). Additionally, Keller et al. found
that miR-375 promoter occupancy by Pol II was reduced with
cAMP agonists and concluded that cAMP represses miR-375 at
the transcriptional level. Of note, this regulation occurred via
PKA and was not modulated by glucose. Interestingly, miR-375
expression is downregulated in islets from GK rats, in INS1 cells
cultured at high-glucose concentrations during 1 h–4 days and in
rat islets cultured during a short period of time (2 h) at high-
glucose concentration (81, 153). Nevertheless, rat islet miR-375
was upregulated upon 72 h of exposure to high glucose (153).
Similar differences were observed for other miRNAs involved in
the control of insulin secretion and content such as miR-132,
miR-335, and miR-15 (81, 116) and might reflect the dual role of
short- and long-term glucose in pancreatic b-cell function and
survival. In an earlier study, Keller et al. found that b-cell specific
transcription factors, namely, Pdx1 and NeuroD1, bind the
proximal promoter and distal enhancer of MIR375. Glucose
stimulates Pdx1 activation by the PI-3 kinase pathway (197),
whereas miR-375 represses PI 3-kinase signalling to limit glucose
stimulation of insulin gene expression (153), resulting in a
negative-feedback loop that may contribute to the effects of
glucose in miR-375, Pdx-1, and insulin expression.

Finally, our group showed that islets with b-cell selective
deletion of AMP-activated protein kinase (bAMPKdKO) contain
decreased and increased levels of both mature and primary miR-
184 (118) and miR-125b miRNAs (83), respectively, suggesting
regulation at the transcriptional level. Nevertheless, further
studies are needed to fully elucidate the transcription factors
involved in this regulation and to interrogate whether additional
mechanisms are also involved. Several transcription start sites
(TSS) in two different loci have been annotated in other cell types
for miR-125, while miR-184 TSS remains to be fully annotated,
which complicates these studies.

Of note, the majority of these studies have been performed in
rodent islets/b-cells, so it is yet to be determined whether the
transcription of these miRNAs is regulated in a similar manner
in humans.

DNA methylation and histone modifications have been
extensively demonstrated to control islet gene expression and
secretory function (198), and both are altered during
lipoglucotoxicity in b-cells (199, 200) and in T2D [reviewed in
(201)]. Nevertheless, there is limited knowledge on their
contribution to regulation of islet miRNA expression.
Alejandro et al. (172) noted that the majority of miRNAs
upregulated in islets from mice born to LP-fed mice are
regulated by methylation of their promoters (miR-342, -152,
and -199a-3p-a1) and that miR-199a-3p-a2 and -7a contain E-
boxes, so could potentially be transcriptionally targeted by Ngn3
and NeuroD/b2. Kameswaran et al. (122) detected a cluster
containing 54 miRNAs (DLK1-MEG3) highly expressed in
Frontiers in Endocrinology | www.frontiersin.org 11
b-cells and strongly downregulated in islets from T2D human
donors. This cluster is maternally imprinted, and these authors
observed that DNA methylation in a differentially methylated
region responsible for the maternal imprinting was increasingly
methylated in the T2D islets. Differential methylation between
male and female human pancreatic islets was also associated with
the levels of miR-660 and miR-532 (202). More studies are
required to elucidate the contribution of these mechanisms to
nutrient-mediated regulation of islet miRNA expression.

The Challenge of Studying miRNA Transcription
Although transcriptional regulation of a few specific islet
miRNAs has been studied to some extent, as exemplified
above, nutrient-mediated effect on b-cell miRNA transcription
remains to be investigated in a high-throughput manner.

During the past few years, several methods have been
developed to measure transcriptional rates genome-wide, many
of which rely in enrichment in nascent mRNAs. Some examples
are Nascent Elongating Transcript Sequencing (NET-seq), which
uses immunoprecipitation to capture RNAs associated with PolII
(203), and run-on-based assays such as Coordinated Precision
Run-On and sequencing (CoPRO) (204), that use radio-labelled
NTPs to tag nascent RNAs, which can be identified by high-
throughput sequencing and provide active site location of PolII
and cap status from single nascent transcripts.

Nevertheless, the use of these approaches to study miRNA
transcription is subject to the availability of accurate pri-miRNA
annotations. MiRNA transcription start sites (TSS) are often
tissue-specific and conventional techniques for miRNA TSS
identification such as 5’RACE, and RNAseq has been
somewhat restricted by the quick processing of pri-miRNAs
into mature miRNAs and by the fact that miRNA TSS can be
located thousands of nucleotides away from the mature miRNA
sequence. The quick improvement in the resolution of high-
throughput sequencing technologies and the computational
analysis (including deep machine learning) has more recently
allowed the integration of epigenetic marks (H3K4me3, H3K9/
14Ac, PolII) and cap analysis of gene expression (CAGE-seq) to
more precisely map miRNA transcription start sites in a cell-
specific manner (205–207). More recently, Liu et al. (206) used
global nuclear run-on sequencing [GRO-seq (208)] and
precision nuclear run-on sequencing (PRO-seq [209)] that
provide sharp peaks around transcription start sites and
continuous signal over active transcription regions to map the
TSS of 480 intergenic miRNAs in 27 different human cell lines.
Moreover, they integrated this information with ChIP-seq data
from matched ENCODE tissues and generated a transcriptional
circuitry that further demonstrated the complex interplay
between TF and miRNA. Importantly, these authors generated
a computational tool, mirSTP (http://bioinfo.vanderbilt.edu/
mirSTP/), which can be utilized to map miRNA TSS in any
cell type with available GRO/PRO-seq data. Although big
consortium studies such as ENCODE do not normally
generate data on pancreatic islets, which comprise a small
proportion of the pancreas, the increased accessibility to
protocols and systems for genome-wide profiling of epigenetic
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marks is allowing biologists worldwide to rapidly generate and
share islet-specific data. These data will hopefully be used in the
near future to precisely map b-cell/islet miRNA TSS and to shed
more light into the transcriptional mechanisms by which
nutrients control pri-miRNA expression in these cells.
Additionally, imaging methods that use in vivo labelling of the
sites of nascent transcripts [reviewed in (210)] can also be
adapted for their use to study transcription of specific miRNAs
in b-cells in response to nutrients in vivo.

It has been long established that miRNAs act cooperatively
with other miRNAs and transcription factors that are themselves
targeted by miRNAs, typically acting as hubs in regulatory
networks. Over the past decade, fed by the increased
availability of expression data and high-throughput miRNA
target determination, important efforts have been made to
develop in silico approaches that integrate this information to
identify key regulatory networks (211). Nevertheless, most
available networks are built based on gene-wide miRNA
targeting and gene expression correlations, with very little
input on regulation of miRNA gene expression. For example,
miRNet (212) is a web-accessible tool originally generated to
illustrate miRNA target interactions in which a given miRNA
can target several genes and a gene can be targeted by several
miRNAs. More recently, MiRNet 2.0 attempts to integrate
transcription factor–miRNA interactions obtained from
TransmiR (213) that incorporates publication-curated miRNA-
TF as well as ChIP-seq identified interactions. MiRNet has also
implemented a tissue-specific filter that restricts the cellular
context based on miRNA expression profile, but profiles in
pancreatic islets and/or beta cells have not been included. Very
recently, Wong et al. (214) used miRNA profiling data of insulin-
negative human tissue samples and (insulin-expressing)
pancreatic islets and applied an unbiased, machine learning
discovery approach to identify miRNAs associated with insulin
mRNA that regulated insulin transcription. A similar networking
method could be applied in the future to identify transcriptional
regulators of the expression of specific islets miRNAs by
integrating tissue-specific mRNA expression data.

MiRNA Processing
As mentioned above, the abundance of mature miRNAs can
strongly depend on their processing from pri- and pre-miRNAs.
BothDrosha andDicer were downregulated at the mRNA level in
hyperglycaemic rat islets, though the impact on miRNA
expression remained to be determined (74). On the contrary,
proteomic analysis of isolated human islets cultured at high
glucose concentration identified increased levels of DICER (215).
On the other hand, peripheral blood mononuclear cells (PBMCs)
from mice treated with metformin or caloric restriction
contained higher levels of Dicer1 mRNA due to increased
binding of the RNA Binding Protein (RBP) AU-rich element-
binding factor 1 (AUF1) (216). Of note, no changes in Drosha or
Dicer expression were observed in bAMPKdKO islets (217),
suggesting a glucose effect independent of AMPK and the need
of further studies to clarify whether glucose regulate the miRNA
processing machinery.
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Both Microprocessor proteins and Dicer can suffer post-
transcriptional modifications that modulate their activity. For
example, DGCR8, DROSHA, and TRBP can be phosphorylated
by mitogen-activated protein kinases (MAPKs), DROSHA can
be ubiquitinated via mTOR/MDM2 activation, and DGCR8
sumoylation and stabilization can be stimulated by ERK
[reviewed in (218)]. MAPK pathways play central roles in b-
cells response to stress, including hyperglycaemia and
lipotoxicity. Whether this results in post-translational
modifications of the miRNA biogenesis machinery, though
likely, remains to be investigated.

RNA binding proteins (RBPs) can bind to precursor miRNAs
to alter their processing by the Microprocessor and Dicer,
providing a sequence-specific level of regulation [see (219] for
a comprehensive review). Some examples include the well-
characterized protein LIN28, which can act both at the level of
DROSHA in the nucleus or by impairing DICER-mediated
processing in the cytosol (220, 221) and hnRNP A1 that can
enhance pri-miRNA processing (222) but has a dual effect on
pre-miRNA maturation (223, 224). Unfortunately, it is not
currently known whether processing of specific miRNAs
contributes to nutrients’ action in islets. As a proof-of-concept
in HeLa cells, oleic acid induced miR-7 processing through
remodelling of pri-miR-7 and inhibition of RBPs HuR and
MSI2 binding and reduced miR-16 processing by an unknown
mechanism (225). Also, it has been recently shown that Lin28a
protects against b-cell destruction induced by streptozotocin and
may enhance insulin secretion in a whole-body model of
overexpression. Interestingly, MIN6 cells overexpressing this
protein contained reduced levels of let-7 family members,
though other miRNAs were not investigated (226).

MiRNA Turnover
MiRNA half-life differs considerably between miRNAs, cell
types, and importantly, cellular context, ranging from minutes
to weeks (227–229). For example, neuronal miRNAs present
faster turnover rates in comparison with other tissues, which
reflects how crucial dynamic miRNA regulation is for the
nervous system (183). It has been proposed that the base
composition of the miRNA can itself impact degradation rate
(183) and that miRNA stability can vary according to their
binding to specific members of the Ago family (228).
Nevertheless, the mechanisms responsible for miRNA turnover
remain poorly understood. Addition or removal of nucleotides in
the 3’ end of miRNAs (see MiRNA Modifications below), a
process known as tailing and trimming, alters the stability of
some, but not all, miRNAs (230). MiRNA degradation can be
triggered by extensive (albeit incomplete) complementarity to
target mRNA in a process known as target-directed miRNA-
degradation (TDMD) (231). TDMD often involves 3’ terminal
tailing and trimming of the miRNA, and it is a relevant
mechanism contributing to neuronal miRNA regulation (232).
Nevertheless, recent work by Mendell and Bartel labs have
uncovered a tailing- and trimming-independent TDMD
mechanism mediated by the ZSWIM8 Cullin-RING E3
ubiquitin ligase, which occurs in multiple cell types (233, 234).
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ZSWIM8-CRL binds to and targets for degradation AGO
proteins exposing miRNAs for degradation by cytosolic
RNAses, such as PARN and XRN2. XRN2 has already been
demonstrated to mediate miRNA degradation in C elengans
(235), although its role in mammalian cells might be more
complex and leads to both miRNA degradation but also
stabilization (236). On the other hand, the Perlman syndrome
exonuclease DIS3L2 has been implicated in the degradation of
oligouridylated miRNAs (237). Many of these proteins are
components of the no-go and non-sense-mediated RNA decay
pathway that were upregulated by pro-inflammatory cytokines in
INS-1 cells to affect stability of Ins1/2 and other mRNAs, though
miRNA expression was not interrogated (238).

Long non-coding RNAs can induce TDMD of miRNAs. This
has been observed for miR-29b in Zebrafish (239) and for miR-7
in brain in zebrafish and mice (240). Interestingly, neuronal
miR-7 was regulated not only by the lncRNA Cyrano but also, to
a lesser extent, by Cdr1as, a circular RNA. In this model, miR-7
repressed Cdr1as via binding to multiple regions, forming a post-
transcriptionally regulatory network important for neuronal
function (240). Cyrano is poorly expressed in islets, and its
deletion does not affect miR-7 expression (240). Nevertheless
Cdrs1 has been shown to regulate insulin secretion and
transcription in MIN6 cells and islets, allegedly by acting as a
miR-7 sponge de-repressing its targets (59). Interestingly, Cdrs1
is downregulated in islet from db/db and ob/ob mice (241).

To the best of our knowledge, the effect of nutrients on islet
miRNA stability hasn’t been investigated. Stefan-Lifshitz et al.
found that human islets exposed to cytokines showed changes in
DNA methylation patterns and gene expression, including that
of the exoribonuclease PNPase old-35 (PNTP1) that caused
degradation of miR-26a and, to a lesser extent, miR-22 and
miR-29b (242). This in turn increased 5-hydorxymethylcytosine
levels via upregulation of ten-eleven-translocation 2 (TET2). It
would be interesting to know whether this mechanism
contributes to reduced miR-26a in db/db and HFD-fed
mice (143).

As mentioned above, miR-204 and its host gene Trmp3 are
transcriptionally repressed by TNXIP/STAT3 in islets.
Interestingly, miR-204 and Trpm3 are also co-regulated in
retina where not only rapid transcription but also fast decay
allow for miR-204 rapid turnover during light-dark adaptation
(183). Many of the studies on miRNA stability have focused on
neuronal miRNAs, and it has been indeed suggested that
neuronal mechanisms regulating miRNA degradation are
unique compared to other tissues. Given that neurons and b-
cells share multiple physiological and organizational
characteristics as well as gene expression patterns (243), this
represents a promising future area of study for islet biologists.

Some of the molecular approaches to estimate RNA synthesis
mentioned above have been further engineered to measure RNA
degradation rates. An example is transient transcriptome
sequencing (TT-seq), which is based on sequencing following
the short exposure of cells to the nucleoside analogue
4-thiouridine (4sU-seq) that is incorporated during
transcription and allows isolation of labelled RNAs (244).
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The Ameres lab developed an optimized TT-seq protocol
called Time-resolved RNA sequencing (SLAM-seq) to
determine pri-miRNA transcription rates that, importantly,
they combined with the rates of mature miRNA biogenesis
(assessed by SLAM-small-seq) to determine miRNA processing
in a high-throughput manner in a Drosophila cell line (228).
Even though these approaches are normally limited to their use
in cultured cells, 4-thiouracil can be administered by
intraperitoneal or subcutaneous injection (245), opening the
doors to its application to the study of miRNA kinetics in b-
cells/islets in vivo.

MiRNA Modifications
Any changes affecting miRNA sequence will have an impact on
their capacity to recognize their targets, especially if those
changes rely within the seed region. IsomiRs were first
described by Morin et al. (246) and are microRNA isoforms
originated from the same gene that differ in length and/or
sequence. IsomiRs are usually generated by alternative Drosha/
Dicer cleavage (247) but also by non-templated nucleotide
addition (NTA) or RNA editing, and the proportion of
IsomiRs expressed is cell- and tissue-specific (38, 248, 249).
Alterations in the 5’ end of the miRNA tend to result in
changes in their targeting properties, including potency and
identity of the targets (248, 250). On the other hand,
3’ isomiRs usually present altered guide/passenger strand
selection and stability and, to a lesser extent, targeting
properties (247, 251). MiRNA precursors can be subject of
deamination by ADAR1/2 that converts adenosine to inosine
(249). Inosine shows guanosine characteristics, and thus A-to-I
editing can alter miRNA biogenesis and stability, as well as target
recognition (252, 253). Although unfrequently observed so far,
A-to-I editing of miRNAs has already been shown to be
biologically relevant for tumour progression (254, 255). The
3’ ends of mature miRNAs can also be subjected to
adenylation or uridylation (256). Although not much data are
currently available, the mechanism regulating adenylation
involves, at least in some cases (i.e., liver miR-122, or miR-21
in tumours), the poly(A) RNA polymerases GLD2 and/or
PAPD5 and the ribonuclease PARN (257, 258). Uridylation of
miRNAs by TUT4 and TUT7 can both limit and expand target
repression (259, 260) and can reposition and shift Dicer
processing when occurring in the pre-miRNA (261).

Baran-Gale et al. undertook a computational effort to profile
isomiRs in small RNA sequencing data from MIN6 cells and
human b-cells and islets and identified multiple 5’isomiRs. Some
of the isomiRs with shifted 5’ positions (5’-shifted isomiRs), such
as miR-375+1 and miR-375-1, were as abundant as the reference
miRNAs (Figure 5). Further analysis suggested that some of
these isomiRs, including miR-29, let-7, and miR-375, were
predicted to target multiple alternative genes dysregulated in
T2D. Experimental validation of the physiological relevance of
these isomiRs remains to be provided, as well as further insights
into the mechanisms leading to the generation of these and other
miRNAs. HFD feeding, fasting, and glucose regulate the
expression of ADAR2 by MAPK signalling in mouse islets and
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b-cell lines. ADAR2 is essential for adequate exocytosis, but its
contribution to islet miRNA editing is unknown (262–264).

The 5’ miRNA phosphorylation/de-phosphorylation has
emerged as an additional mechanism contributing to
regulation of miRNA, though, to the best of our knowledge, it
has so far only been observed for miR-34. In the absence of DNA
damage, a pool of miR-34 lacking 5’phosphate remains inactive
and not loaded into Ago. Nevertheless, ionizing radiation
activates miR-34 by phosphorylation dependent of ATM
(ataxia telangiectasia) and the RNA 5’kinase Clp1 (cleavage
factor polyribonucleotide kinase subunit 1) (265). Of note,
both ATM and miR-34 regulate b-cell damage response and
survival (152, 266, 267).

Regulation of miRNA-Target Accessibility
Target accessibility is a critical factor in microRNA function and
can be regulated at different levels, including the interaction with
proteins, non-coding RNAs, and subcellular localization.

Regulation of Protein Activity in miRISC
Ago proteins consist in four domains: the amino (N)-terminal
domain, the PAZ (Piwi-Argonaute-Zwille) domain, the MID
(middle) domain, and the PIWI (P-element induced wimpy
testes) domain, as well as two interconnecting, linker domains
(L1 and L2). The 5’ end of the miRNA is hold by the MID and
PIWI domains, whereas the PAZ domain binds the 3’ of the
miRNA (268). There are four Ago proteins (1–4) present in
mammals, of which Ago2 is the most abundant and the only one
retaining catalytic activity (269). Ago proteins can undergo
mult iple types of post- translat ional modificat ions .
Phosphorylation of the L2 linker or the MID and PIWI domains
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have been widely observed and modulate the activity of the protein
by altering their miRISC assembly capabilities, stability, and/or
trafficking to exosomes [reviewed in (38)]. Other post-
translational modifications include ubiquitination and Lys402
sumoylation to destabilize Ago2 (270, 271), Pro700 hydroxylation
to increase Ago2 stability (272), and PARylation [poly(ADP-
ribosylation)] that reduces target accessibility (273, 274).

Tattikota et al. demonstrated that reduction of AGO2 during
pregnancy and obesity-mediated b-cell compensation is required
for compensatory proliferation. They also showed that loss of
Ago2 in an ob/ob background results in the upregulation of
mRNA targets of the abundant islet miRNA miR-375 (64). As
previouslymentioned, these authors found that Ago2 downregulation
occurred as a consequence of direct targeting by the glucose-regulated
miRNA miR-184. Other mechanisms contributing to glucose-
mediated regulation of Ago2 content or post-transcriptional
modifications have not been investigated in pancreatic b-cells.

RNA Binding Proteins (RBP) Can Modulate
miRNA Targeting
Following the demonstration by Kedde et al. in 2007 that dead
end 1 (Dnd1) counteracts the function of several miRNAs in
human and zebrafish cells by binding to U-rich regions in the
mRNAs and impeding miRNA accessibility (275), many other
RBPs have been demonstrated to play essential roles in
controlling miRNA-target binding. Pumilio represents another
example of an RBP that limits miRNA accessibility to the target
mRNAs (276), whereas HNRNPD (AUF1) enhances miRISC
interactions in HeLa (277) and HuR can both antagonize or
promote miRNA function (278, 279). HuD is a member of the
Hu family highly expressed in b-cells regulated by glucose and
FIGURE 5 | MiR-375 isomiRs identified in pancreatic islets. Pre-miR-375 may be alternatively processed by Dicer to generate isoMiRs with one additional (miR-375-1)
or one less (miR-375+1) nucleotide in the miRNA 5’. These modifications have the potential to alter target recognition.
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insulin receptor signalling. In b-cells, HuD binds to the Ins
5’UTR and promotes its translational repression (280). On the
contrary, HuD regulates b-cell death and mitochondrial function
by binding to the 3’UTRs and increasing the translation of ATG5
(autophagy-related gene 5) and Mfn2 (Mitofusin 2), respectively
(281, 282). It would be very interesting to determine whether
HuD also modulates miRNA-target interactions in b-cells.

Competition With Other Non-Coding RNAs
Under specific conditions, endogenous long non-coding RNAs
(lncRNAs), pseudogenes, mRNAs, and more recently, circular
RNAs (circRNAs) are all capable of interfering with miRNA
function by competing with the targets for miRNA binding
[reviewed in (283)].

CircRNAs are single-stranded RNAs that form covalently
closed loops that arise during splicing (284). Thousands of
circRNAs are expressed in pancreatic islets, though the
function of only a few has been characterized (241, 285). The
effect of a circRNA in target miRNA stability may depend on the
cellular context. As briefly mentioned above, Cdr1as (antisense
of Cerebellar Degeneration-Related Protein 1, also known as
ciRS-7, Circular RNA sponge for miR-7) has been proposed to
regulate the expression of miR-7 targets in islets and MIN6 cells.
Another circRNA present in human islets, circHIPK3 acts as a
sponge of miR-124-3p, miR-338-3p, miR-29b-3p, and miR-30
and is downregulated in islets from db/db mice. Deletion of this
circRNA in primary rat b-cells impaired proliferation and
promoted apoptosis (241). More recently, high-throughput
RNA sequencing was used to identify circRNAs dysregulated
in db/db islets. One of the downregulated circRNAs, Circ-Tulp4,
was also downregulated by HFD and palmitate, and it has been
proposed to control cell proliferation by the interaction with
miR-7222-3p (285).

The expression of lncRNAs is also regulated by high glucose,
palmitate, and HFD (286). For example, the lnRNA LEGLTBC
was downregulated by glucolipotoxicity and functions as an
endogenous sponge for miR-34a and a regulator of apoptosis
(286). Other examples of miRNAs regulated by lncRNA-sponges
are miR-181a-5p, regulated by the plasmacytoma variant
translocation 1 (PVT1) lncRNA in INS-1 cells (287) and miR-
17, regulated by metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1).

Importantly, both lncRNAs and circRNAs often regulate gene
expression in a miRNA-independent manner. Regazzi’s lab has
made important contributions to the understanding of the function
of both lncRNAs and circRNAs in b-cells and have recently
generated comprehensive reviews on the subject (288, 289).

MiRNA Localization
MiRNA activity can also be modulated by the location and
therefore accessibility of the miRNA in and within the cell.
Both miRNAs and proteins from the miRISC complex have
been found in the nucleus (274, 290), although the functional
significance of these miRNAs remains poorly understood. In the
nucleus, miRNAs can regulate transcription by promoting
chromatin remodelling (291, 292) and have also been
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suggested to interact with nuclear lncRNAs to modulate their
function (293, 294) and to even interact with pri-miRNAs to
regulate their processing to mature miRNAs (295). MiRNAs can
also be localized into exosomes and represent an important
proportion of circulating miRNAs. It is debated whether
circulating miRNAs can be merely considered as biomarkers or
whether they play regulatory functions. Supporting the latter,
increasing numbers of studies demonstrate that cellular-derived
exosomal miRNAs can control cellular function and target gene
expression in recipient cells, potentially contributing to cross-
talk between metabolic organs (296).

The mechanism regulating miRNA localization into
exosomes may involve the association with lncRNAs (297),
RBPs such as hnRNPA2/B1 or the major vault protein (MVB)
(298, 299) and/or Ago proteins (300). Importantly, extracellular
miRNAs can also be found free from vesicles, often associated
with RBPs or lipoproteins (296, 301, 302). For example, it has
been recently shown that b-cells export miR-375 to high-density
lipoproteins (HDL) in an specific process tightly regulated by
glucose availability, extracellular calcium, and cAMP (303).
Several groups have studied changes in the levels of circulating
miRNAs in association with hyperglycaemia and/or diabetes.
These studies uncovered, for example, a strong association
between glycaemia (HbA1c) and elevated circulating miR-125b
levels in pre-diabetic (304), T2D (304), and T1D (305) subjects.
Moreover, gestational diabetes led to increased serum miR-125b
in early pregnancy (306). Our most recent research shows that
miR-125b is an abundant islet miRNA regulated by glucose and
AMPK (83). Circulating miRNAs may increase as a consequence
of damage or alteration of the cells of origin, which in most cases
remain to be identified. On the other hand, circulating miRNAs
could potentially target b-cells to modulate their function and
contribute to the progression of the disease. Pancreatic islets take
up and secrete exosomes that affect their own function and that
of neighbouring cells (125, 307, 308). For example, lymphocytes
infiltrating mouse islets during the development of T1D release
exosomal miR-155 that is taken up by b-cells to trigger apoptosis
(308). Also, b-cells release miR-29b in response to HFD, which
has been proposed to target insulin signalling in the liver (309).
On the other hand, the contribution of b-cells to circulating
miRNAs (ci-miRNAs) levels has been challenged. For example,
only ~1% of the circulating miR-375 originates from b-cells
(168), despite being strongly enriched in these cells. Exciting
research published in the past few years (310, 311) has identified
adipose tissue as an important source of circulating exosomal
miRNAs. The liver, skeletal muscle, and perhaps, the gut have
also been suggested to release and intake miRNA-containing
extracellular vesicles (312). Even though little is known about the
destiny and function of ci-miRNAs derived from each of these
tissues, considerable effort has been put into identifying the
cellular origin of ci-miRNAs. We anticipate that similar studies
to those performed by Thomou and colleagues (310), who assessed
changes in circulating miRNAs following the elimination ofDicer in
adipocytes using an adipocyte-specific Cre deleter strain, may be
useful to ascertain the contribution of pancreatic b-cells, and
perhaps other islet cells, to circulating miRNAs.
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CONCLUSIONS AND PERSPECTIVES

Research during the past 15 years has clearly demonstrated that
b-cell miRNAs play an essential role in glucose-stimulated
insulin secretion and cell survival. It has also been widely
demonstrated that diet modulates the expression of islet
miRNAs. These nutrient-regulated miRNAs contribute not
only to b-cell compensation but also to the b-cell functional
failure and death mediated by hyperglycaemia and excess of fatty
acids. Nevertheless, the molecular mechanisms leading to these
changes in miRNA expression remain mostly unexplored. For
example, only a few individual miRNA-transcription factor
connections have been studied to some detail. As discussed in
detail above, one of the constraints is the lack of accurate
annotations of miRNAs transcription start sites. Hopefully,
state-of-the-art approaches such as those described above be
applied to identify b-cell/islet-specific miRNAs TSS and to study
their transcriptional regulation in a high-throughput manner.
Moreover, a precise mapping of islet miRNA TSS will also allow
us to determine whether Single-Nucleotide Polymorphisms
(SNPs) associated with diabetes traits rely within pri-miRNAs
or regulatory regions of miRNA genes. This information can be
leveraged to identify miRNAs with an important role in the
maintenance of glucose homeostasis.

Pancreatic beta cells within the islets have been shown to be
heterogeneous at multiple levels (313) and to present a functional
and transcriptional heterogeneous response to high-fat diet (314,
315). Whereas single-cell RNA sequencing (scRNA-seq)
techniques have evolved considerably during the past few years
and have helped to understand b-cell functional heterogeneity,
single-cell small RNA-seq has only started to be developed (316).
Single-cell miRNA profiling can be used to further our
understanding of the molecular mechanisms underlying
cellular heterogeneity (317) and to determine whether b-cell
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changes in miRNA expression in response to nutrients are
also heterogeneous.

It is now well established that miRNAs processing and
turnover are tightly regulated processes that can have a
substantial impact on steady-state cellular miRNA abundance.
Moreover, it is now clear that miRNA activity depends not only
on miRNA abundance but also on target accessibility. Research
in the past recent years has provided novel mechanistic insights
into the processes that govern miRNA-target interactions,
uncovering important roles for RBPs and other ncRNAs. These
regulatory mechanisms play an important part in controlling the
function of miRNAs in neurons, which display multiple
functional similarities and common regulatory mechanisms of
gene expression to b-cells. Nevertheless, the contribution of these
pathways to nutrient-mediated changes in b-cell miRNA
expression and action remains chiefly unexplored and
constitute an exciting new research avenue in the field

Future studies will hopefully fill all these gaps and provide
important new findings that will allow us to better understand
the contribution of miRNAs to b-cell dysfunction.
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Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated
Hnrnpa2b1 Controls the Sorting of miRNAs Into Exosomes Through
Binding to Specific Motifs. Nat Commun (2013) 4:2980. doi: 10.1038/
ncomms3980

299. Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, et al. MVP-Mediated
Exosomal Sorting of miR-193a Promotes Colon Cancer Progression. Nat
Commun (2017) 8:14448. doi: 10.1038/ncomms14448

300. Geekiyanage H, Rayatpisheh S, Wohlschlegel JA, Brown R, Ambros V.
Extracellular microRNAs in Human Circulation Are Associated With
miRISC Complexes That Are Accessible to Anti-AGO2 Antibody and Can
Bind Target Mimic Oligonucleotides. Proc Natl Acad Sci USA (2020) 117
(39):24213–23. doi: 10.1073/pnas.2008323117

301. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of
Extracellular Circulating microRNA. Nucleic Acids Res (2011) 39(16):7223–
33. doi: 10.1093/nar/gkr254

302. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis,
Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne)
(2018) 9:402. doi: 10.3389/fendo.2018.00402

303. Sedgeman LR, Beysen C, Ramirez Solano MA, Michell DL, Sheng Q, Zhao S,
et al. Beta Cell Secretion of miR-375 to HDL Is Inversely Associated With
Insulin Secretion. Sci Rep (2019) 9(1):3803. doi: 10.1038/s41598-019-40338-7

304. de Candia P, Spinetti G, Specchia C, Sangalli E, La Sala L, Uccellatore A, et al.
A Unique Plasma microRNA Profile Defines Type 2 Diabetes Progression.
PLoS One (2017) 12(12):e0188980. doi: 10.1371/journal.pone.0188980

305. Satake E, Pezzolesi MG, Md Dom ZI, Smiles AM, Niewczas MA, Krolewski
AS. Circulating miRNA Profiles Associated With Hyperglycemia in Patients
Frontiers in Endocrinology | www.frontiersin.org 24
With Type 1 Diabetes. Diabetes (2018) 67(5):1013–23. doi: 10.2337/db17-
1207
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