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Abstract: Ag+ pollution is of great harm to the human body and environmental biology. Therefore,
there is an urgent need to develop inexpensive and accurate detection methods. Herein, lignin-
derived structural memory carbon nanodots (CSM-dots) with outstanding fluorescence properties
were fabricated via a green method. The mild preparation process allowed the CSM-dots to remain
plentiful phenol, hydroxyl, and methoxy groups, which have a specific interaction with Ag+ through
the reduction of silver ions. Further, the sulfur atoms doped on CSM-dots provided more active sites
on their surface and the strong interaction with Ag nanoparticles. The CSM-dots can specifically bind
Ag+, accompanied by a remarkable fluorescence quenching response. This “turn-off” fluorescence
behavior was used for Ag+ determination in a linear range of 5–290 µM with the detection limit
as low as 500 nM. Furthermore, findings showed that this sensing nano-platform was successfully
used for Ag+ determination in real samples and intracellular imaging, showing great potential in
biological and environmental monitoring applications.

Keywords: carbon nanodots; silver ion; fluorescent sensor; structural memory; intracellular imaging

1. Introduction

In the industrialized world, silver is one of the key ingredients in the field of pharmacy,
photography, as well as electrical and aerospace industries due to its attractive proper-
ties [1–3]. Ag+ pollution has become a severe worldwide environmental problem with the
associated potential harm to the human body and environmental biology [4]. Thus, it is
great important to detect Ag+ in water for living and production needs and various analyt-
ical strategies have been developed for the quantitative determination of Ag+, including
atomic absorption spectrometry (AAS) [5], inductively coupled plasma optical emission
spectrometry (ICP-OES) [6], inductively coupled plasma mass spectrometry (ICP-MS) [7],
and the electrochemical method [8]. However, these approaches suffer from either the
need for expensive devices or a tedious sample pre-treatment process, which restrict their
application in the field of fast monitoring Ag+. Therefore, techniques for the rapid and
effective detection of Ag+ are urgently demanded.

Over the past decades, optical sensors have been developed and utilized for Ag+

determination at different levels [9–11]. Among them, the fluorescent sensor is regarded
as a powerful analytical strategy for Ag+ detecting due to its inherent merits, including
easy operability, spatiotemporal resolution, and high sensitivity and selectivity [12–15].
So far, series of fluorescent molecules have been prepared for Ag+ analysis based on
Ag+-participated chelation or other chemical reactions [16–18]. Most reported fluorescent
probes generally involved in complex preparation process suffer from biotoxicity and low
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photostability, and Ag+ recognition reactions are susceptible to a responsive environment,
which severely limits their application [19–23]. Thus, further exploitation of eco-friendly
Ag+ sensors with nontoxicity and excellent photostability is still an important challenge
for researchers.

Carbon nanodots (C-dots), as one of several new nanomaterials, have drawn impres-
sive attention in the area of bio-labeling, cell-imaging, drug-delivery, and so on [24–27].
Furthermore, C-dots can also be used as a versatile platform for fluorescence (FL) sensing
because of their unique photostability and FL emission, excellent water solubility, low toxi-
city, and biocompatibility [28–30]. Moreover, various techniques, such as electrochemical
oxidation, microwave irradiation, arc discharge, and hydrothermal carbonization, have
been extensively applied to the preparation of C-dots for the detection of metal ions [31].
Liu and co-workers reported an electrochemical method for the synthesis of C-dots, which
showed the potential to monitor Fe(III) in the environment [32]. Wang et al. fabricated
nitrogen doped C-dots via the hydrothermal treatment of citric acid and amino acid at
180 ◦C and the FL of products exhibited quenching responses to Hg(II) [33]. Gao et al.
described a route to prepare nitrogen-rich C-dots through a microwave method, based
on which a “turn-off” FL probe for Ag+ ion detection was achieved [34]. However, the
preparation processes of these C-dots have always been triggered by microwave irradia-
tion, acid treatment, electrochemical, or high-temperature techniques, which restrict the
large-scale application of C-dots [35]. In addition, to our knowledge, the selectivity of
some reported C-dots for Ag+ determination is unsatisfactory due to the interference effect
of some other metal ions, including Cu2+, Hg2+, and Fe3+ [28]. Therefore, in respect of
the fabrication process and practical application, seeking a simple and green preparation
technology towards C-dots for Ag+ monitoring with high selectivity and sensitivity has
received wide attention.

Lignin, as one of the most abundant renewable resources in the world, consists of mul-
tiple polyphenols and methoxy functional groups that can serve as metal ions stabilizing
and reducing agents [36]. It should be noted that the methoxy or phenolic hydroxyls groups
on the lignin can reduce Ag+ to metallic silver nanoparticles (Ag NPs), based on which an
excellent selectivity towards silver ion may be realized [37]. Furthermore, the heteroatom
on lignin can provide more active sites on their surface and better specific interaction with
Ag NPs. However, lignin-based materials for Ag+ determination still face some challenges,
e.g., low specific surface area or effective functional group concentration [38].

It is widely accepted that mild preparation conditions, particularly low pressure and
temperatures, can make C-dots reserve functional and structural units of the precursor
molecules without chemical reaction [39]. This fabrication strategy of “structural memory”,
making full use of the specific recognition functional groups or atoms of the precursors,
inspired us to propose lignin-based C-dots for Ag+ determination with high selectivity and
sensitivity. In this work, a novel sensor towards Ag+ was developed based on structural
memory C-dots (CSM-dots) with sulfur atoms, which were prepared by a facile and green
strategy from lignin. The mild preparation process (Scheme 1) allowed the CSM-dots to
remain plentiful phenol, hydroxyl, and methoxy groups, which have a specific interaction
with Ag+ through the reduction of silver ions. Moreover, the sulfur atoms doped on
CSM-dots provided more active sites on their surface and the strong interaction with Ag
NPs. Following a demonstration superior FL performance of CSM-dots, an eco-friendly
Ag+ sensor was prepared based on the remarkable FL quenching effect of CSM-dots/Ag
NPs. Furthermore, this sensing platform was successfully applied for Ag+ monitoring in
real samples and intracellular imaging without surface chemical modification.
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Scheme 1. Fabrication process of lignin-derived CSM-dots.

2. Materials & Methods
2.1. Materials

A variety of metal salts, including AgNO3, Ni(NO3)2, BaCl2, ZnCl2, CuCl2, CaCl2,
KOH, NaCl, AlCl3, FeCl2, MgCl2, FeCl3, MnCl2, PbCl2, HgCl2, Co(NO3)2, and NaBH4
were purchased from Nanjing Chemical Reagent Co., Ltd. (Nanjing, China). Sodium
lignosulphonate was obtained from Macklin Biochemical Technology Co., Ltd. (Shanghai,
China). All the chemicals were analytical grade and used without further purification. All
aqueous solutions were made using deionized water.

2.2. Characterization

The transmission electron microscopic (TEM) and high-resolution TEM (HRTEM)
images were acquired by a JEM-2100 transmission electron microscopy (JEOL, Tokyo,
Japan) at an accelerating voltage of 200 kV. The UV-vis spectra were recorded on a UV-vis
absorption spectrophotometer (UV-1800pc) at 800–200 nm. The X-ray photoelectron spectra
(XPS) were measured by PHI 500 VersaProbe X-ray photoelectron spectrometer (UlVAC-
PHI, Hagisono, Japan). The FT-IR spectra were obtained on an iS10 FT-IR spectrometer
at 500–5000 cm−1 (Nicolet, Madison, WI, USA). Zeta potential was recorded on Zetasizer
Nano ZS instrument (Malvern, Malvern, UK). The FL spectra were acquired by LS SS
Perkin Elmer spectrometer (Perkin Elmer, Waltham, MA, USA) with the slit widths of 4 nm
for emission and excitation spectra. All the fluorescence spectra were measured from 330
to 700 nm with a quartz cuvette of 1 cm path length.

2.3. Preparation of Lignin-Derived CSM-dots

In a typical procedure, sodium lignosulfonate (0.03 g) was dissolved into 15 mL
deionized water completely. The solution was treated by ultrasound for 90 min followed
with stirring under 1 h. After that, the obtained solution was centrifuged for 30 min to
remove precipitates. The supernatant was collected and mixed with NaBH4 (0.5 mol/mL)
to allow the formation of particles, and then further dialyzed using a dialysis bag (1000 Da
cut off) for 12 h. The CSM-dots powder was acquired by freeze-drying for further use.

2.4. Fluorescence Detection of Ag+

A dispersion of the CSM-dots was prepared in PBS buffer solution (0.1 M, pH 7.0) with
a concentration of 0.05 mg/mL. Hence, 300 µL of CSM-dots dispersion, 1200 µL of Ag+

solution with different concentration (0–500 µM), and 1500 µL of ultrapure water were
mixed in a quartz cuvette. Then, the mixture was moved for FL measurement at 325 nm
excitation wavelengths after being incubated for 5 min at room temperature. The same
method was applied for a selectivity test, whereby 1200 µL of aqueous solutions containing
specific ion (400 µM) were introduced to the above mixture for substituting Ag+ solution.
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3. Results
3.1. Physiochemical Characterization of CSM-dots

During the low temperature preparation process of CSM-dots, a considerable portion
of functional groups that belong to lignin were retained, which was confirmed by FT-IR
(Figure 1a). The peaks at 1704 and 1196 cm−1 resulted from the stretching vibration of
conjugated C=O bonds and S=O bonds in sulfonic acid groups, respectively. The peaks at
1592 and 1043 cm−1 were attributed to the stretching vibrations of C=C bond in the aromatic
skeleton and the deformation vibration of C−O−C groups, respectively. The presence of
O−H groups was confirmed by the peaks around 3000–3500 cm−1 [25]. Moreover, the
peak intensity in CSM-dots increased, indicating that the addition of NaBH4 produced
more hydroxyl groups. More convincing details on chemical composition of CSM-dots
were provided by the XPS spectrum. It was found in the full range XPS spectrum of
CSM-dots that three peaks at 168.08 eV, 285.08 eV, and 533.08 eV were due to S 2p, C 1s, and
O 1s, respectively (Figure 1b). Similar results were found in the XPS spectrum of lignin
(Figure S1a), there were three peaks at 167.48 eV (S 2p), 285.75 eV (C 1s), and 532.81 eV
(O 1s). Moreover, the high-resolution spectra showed further information on different
types of chemical bonds. The C 1s spectrum of lignin (Figure S1b) indicated the presence
of C–C (284.5 eV), C=C (283.6 eV), C=O (285.1 eV), and C–O/C–S (286.6 eV). The C 1s
spectrum of CSM-dots (Figure 1c) indicated the presence of C=C (284.7 eV), C=O (285.8 eV),
and C–O/C–S (286.4 eV). The existence of C=C and C=O/C–O peaks further identifies that
the CSM-dots are enriched with hydroxy and carboxyl functional groups on the surface.
The deconvoluted S 2p XPS spectrum (Figure 1d) displayed four peaks at 161.2 eV (S 2p3/2),
162.4 eV (S 2p1/2), 168.3 eV (S–O3), and 168.8 eV (S–O4) binding energy, respectively, which
clearly indicates that S atoms are present in the structure of CSM-dots. Moreover, the
spectrum of O 1s (Figure S2a) can be divided into three peaks at 529.5, 531.1, and 533.2 eV,
which corresponded to C−O/C−O−C, C=O/S=O, and Ar−OH bonds, respectively [25].
In addition, the morphology and size distribution of the prepared CSM-dots were shown in
TEM and HRTRM images (Figure S2b). It was found that the CSM-dots were well-dispersed,
spherical dots with little graphitic lattices, which indicated the amorphous structure of
CSM-dots. It is because that lignin has an amorphous structure and no severe conditions
were applied for the CSM-dots fabrication. The size distribution of CSM-dots was in a range
of 8.2–23.5 nm (based on statistical analysis of more than 200 dots) and almost 72% of the
CSM-dots were focused on an average diameter between 14.5 and 20.0 nm (Figure S2c).
The self-assembly of lignin was largely due to π–π interactions and inter/intramolecular
hydrogen bonding [40]. A broad peak at 21.3◦ in the XRD patterns of CSM-dots suggests
an amorphous structure (Figure S2d), which was due to the single benzene units and the
weak interaction between themselves among the whole amorphous structure of lignin [41].

3.2. Optical Properties of CSM-dots

Optical performance of the CSM-dots was characterized by the UV−vis absorption
spectrum and the FL spectrum under different excitation wavelengths. Figure 2a shows two
obvious absorption peaks at 245 and 273 nm in UV-vis spectrum, which was ascribed to the
typical absorptions of the π–π* transition and n–π* transition, respectively [9]. The above
results are similar to those of multiple aromatic chromophores that originated from lignin,
suggesting the existence of aromatic structures in CSM-dots [25]. The FL spectra showed
that a maximum emission peak at 415 nm was obtained, which resulted from monitoring the
excitation from incident light at 325 nm. Additionally, the CSM-dots exhibited an excitation-
dependent FL behavior in an excitation wavelengths range of 240–440 nm (Figure 2b).
Moreover, the FL quantum yield of CSM-dots in the aqueous solution was 13.3% (quinine
sulfate as the standard), which is greater than the C-dots derived from biomass-based
raw materials without doping [42]. The pH effects on FL intensity of the CSM-dots were
investigated (Figure S3). This showed a pH-dependence on the FL intensity of the CSM-
dots, which might be due to pH-sensitive π–π interactions and hydrogen bonding, leading
to weakening or strengthening in the FL emission intensity or wavelength. This result
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provided evidence for the existence of π−π interaction-induced self-assembly in CSM-dots.
The effects of environment temperature and ionic strength on the FL property were also
researched to test the FL stability of as-prepared CSM-dots (Figure S4a,b). The FL intensity
of the CSM-dots showed negligible changes under different temperature and ionic strengths
conditions, suggesting that they can be used in different environments.
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Figure 2. (a) The UV-vis absorption spectra, FL excitation and emission spectra of CSM-dots. (b) The
FL emission spectra of CSM-dots under different excitation wavelengths.

3.3. FL Responses of CSM-dots towards Ag+ Ions

Lignin possesses multiple functional groups such as methoxy and polyphenols groups.
Earlier reports have confirmed the strong interaction between Ag+ and lignin based on
its multiple aromatic and methoxy groups functional groups, which can reduce Ag+ to
Ag NPs [43]. The prepared CSM-dots retain functional and structural units of the lignin
molecules under the mild preparation conditions. The reductive phenolic hydroxyls or
methoxy groups on CSM-dots were able to reduce Ag+ to Ag0 and the sulfur atoms doped
on CSM-dots provided more active sites on their surface and the strong interaction with
Ag NPs.
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The FL responses of CSM-dots towards Ag+ were demonstrated in Figure 3a. It was
found that the FL intensity of the CSM-dots at 415 nm decreased with the increasing
concentrations of Ag+. The relationships between the FL intensity and Ag+ concentration
are described by the Stern–Volmer equation [27]:

F0/F = 1 + KSVCAg+ (1)

where F0 and F are the FL intensities in the absence and presence of Ag+, respectively,
KSV is the quenching constant of Ag+, and CAg+ is Ag+ concentration. As shown in the
inset of Figure 3a, an admirable linear FL response of CSM-dots can be detected towards
Ag+, which was in a concentration range of 5–290 µM. A high linear correlation coefficient
(R2 = 0.994) was achieved with the limit of detection (LOD) as low as 500 nM (S/N = 3).
Moreover, the FL response experiments towards other interferences (Ni2+, Ba2+, Zn2+,
Cu2+, Ca2+, K+, Na+, Al3+, Fe2+, Mg2+, Fe3+, Mn2+, Pb2+, Co2+ and Hg2+) were carried
out under the same situation (Figure 3b). The addition of the above potential interfering
substances only brought about negligible changes in the FL intensity. To further certify
the selectivity of CSM-dots, the quenching efficiency (1−F/F0) of Ag+ coexisting with
other different ions in the system was measured (Figure S5). Although the interference
concentration is ten times higher than that of Ag+, no significant changes in quenching
efficiency were found. The results of selectivity tests reflected the fact that the CSM-dots
had high selectivity for Ag+ sensing, which provided the precondition for developing a
multi-functional sensing system.
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A comparison of different methods for Ag+ determination is summarized in Table S1,
which shows the superiority of the proposed method in linear range and LOD. Furthermore,
a static quenching process was obtained by the minor FL lifetime change (Figure S6a). The
average FL lifetime of CSM-dots was transferred from 8.67 ns to 7.98 ns after the addition
of Ag+, which probably resulted from the formation of a quite stable nonradioactive FL
complex between CSM-dots and Ag+ [37]. TEM coupled Zeta potential characterization
confirmed the evidence of an aggregation induced quenching mechanism. When 500 µM
Ag+ was added to the CSM-dots solution with standing overnight, the TEM image displayed
the obvious aggregation behavior (Figure S6b). Moreover, the changes in zeta potential
values of CSM-dots from −38.45 to 3.50 mV after the addition of excess Ag+, further
suggested the aggregation effect between the lignin-derived CSM-dots and Ag+. To further
verify the binding mechanism of C-dots towards Ag+, the XPS spectroscopy (Figure S7a)
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was used to characterize the elemental composition of CSM-dots/Ag NPs. Compared
with the full scan spectrum of CSM-dots, the XPS spectrum of CSM-dots/Ag NPs had
two new peaks at 368.4 eV (Ag 3d5/2) and 374.3 eV (Ag 3d3/2), suggesting the successful
reduction of Ag+ into Ag NPs (Figure S7b). Besides, the chemical bonding of C, O, and S
was characterized by deconvoluted high-resolution C 1s, O 1s, and S 2p spectra. The S 2p
spectra of CSM-dots/Ag NPs indicated three bands at 168.2 eV (-C-SOx-), 169.4 eV (–C–S–C–),
and 167.9 eV (Ag-S) binding energy (Figure S7c), which demonstrated the participation
of the S atom in the Ag–S bond. Moreover, it resulted in the successful formation of the
CSM-dots/Ag NPs. The deconvoluted O 1s spectra showed three types of O atoms with
peaks at 531.6 eV (C–OH), 532.2 eV (C=O/S=O), and 530.8 eV (Ag–O) (Figure S7d), which
indicated the interaction of Ag NPs with oxygen-containing groups of CSM-dots [25].

3.4. Cytotoxicity Test

Biomass-derived C-dots have intrinsic biocompatibility and low toxicity, which pro-
vides advantageous conditions for their application in biological fields. Before biological
application, the cytotoxicity experiments were carried out using the MTT method, in which
the viability of HeLa cells treated with CSM-dots was evaluated. It was found in the cyto-
toxicity experiments that the viability of HeLa cell was shown to be more than 88%, even
at a concentration of 0.75 mg/mL, showing excellent biocompatibility and great promise
for cellular imaging (Figure 4).
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3.5. Practical Assay in Real Sample and Cellular Imaging

To confirm the superiority of the approach in real sample, the CSM-dots were em-
ployed to detect Ag+ in tap water samples via the standard addition method. Different
concentrations of Ag+ were added into tap water samples in the presence of CSM-dots. As
shown in Table 1, recoveries between 90.7% and 106.3% with relative standard deviation
(RSD) lower than 4.5% were achieved at each Ag+ concentration. These consequences
suggest the reliability and feasibility of the CSM-dots for Ag+ monitoring in practical sam-
ple analysis. In addition, to further estimate the biologic applications of the CSM-dots,
cell imaging experiments were carried out to demonstrate their feasibility in biological
applications. As shown in Figure S8, an intracellular district displayed a remarkable blue
emission. Moreover, there was no considerable alteration in the morphology of the HeLa
cell, which proved the low cytotoxicity of the CSM-dots. All results demonstrated that the
prepared nanodots could be used for effectively labeling live cells.
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Table 1. Determination of Ag+ in real samples.

Analyte Spike (µM) Found (µM) Recovery (%) RSD (n = 3, %)

Ag+ 50.00 45.35 90.7 2.3
100.00 96.4 96.4 3.7
150.00 159.45 106.3 4.5
250.00 263 105.2 4.4

4. Conclusions

In summary, a green, economical fabrication strategy for structural memory CSM-dots
was developed using sodium lignosulphonate as precursors. The as-prepared CSM-dots
with high FL performance were successfully utilized as a sensing platform for Ag+ deter-
mination. Due to the aggregation induced quenching effect of Ag+ towards CSM-dots, the
proposed approach offers a rapid and effective tactic for Ag+ determination with excellent
sensitivity and selectivity. More importantly, the designed sensor was successfully ap-
plied for Ag+ monitoring in real samples and cellular imaging, demonstrating its potential
in practical applications. Therefore, we believed that this method might provide a new
insight for the exploitation of multiple functional sensing platforms for biological and
environmental applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11102687/s1, Methodology of cytotoxicity test and cellular imaging analysis, Figure S1.
(a) The XPS spectra of lignin. (b) The high-resolution XPS spectra of C 1s in lignin. Figure S2. (a) The
high-resolution XPS spectra of O 1s in CSM-dots. (b) TEM image of CSM-dots (The inset is HRTEM
image of CSM-dots). (c) Size distribution of CSM-dots. (d) XRD pattern of CSM-dots. Figure S3. The
effect of different pH value on the FL performance of CSM-dots. Figure S4. FL intensity variation of the
CSM-dots as a function of temperature (a) and concentrations of NaCl (b). Figure S5. The selectivity
for the detection of Ag+ by CSM-dots in the presence of other metal ions. The concentrations of the
interference ions were 4000 µM, which is ten time higher than that of Ag+. Figure S6. (a) FL decay
spectra of CSM-dots and CSM-dots/Ag+ system. (b) The TEM image of CSM-dots /Ag+ composites.
Figure S7. XPS spectrum of CSM-dots/ Ag NPs (a). The high-resolution XPS spectra of Ag 3d (b), S 2p
(c) and O 1s (d) in CSM-dots/ Ag NPs. Figure S8. The fluorescence microscopy images of HeLa cells
treated with CSM-dots, (a) the bright-field images, (b) the fluorescent images, (c) the merged images
of (a) and (b). Table S1. Comparison of the reported probe for Ag+ determination. References [44–48]
were cited in Supplementary Materials.
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