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Abstract

Molecular co-evolution analysis as a sequence-only based method has been used to predict protein-protein interactions. In
co-evolution analysis, Pearson’s correlation within the mirrortree method is a well-known way of quantifying the correlation
between protein pairs. Here we studied the mirrortree method on both known interacting protein pairs and sets of
presumed non-interacting protein pairs, to evaluate the utility of this correlation analysis method for predicting protein-
protein interactions within eukaryotes. We varied metrics for computing evolutionary distance and evolutionary span of the
species analyzed. We found the differences between co-evolutionary correlation scores of the interacting and non-
interacting proteins, normalized for evolutionary span, to be significantly predictive for proteins conserved over a wide
range of eukaryotic clades (from mammals to fungi). On the other hand, for narrower ranges of evolutionary span, the
predictive power was much weaker.
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Introduction

Proteins seldom act alone; rather, they tend to carry out their

activities via interactions or networks. The detection of protein

interactions can help to better understand the molecular

machinery of the cell and expose biological processes and

pathways that have not been characterized so far. Thus, to

understand the mechanism of proteins; it’s important to study their

partners as well. In recognition of this importance, there are

several public protein-protein interaction databases available

online, for example DOMINE [1], Biogrid [2], String [3], MIMI

[4], DIP [5], etc. However the databases are far from complete,

necessitating the prediction of interactions not yet in the databases.

Traditionally, protein-protein interactions have been studied via

wet-lab experimental methods, such as yeast two-hybrid [6] and

mass spectrometry [7–8]. These are high-throughput technologies

but also expensive and time-consuming. On the other hand,

techniques such as affinity chromatography [9] and co-immuno-

precipitation [8] are low-throughput methods. The availability of

comprehensive protein sequences for many organisms makes it

possible to attempt an in silico system-level study of protein

interactions in the hope of deriving an efficient and low-cost high-

throughput method to augment experimental methods.

Methods for computational prediction of protein-protein

interactions can be mainly classified to two different approaches:

studies that use structural information [10] and co-evolution

analysis based entirely on sequence [11–12]. Co-evolution analysis

can be applied to whole protein level or domain level to infer

possible interactions. Natarajan et al. [13] applied coevolution

analysis to the Kv1.2-b2 complex using 9 mer sliding windows, to

infer the composition of a control network interacting with the

complex via domain-domain interactions.

Co-evolutionary analysis for whole proteins can be based on

either codon usage or amino acid sequences. Fraser et al. [14] used

the Codon Adaptation Index (CAI) based on codon usage to infer

protein expression level and further used protein expression level

as the signal for co-evolutionary study, but CAI is so far not readily

applicable to multicellular organisms. The underlying logic of

methods based on amino acid sequences is that substitution of an

amino acid residue in one protein will select for the coordinated

mutation of an amino acid in a second protein with which the first

protein interacts. The nature of the interaction may be direct, as in

participation in a multi-protein complex, or indirect, as in being in

the same network or pathway. The mirrortree method utilizing

this logic has been developed to predict protein interaction

partners and functional relationships [15–19] in a wide range of

organisms. In this study we examine the efficacy of mirrortree as

applied to eukaryotes, as a function of different parameters of

calculation.

The mirrortree method consists of the following steps: 1). find

orthologs of the two proteins in multiple species, 2). align the

ortholog sequences from the common species to get a multiple

sequence alignment (MSA), 3). Create an evolutionary distance

matrix either directly from the pairwise evolutionary distances

between the aligned protein pairs or from a phylogenetic tree

constructed from the MSA, and 4). Construct a linear correlation

coefficient (Pearson’s correlation) to determine the co-evolution of

protein pairs and further predict possible interactions.
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Recent studies using mirrortree method to infer protein-protein

interactions include the following: Kann et al. [20] and Hakes et

al. [21] examined the different degrees of correlation in binding

regions and the whole protein sequences. However the two studies

reached different conclusions. Hakes et al. found that the degree of

correlation was no higher in the binding interfaces than in the

whole sequence of the protein, while Kann et al. found that degree

of correlation was significantly higher in the binding interfaces.

Since the methodology was essentially the same, we infer that the

different results pertain to the selection of datasets. In the Hakes et

al. study, different ortholog pairs were from different species sets,

whereas in the Kann et al. study, all the ortholog pairs were from

the same set of species. Juan et al. [19] extended the mirrortree

method by considering genome-wide context of interactions rather

than interacting pairs in isolation. Herman et al. [22], working

entirely within bacteria and archaea, studied the effect of different

choices of organism set on the performance of mirrortree and

related methods. Clark et al. [23] suggested that better prediction

performance could be gained by choosing submatrices rather than

complete matrices of all orthologous sequences (MMM method).

The effect of species genome choice on the efficacy of

mirrortree-like methods has been evaluated for bacterial and

archaeal genomes [22,24]. In this paper we extend the assessment

to eukaryotic genomes, specifically considering the effects of

evolutionary distance spanned by the genomes on co-evolution

analysis.

Materials and Methods

The key relationship defining the correlation between two sets

of protein orthologs is the Pearson’s correlation coefficient, given

in equation (1).

r~

Pn
i~1 xi{�xxð Þ yi{�yyð Þð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 xi{�xxð Þ2
Pn

i~1 yi{�yyð Þ2
q ð1Þ

Here X and Y designate sets of orthologous proteins whose

interaction propensity we wish to predict. xi and yi are the

pairwise distances between orthologs. For example, if we have n

orthologous proteins, the number of pairwise distances is n(n-1)/2.

The sets X and Y come from the same species. �xx and �yy are the

mean values of all the xi and yi respectively. ‘‘r’’ is the extent to

which evolutionary variations in xi and yi are correlated with each

other.

Datasets
We used the Biogrid database because it contains large sets of

functional related or directly interacting protein pairs categorized

into different species. In particular we used datasets from human

and Saccharomyces cerevisiae (Baker’s Yeast) as a standard to

define interacting protein pairs. To identify orthologs of the

proteins, we use the results of the OMA project [25] since it has a

relatively comprehensive orthology dataset with 6.2 million

proteins from 1,320 species. As a control, non-interacting protein

pair sets were generated by random shuffling of the interacting

protein pairs. The choice of human and S. cerevisiae was to

provide as wide as possible an evolutionary span among the

eukaryotes, to make sure the analyzed sets have the largest possible

variation for comparing the difference of correlation between

interacting and non-interacting protein pairs. In addition, S.

cerevisiae and human are intensively studied species with a large

number of known protein interacting pairs, with 218,492 and

131,624 non-redundant interacting protein pairs respectively listed

in Biogrid. At this writing there are a total of 28,659 human

proteins and 6,328 S. cerevisiae proteins listed with ortholog

groups in OMA. Between human and S. cerevisiae, there are

2,012 common proteins in OMA.

Common interacting protein pairs are retrieved from interact-

ing datasets of human and S. cerevisiae species. A total of 1,062

common interacting protein-protein pairs were found in the

Biogrid data base from human and S. cerevisiae. Of these, 311

protein pairs were found to have corresponding ortholog groups in

OMA browser. Adding the criterion that each group to be

compared should have 15 or more common species in the

common ortholog sets reduced the membership of the set for

analysis from 311 to 259.

We created a second set of putative interacting pairs by

including all human Biogrid interaction pairs whose members

have S. cerevisiae orthologs plus all S. cerevisiae interacting pairs

whose members have human orthologs. The difference between

the first set and the second set is that in the first set both the human

and the S. cerervisiae pairs are confirmed experimentally to

interact, whereas in the second set the interaction needed to be

confirmed experimentally in only one of the two. Both datasets

were constrained by the requirement that every protein needed to

have 15 or more common species in their OMA ortholog sets. The

total number of pairs fulfilling the requirements for the second set

was 5,616. Finally a set of 5,616 different non-interacting pairs

were created by sampling the second set with replacement [26],

coupled by filtering to discard accidental coupling of interacting

pairs and duplications. We call the first set of interacting pairs plus

the constructed set of non-interacting pairs Dataset 1. We call the

second set of interacting pairs plus the constructed set of non-

interacting pairs Dataset 2.

We also created a third dataset of human and mouse common

interacting protein pairs, using a procedure exactly analogous to

the procedure for creating Dataset 1 (human and yeast set). This

procedure gives us a total of 1,375 interacting protein pairs. We

created a corresponding non-interacting set of 5,630 pairs by

sampling with replacement and filtering in the same fashion as we

did for Dataset 2. This set of 1,375 putative interacting pairs plus

the 5,630-member set of non-interacting pairs we call Dataset 3.

For each protein from the interacting or non-interacting protein

pairs, we retrieved its 1 to 1 ortholog groups containing different

species from OMA database. For each protein pair we extracted

the common species to the 2 ortholog groups and used the 2

ortholog groups with common species set for evolutionary distance

calculations.

Evolutionary distance calculations
All the protein pairs datasets were aligned using MUSCLE

(Multiple sequence comparison by log-expectation) [27].

The pair-wise distances for sequences from different species for

any protein were calculated using the protdist package [28]. We

experimented with four different distance measures:

1. Jones Taylor Thornton matrix [29].

2. Dayhoff Pam Matrix which uses Dayhoff’s PAM 001 matrix

[30].

3. Kimura model, in which distance is defined as:

3. D~{log(1{p{0:2p2), here p defines the fraction of

difference for 2 sequences.

4. Categories Model [31–32], in which amino acids are lumped

into the following categories: Group 1, sulfhydryl: cysteine;

Group 2, small/neutral: serine, threonine, alanine, proline and

glycine; Group 3, acidic: aspartate, glutamate, asparagine and

Possibilities and Limitations of Mirrortree Method
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glutamine; Group 4, basic: histidine, arginine and lysine;

Group 5, hydrophobic: valine, leucine, isoleucine and methi-

onine; and Group 6, aromatic: phenylalanine, tyrosine, and

tryptophan. There is no penalty for a substitution within a

group and 0.457 for a substitution of a member of one group

for a member of another group.

We also explored the use of other measures for evolutionary

distance, including unweighted direct sum (0 or 1 for same or

different) of position-specific substitutions, and different PAM or

BLOSUM matrices with various ways of treating gap penalties. All

results were essentially independent of the type of evolutionary

distance employed, so in results we report using only one distance

measure, the Jones Taylor Thornton matrix.

Other Factors
For further study of species coverage effects on correlation

analysis, we started with the human and mouse interacting protein

pairs’ datasets (Dataset 3) with 1,375 interacting and 5,630 non-

interacting protein pairs. Then we divided the data into three

categories: 1) present only in chordates (834 pairs); 2) present in

other metazoan as well as in chordates, but not in plants or fungi

(349 pairs); 3) present in all the eukaryotic kingdoms (192 pairs).

The results of analysis of this dataset will be shown in the Results

and Discussion section.

Results and Discussion

Assessment of co-evolution
To illustrate the differences of correlations of interacting

versus non-interacting protein pairs, the correlation scores for

interacting and non-interacting protein-protein pairs were

plotted against each other. Figure 1A shows smoothed histo-

grams (density plots of incidence) of the correlation scores from

the Biogrid protein pairs common to human and S. cerevisiae.

The correlation scores peaked at 0.95 and 0.91 for interacting

and non-interacting protein-protein pairs respectively. A sepa-

ration of non-interacting from interacting protein-protein pairs

is evident. To evaluate the prediction power of our correlation

analysis, the receiver operating characteristic (ROC) curve [33]

was plotted and showed a clear view of prediction power

(Figure 1B), an AUC of 0.73.

An AUC score of 0.5 would indicate no predictive power,

while a score of 1.0 would indicate perfect predictive power.

Therefore a score of .73 indicates significant, but not perfect,

predictive power. The right side edge shows the cut-off

correlation score for prediction, scaled by color. We can read

the corresponding true positive and false positive rates from the

curve by matching the color in the curve to the right side

correlation score color scale.

We then studied the interacting protein pairs from human or S.

cerevisiae (Dataset 2), the only difference of Dataset 1 from

Dataset 2 was that the interaction in Dataset 2 was not necessary

conserved in both human and S. cerevisiae. Density plot and ROC

plot were plotted here too shown in Figure 2A and 2B respectively.

Looking into the density plot (Figure 2A), there was no clear

separation of interacting from non-interacting protein pairs. Both

of them peaked at correlation score of around 0.90. ROC plot

(Figure 2B) shows an AUC score of 0.55, which tells no significant

separation either. Comparing Figure 1 and Figure 2, we concluded

that independent evidence of conservation of interaction across

species is an important determinant of the performance of co-

evolutionary analysis, and should be considered when doing

prediction.

We also studied the common interacting protein pairs between

human and mouse (Dataset 3). The correlation density plot and

ROC curve were plotted and shown in Figure 3. In the density

plot (Figure 3A) the curves of interacting protein pairs’ density (in

red) and non-interacting protein pairs’ density (in blue) were

almost superimposed on each other. The ROC curve (Figure 3B)

also gives a relatively low AUC score of 0.55. The differences

between Dataset 3 and Dataset 1 are two-fold. One difference is

that the evidence for conservation of interaction in Dataset 3 is

between two closely related species (human and mouse) while in

Dataset 1 the evidence for conservation of interaction is between

two distantly related species (human and yeast). The second

difference is that in Dataset 1 the ortholog sets all spanned the

range between human and yeast, while in Dataset 3 the

evolutionary span was variable from one ortholog set to the other.

Some spanned all the way to yeast, while others were contained

only in metazoan, others only in chordates, and others only in

mammals. The relatively low level of discrimination between

interacting and non-interacting pairs in Dataset 3 suggests that

evolutionary span is an important factor in using and interpreting

the mirrortree method.

For a single measure of the predictive power of the method, we

elected to use the Matthews correlation coefficient (MCC).

MCC is a more robust measure of effectiveness of binary

classification methods than such measures as precision, recall,

and F-measure because it takes into account in a balanced way

of all four factors contributing to the effectiveness; true positives,

false positives, true negatives and false negatives. A good review

of methods for binary classification is given in Powers, 2011

[34]. The MCC is given by:

MCC~
TP � TN{FP � FN

TPzFPð Þ � TPzFNð Þ � TNzFPð Þ � TNzFNð Þ ð2Þ

Where

TP is the number of true positives

TN is the number of true negatives

FP is the number of false positives

FN is the number of false negatives.

In Figure 4, we plotted the Matthews correlation coefficient

against its corresponding correlation score threshold for all 3

different sets. We can see the Human and Yeast set (Dataset 1)

gives highest Matthews correlation coefficient and a distinct peak

at a correlation score of approximately 0.9. A reasonable

interpretation of the MCC is that a good choice for the threshold

of the classification is at the peak of the MCC, while a good

measure of the efficacy of the method is the height of the peak. In

Dataset 2, on the other hand, there is no peak but rather a wide

plateau with a relatively low height. Dataset 3 shows a peak, but a

relatively low one, indicating a relatively weak binary classification

efficacy. The MCC results are consistent with the results of the

ROC curves (Figures 1–3) in suggesting that the mirrortree

method has much better binary classification efficacy for Dataset 1

than for the other two.

In Figure 5 we show the MCC vs. threshold on the same plot as

sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) for

Dataset 1. We see that the peak of the MCC occurs where the

specificity is somewhat greater than the sensitivity. A user might

move the classification threshold somewhat lower or higher

depending on whether it is more important to retrieve all or

practically all true positives, or whether it is rather more important

to ensure that the positive results are not contaminated with false

positives.

Possibilities and Limitations of Mirrortree Method
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Relationship of sequence degree of conservation and
correlation score

We note that for a set of completely random sequences the

correlation scores will average zero. At the other extreme, for a set

of identical sequences the Pearson’s correlation score will be

undefined. We accordingly wondered if, between these extremes,

there would be any systematic dependence of correlation scores on

total conservation of the pairs. To explore this, we started with the

set of interacting and non-interacting protein pairs from human

and S. cerevisiae species (Dataset 1). For each protein-pair’s

ortholog sets, we calculated the degree of conservation as the

average identity for each pair of aligned sequences within each

ortholog set, and then the average of the two means. The

correlation score for each specific protein pair was calculated as

Figure 1. Density plot for correlation scores using Jones-Taylor-Thornton matrix for common interacting and non-interacting
protein pairs from Dataset 1 (A) and the corresponding ROC plot (B).
doi:10.1371/journal.pone.0081100.g001

Figure 2. Density plot for correlation scores using Jones-Taylor-Thornton matrix for common interacting and non-interacting
protein pairs from Dataset 2 (A) and the corresponding ROC plot (B).
doi:10.1371/journal.pone.0081100.g002

Possibilities and Limitations of Mirrortree Method
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stated in the method part. Figure 6 shows, for interacting pairs

(6A) and for non-interacting pairs (6B) correlation scores vs. degree

of conservation for all the ortholog pairs of Dataset 1. To see more

clearly possible trends Figures 6C and 6D show mean correlation

scores for sets binned in conservation score ranges of .02. We see

that for the interacting set there are some pairs that have high

conservation and low correlation score. These are responsible for

the prominent bump at a correlation score of about 0.4 in the

correlation distribution of the interacting pairs in Figure 1A. On

the other hand for the non-interacting set, there are some pairs

that have very low conservation and correlation.

Figure 3. Density plot for correlation scores using Jones-Taylor-Thornton matrix for common interacting and non-interacting
protein pairs from Dataset 3 (A) and the corresponding ROC plot (B).
doi:10.1371/journal.pone.0081100.g003

Figure 4. Matthews correlation coefficient (MCC) vs. choice of
binary classification threshold for Datasets 1, 2, 3. It is seen that
there is a much higher and more distinct peak for Dataset 1, supporting
the inference derived from the relative AUC scores (Figures 1, 2, and 3)
that the Dataset 1 provides the best differentiation between the
interacting and non-interacting pairs.
doi:10.1371/journal.pone.0081100.g004

Figure 5. Plot of sensitivity, specificity, and MCC vs. threshold
for binary classification using Dataset 1. It is seen that the peak of
the MCC (dashed vertical line) occurs in this case where the specificity is
somewhat larger than the sensitivity. A user may wish to use a
threshold either larger or smaller than the position of the peak of the
MCC, depending on whether specificity or sensitivity is more highly
valued.
doi:10.1371/journal.pone.0081100.g005

Possibilities and Limitations of Mirrortree Method
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Evolutionary span
We further tested how evolutionary span affects the correlation

scores. To do this we divided the results of Dataset 3 according

to the evolutionary span of the common species used in the

orthology pairs. In Figure 7 we show the results of calculations

in which the evolutionary spans were entirely in chordates,

entirely in metazoan, or spanned all eukaryotes. This way we

have an incrementally increased evolutionary span, and by

comparing the correlation scores of interacting protein pairs

from these 3 (shown in Figure 7A), we see as the evolutionary

span decreases, the peak height of the distribution decreases,

while the position of the peak is approximately the same. From

the interacting protein pairs from the 3 kingdoms, we also

created non-interacting shuffled protein pairs, and the correla-

tion density plot is shown as in Figure 7B. Figure 7C shows

ROC plots obtained by comparing interacting and noninter-

acting pairs in the three subsets of Dataset 3. We see that the

AUC score is higher the wider the evolutionary span of the

common species of the ortholog pairs. For the widest span,

where the ortholog pairs span both metazoan and non-

Figure 6. Protein sequences’ within ortholog set degree of conservation (mean pairwise fraction identity for all orthologs in each
set) vs. protein pairs correlation score for Dataset 1. A). Scatter plots of degree of conservation vs. protein pairs correlation score for
interacting protein pairs. B). Scatter plots of degree of conservation vs. protein pairs correlation score for non-interacting protein pairs. C). Mean
degree of conservation vs. protein pairs correlation score for interacting pairs with standard deviation as error bar. D). Mean degree of conservation
vs. protein pairs correlation score for interacting pairs with standard deviation as error bar.
doi:10.1371/journal.pone.0081100.g006

Possibilities and Limitations of Mirrortree Method
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metazoan eukaryotes, the AUC score of 0.643 indicates a fair

predictive power, although not as good as Dataset 1.

For another representation of the relationship of correlation

score with evolutionary span, we plotted in Figure 8 the

correlation score against the time since last common ancestor (as

defined in the TimeTree database [35]) for all protein pairs from

Dataset 3 in Figure 8. We see that the mean correlation score

increases, and the variance decreases, as the time since last

common ancestor increases. This is a manifestation of the

principle that the statistical significance of similarity patterns in

sequences increases with the evolutionary span, perhaps stated

most amusingly by Sydney Brenner [36].

Suggested Points for Using Mirrortree to infer Protein-
Protein Interactions in Eukaryotes

N Normalize the evolutionary span among the protein pair

orthologous sets to be tested.

Figure 7. Correlation density plot for interacting (A) and non-interacting (B) Protein pairs of different evolutionary span from
Dataset 3. In this plot we separately consider the protein pairs that are conserved only in chordates, the pairs that are conserved across the
metazoan but not elsewhere in the eukaryotes, and finally the protein pairs that are distributed across the eukaryotes beyond the metazoan. C). The
corresponding ROC plots for the correlation analysis for these 3 different sub-datasets.
doi:10.1371/journal.pone.0081100.g007

Possibilities and Limitations of Mirrortree Method
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N Use as wide an evolutionary span as is available.

N Take into account independent evidence of conservation of

interaction, if available.

N If prediction of a binary classification is desired, the peak of the

Matthews correlation coefficient is a reasonable default choice

for threshold, but the user may shift the threshold up or down

depending on whether sensitivity or specificity is more valued.

Summary and Conclusions

This study was aimed at assessing the mirrortree method for

inference of protein-protein interaction, with the goal of under-

standing how to use it to achieve the most reliable predictions. The

major results of our studies are:

1. Over a wide range of degrees of conservation, correlation

scores are independent of degree of conservation. However we

see lower correlation scores for ortholog pairs that have very

high or very low degree of conservation (see Figure 6).

2. Overall correlation scores are higher when wider evolutionary

spans are used in the analysis, as shown in Figures 7 and 8.

Therefore when comparing protein pairs with each other to infer

which is more likely to be interacting, the analysis should be done

with orthologs to both pairs covering the same evolutionary span.

3. The method will be more reliable when the particular

proteins have a wider evolutionary span, because the

signal to noise ratio will be more favorable, as

demonstrated in Figure 8. This is a specific example of

the general principle that statistical significance of

similarity patterns in sequences increases with the

evolutionary span covered.

4. For Dataset 1 we find a standard AUC score of the method to

be over 0.7, higher than estimated by Hakes et al [21], and

much higher than for either Dataset 2 or Dataset 3. The

difference between Dataset 1 and Dataset 2 is independent

evidence for conservation of interaction across the entire

eukaryotic evolutionary span, from human to yeast. In Dataset

3, there is evidence for conservation of interaction between

human and mouse, but the evolutionary span of the ortholog

sets is not normalized, and the efficacy of the method is thereby

compromised.
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