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Simple Summary: Chickpea seeds are commonly used in human diets in many areas of the world,
and it can be a valid alternative to soybean meals and energetic feedstuff in animal nutrition.
However, its excellent nutritional characteristics are accompanied by the occurrence of some bioactive
substances with anti-nutritional effects. Usually, those secondary compounds are inactivated using
appropriate processing techniques, but this increases costs and causes a loss of some nutritional traits.
It is well-known that grain composition changes according to the genetic type and environmental
conditions, and this study suggests that it is possible to modulate the presence of bioactive compounds
in the seed also by varying some agronomic parameters, such as the sowing dates and the seeding
rate. This study demonstrates that, under Mediterranean climate conditions, spring sowing reduces
the content of trypsin inhibitors, and a high seeding rate can depress the content of α-galactosides.
A controversial effect of the sowing period was observed on the content of inositol phosphates,
probably because of the different climatic conditions during the two-year experimental period.
Consequently, agronomic management can modulate the content of anti-nutritional factors, reducing
the likelihood that they will avoid feeding treatments.

Abstract: Chickpea grains may represent an alternative to soybean meals and energetic concentrates
in animal feeding, as their nutritional value can help to increase the sustainability of livestock systems.
Unfortunately, the presence of bioactive compounds with anti-nutritional effects can prevent its direct
use, especially in mono-gastrics. It is known that the synthesis of these compounds depends on
genetic expression, which is also influenced by growth conditions. The objective of this two-year
study was to assess the effect of sowing date (winter versus spring) and seeding rate (70 versus
110 seeds m−2) on the accumulation of soluble carbohydrates, α-galactosides, trypsin inhibitors,
and inositol phosphates in the grains of two Kabuli cultivars, in the Mediterranean climate. The
results showed that seeds collected from winter sowing contained more trypsin inhibitors than those
seeded in spring (+4%, on average), reaching values between 16.1 and 18.6 TIU mg protein−1. The
seeding rate affects only the α-galactosides content, which increases (+9%) at lower densities (70 seeds
m−2). These findings suggest that agronomic management can be used to modulate the content of
some anti-nutritional factors in the seeds, even though the genetic characteristics and phenotypic
expression, in relation to the climatic conditions, seem to deeply affect the content of all the bioactive
compounds investigated.

Keywords: legume seeds; pulses; soluble carbohydrates; α-galactosides; trypsin inhibitors;
inositol phosphates
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1. Introduction

Chickpea (Cicer arietinum L.) is a traditional source of plant proteins for humans, and its use
for animal nutrition could provide a range of benefits, both for farmers and feed manufacturers. It
could also be particularly interesting for organic agriculture and in mixed farming systems. As other
traditional pulses, the chickpea could support the EU to reduce its dependence on imported vegetal
proteins, because it can be used as an alternative to soybean [1].

Chickpea is an annual grain legume traditionally cultivated in semiarid tropics (India), Australia,
and the Mediterranean regions, and it has recently increased its acreage, extending the cultivation area
to higher latitudes [2]. However, low productivity, susceptibility to climate conditions, competition
from other remunerative crops, and the emergence of more productive and profit-oriented production
systems have seriously reduced the diffusion of this pulse crop in the EU farming systems [3].

Since climate change is expected to bring warmer temperatures and changes in rainfall patterns [4,5],
crop adaptation strategies are needed to face this unfavorable scenario, and to reduce the risks on
human food security and animal feed supplies. Such adaptation strategies include, shifts in sowing
dates [6], breeding for density-neutral cultivars [7], and the identification of alternative or new species
tolerant to heat and drought stress [8]. Chickpea is considered one of the most drought-tolerant
cool-season pulses [9] and, as other legumes, it has the advantage of improving soil fertility through
biological nitrogen fixation, thus helping farmers reduce their use of fertilizers [3].

The interesting occurrence of both proteins (up to 29% DM, lysine about 7% of total proteins)
and carbohydrates (starch) (up to 59% DM) in suitable proportions, along with fibre, vitamins,
and microelements, make this species suitable for nutritional purposes [10,11]. However, as
with other leguminous seeds, chickpea contains anti-nutritional compounds (i.e., lectins, phenolic
compounds, trypsin inhibitors, inositol phosphates, saponins, oxalic acid, etc.), resulting from the
secondary metabolism of the plants, or from flatulence-causing soluble carbohydrates, such as
α-galacto-oligosaccharides [12]. These compounds are usually accumulated by plants for chemical
defense [13], if ingested in large quantities, could act as anti-nutritional factors (ANFs) and can
represent a limiting factor for chickpeas use in animal (and human) nutrition [14]. In fact, especially in
monogastrics, nutrient absorption from the gastrointestinal tract can be impaired by the co-presence of
ANFs [15], with the onset of detrimental effects on health and growth [16]. On the other hand, these
compounds have been found to exhibit antibiotic and health-promoting properties [17].

Several studies have shown that raw chickpeas can be used in ruminants, pigs, broilers, laying
hens, and fish diets, with different inclusion levels (up to 300 g/kg for ruminant and up 200 g/kg for
pigs, birds and fish) [15] with good results. The higher inclusion levels in ruminants are attributable
to the fact that the ANFs appear to be inactive in the rumen. Higher inclusion levels of chickpeas in
monogastrics diets can be used after removal of the secondary compounds with non-nutritional effect.

To reduce ANFs content of legume seeds, some processing techniques, i.e., soaking, boiling,
roasting, microwave cooking, autoclaving, fermentation, micronization, and extrusion could be
applied [15,18–20], which lead to an unsustainable increase in costs [12] and, sometimes, in the loss
of other nutritionals, such as vitamins and minerals [20]. Therefore, it is desirable to develop other
strategies to reduce ANFs concentration in chickpea seeds.

Several authors have shown that cultivation conditions affect qualitative traits and yield in various
crops and pulses [21–24], but few studies have been undertaken to investigate the effect on bioactive
compounds accumulation in chickpea seeds [25,26].

For example, Nikolopoulou et al. [25] demonstrated that the variable levels of some raffinose
family oligosaccharides (RFOs), total tannins and phytic acid in chickpea seeds largely depends on the
environmental growing conditions (i.e., area of cultivation and year of cultivation) and variety.

In a previous work [23], we have shown that the sowing date and seeding rate can influence
the yield, proximate composition and total tannins’ content of chickpea seeds. Grain yield, crude
protein, crude fat, crude fibre, ash, and total starch were all clearly affected by time (season) of sowing,
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while the seeding rate had relatively little influence. Winter sowing appeared to be the best choice to
maximize yield, while spring sowed plants resulted higher in a crude protein and fibre.

As the ANFs content of legume grains can be as important as the nutritive principles content,
the aim of this two-years study was to evaluate the effects of sowing date and seeding rate on
anti-nutritional profile of chickpea seeds.

2. Materials and Methods

Two Italian Kabuli chickpea varieties (Sultano and Pascià) were tested during two growing
seasons: 2006/2007 (Y1) and 2007/2008 (Y2). These two chickpea varieties were chosen for their overall
resistance to Ascochyta rabiei and to represent a range of genetic variations in morphological traits
(Sultano: Smooth seed type and erect plant growth habit; Pascià: Rough seed type, semi-erect plant
growth habit).

2.1. Experimental Set up and Plant Growing Conditions

A randomized complete block design experiment, with three replicates, was performed in both
growing seasons (Trial 1) [23]. In addition, two seeding rates, 70 and 110 seeds m–2, were tested in Y2
(Trial 2). The experimental fields were established in a Mediterranean area (Central Italy, Tarquinia,
42◦13′30′’ N, 11◦44′00′’ E, 22 m a.s.l.).

The winter sowing (E1) was carried out on 28th December 2006 (Y1) and 18th December 2007
(Y2). The spring sowing (E2) occurred on 2nd March 2007 (Y1) and 14th March 2008 (Y2). Individual
plots (8 m × 1.5 m each) consisted of six rows with a row spacing of 0.3 m and a seeding depth of
about 30 mm. Diammonium phosphate (18-46-0) was applied before sowing at rate of 200 kg ha−1, and
weed control was achieved by using a pre-emergence herbicide (Pendimetalin 322 g L−1 + Imazetapir
22 g L−1) at a rate of 2 L ha−1. Neither irrigation nor pesticide usage were included in the experimental
scheme. The chemical and physical characteristics of soil were: 33% clay, 19% silt and 48% sand, pH 6.8,
0.96% organic matter, and 0.054% total N. In both years chickpea was grown after durum wheat in a
two-year rotation system.

For both Y1 and Y2, the mean air temperature during the growing seasons was, 16 ± 5.5 ◦C for
winter sowing and about 18 ± 4.7 ◦C for spring sowing. Looking at winter sowing, the total rainfall
registered during the chickpea growing season was 227 mm, and 307 mm for Y1, and Y2, respectively;
whereas, about spring sowing, it was 134 mm, and 162 mm for Y1, and Y2, respectively. Weather
patterns with chickpea phenological phases are shown in Figure 1.

2.2. Harvesting and Sample Preparation

Harvesting was carried out using a plot harvester on 30 July 2007 for Y1, and 1st August 2008
for Y2, after physiological maturity, when about 90% of plants were completely dry. After thorough
cleaning and removal of undesired material, the grains were stored in paper envelopes at room
temperature (22 ± 2 ◦C) for 7 days and then milled.

2.3. Analytical Procedures

Seeds were dried at 65 ◦C for 48 h in a forced air oven and then grinded through a mill (Retsch,
Haan, Germany) to pass 1 mm screen. After thorough mixing, dry milled samples were stored in
sealed polyethylene bottles until analysis.

Sucrose, maltose, raffinose family oligosaccharides (raffinose, stachyose) and galactosyl cyclitols
(galactinol and ciceritol) were determined according to the RP-HPLC procedure described by
Muzquiz et al. [26]. The standard solutions for external calibration were obtained from Sigma-Aldrich
Co. (St. Louis, MO, USA). Ciceritol was purified and kindly supplied by Dr. A. I. Piotrowicz-Cieslak
(Olsztyn-Kortowo, Poland). The results were expressed as g kg−1 on dry matter (DM) basis. All the
samples were analyzed in duplicate.
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Figure 1. Weather pattern and phenological stages of chickpea during the two growing seasons.
Downward labels are referred to winter sowing (E1); upward labels are referred to spring sowing (E2).

Trypsin inhibitors (TI) were determined following the procedure described by Kakade et
al. [27], using α-n-benzoyl-DL-arginine-p-nitroanilide hydrochloride (Sigma-Aldrich Co., St. Louis,
MO, USA) as substrate. The results were expressed as Trypsin Inhibitor Units (TIU) per mg of
protein [27]. Spectrophotometric determinations were carried out at 410 nm by a UV-1601 double beam
spectrophotometer (Shimadzu Corp., Kyoto, Japan) against negative control.

Inositol trisphosphate (IP3), inositol tetraphosphate (IP4), inositol pentaphosphate (IP5), and
inositol hexaphosphate (IP6 or phytic acid) were extracted and determined, as described by Cuadrado
et al. [28] with minor modifications. The total inositol phosphates content (TIPs) was the sum of the
compounds listed above. In brief, chickpea flour (500 mg) was extracted with 10 mL of 0.5 M hydrogen
chloride (Sigma-Aldrich Co., St. Louis, MO, USA) for 1 min using an Ultra-Turrax® (T25 basic, IKA,
Königswinter, Germany) homogeniser operated at 9,000 rpm, then centrifuged for 15 min at 27,000 rpm
(4 ◦C). After that, 25 mL of distilled water were added to 5 mL of supernatant and the diluted extract
was eluted through 3 mL SAX columns (Varian, Harbor City, CA, USA). The Ips were recovered with
2 mL of 2 M HCl, vacuum dried and then suspended in 0.5 mL of buffer solution (51.5% methanol,
48.5% milliQ-water, 1.6 mL TBNOH—40% in milliQ-water, 0.2 mL H2SO4 5 M and 0.1 mL formic acid
91%). The samples were injected in an ion-pair HPLC system (Beckman System Gold Instrument,
Los Angeles, CA, USA) equipped with a macroporous (150 × 4.1 mm i.d., 5 µm) polymer PRP-1 column
(Hamilton, Reno, NV, USA), maintained at 45 ◦C and with a flow rate of 1 mL min−1. The mobile phase
was 0.012 M formic acid in 51.5% methanol and 0.8% TBA-OH, adjusted to pH 4.3 with sulfuric acid.
The results were expressed as gram of standard phytic acid (Sigma-Aldrich Co., St. Louis, MO, USA)
per kg DM.

2.4. Statistical Design and Analysis

The response variables measured were subjected to ANOVA, using a year-combined complete
block design (Trial 1); a separate ANOVA was performed, comparing data collected in Trial 2 to verify
the effect of seeding rate. The differences between means were compared by Fisher’s least significant
difference (LSD) test. Significance was always declared at p ≤ 0.05, unless noted otherwise. Data
analyses were performed using R 3.5.3 software [29].
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3. Results

3.1. Trial 1

The content of bioactive compounds in chickpea seeds is reported in Table 1.

Table 1. Trial 1: Effects of cultivar (Pascià versus Sultano), growing season (Y1 versus Y2), and sowing
date (E1 versus E2) on the content of galactosides and inositol phosphates (g kg−1 DM), and trypsin
inhibitors (TIU mg protein−1) in chickpea grains.

Cultivar (C) Growing Season (Y) Sowing Date (E) Interactions (p-Level)

P S p Y1 Y2 p E1 E2 p C × Y C × E Y × E C × Y × E

Sucrose 19.4 15.1 ** 18.2 16.4 ns 17.5 17.0 ns ** ns ns ns.
Raffinose 5.0 5.6 ** 4.8 5.8 ** 5.2 5.4 ns ns ** ** ns
Stachyose 18.9 17.2 ns 17.8 18.4 ns 17.7 18.4 ns ns ns ns ns
Maltose 2.5 2.8 ns 2.5 2.7 ns 3.0 2.3 ** ** ns ns *

Galactinol 2.5 2.5 ns 2.6 2.4 ns 2.7 2.3 ns * ns ns ns
Ciceritol 29.4 35.5 ** 35.7 29.1 ** 32.8 32.1 * ** ** * ns

TSGs 77.7 78.8 ns 81.7 74.8 ** 79.0 77.5 ns ns * ns ns
IP3 0.1 0.1 ns 0.1 0.1 ns 0.1 0.1 ns ns ns ns ns
IP4 0.3 0.2 ns 0.3 0.2 ns 0.2 0.2 ns ns ns ns ns
IP5 1.0 1.0 ns 1.2 0.9 ** 1.1 1.0 ns ns ns ** ns
IP6 6.8 7.1 ns 6.4 7.5 ** 7.4 6.6 ** * ns ** *

TIPs 8.2 8.5 ns 8.0 8.8 ns 8.8 7.9 ** * ns ** *
TI 16.8 16.9 ns 20.2 13.4 ** 18.6 15.1 ** ns ns * *

P = Pascià, S = Sultano; Y1 = 2006–2007, Y2 = 2007–2008; E1 = winter, E2 = spring; TSGs = total sugars and
galactosides; IP3 = inositol trisphosphate; IP4 = inositol tetraphosphate; IP5 = inositol pentaphosphate; IP6 = inositol
hexaphosphate; TIPs = total inositol phosphates; TI = trypsin inhibitors. * p < 0.05; ** p < 0.01; ns = not significant.

Significant effects of cultivar, growing season, time of sowing and their interaction were detected
for some of the traits studied. The two cultivars showed marked differences of some α-galactosides,
but not in the sum of them. Sucrose was more represented (p < 0.01) in Pascià (19.4 g kg−1), compared
to Sultano (15.1 g kg−1), while ciceritol and raffinose were greater (p < 0.01) in Sultano (35.5 kg−1, and
5.6 g kg−1, respectively) than in Pascià (29.4 kg−1 and 5.0 g kg−1, respectively). Neither IPs nor trypsin
inhibitors showed significant differences between cultivars. The growing season also affected some
α-galactosides, such as raffinose, ciceritol, and TSGs, which reached a greater (p < 0.05) value in Y1
(81.7 g kg−1) with respect to the Y2 growing season (74.8 g kg−1). IP5 was higher in Y1 (1.2 g kg−1)
than in Y2 (0.9 g kg−1) (p < 0.01), but for the IP6 a lower value (p < 0.01) was recorded in Y1 (7.5 g kg−1)
with respect to Y2 (8.0 g kg−1). Overall, the content of inositol phosphates did not differ significantly
between the two trials. The accumulation of trypsin inhibitors was higher in Y1 than in Y2 (20.2 versus
13.4 TIU mg protein−1). As for the effect of sowing time, the amount of maltose and ciceritol was greater
in the winter sowing (E1, 3.0 and 32.8 g kg−1, p < 0.01, p < 0.05, respectively) compared with spring
sowing (E2, 2.3 and 32.1 g kg−1). The same trend was observed for IP6 (7.4 and 6.6 g kg−1), TIPs (8.8 and
7.9 g kg−1) and TI (18.6 and 15.1 TIU mg protein−1). Significant effects due to cultivar × growing
season, cultivar × time of sowing, and cultivar × year of sowing x time of sowing interactions were
also observed, suggesting a certain variability for the studied parameters between the two genotypes
and a relative phenotypic response over environmental condition.

TIPs content showed an opposite trend between 2006–2007 and 2007–2008 growing seasons
(Figure 2). In seeds harvested in 2007 (Y1), TIPs were significantly higher for winter sowing than
for spring sowing, with Sultano having higher TIPs level than Pascià if sown in spring. Conversely,
TIPs were significantly higher for spring planting than winter one in 2008, with similar level between
Sultano and Pascià for both planting seasons.
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3.2. Trial 2

Bioactive compounds content is reported in Table 2.
Many of the results, obtained in Trial 1, were confirmed, highlighting substantial differences

between the two varieties, and between sowing seasons.
Sultano was confirmed to be a major accumulator of ciceritol (30.4 g kg−1), Pascià (26.8 g kg1), and

it had also greater (p < 0.01) level of TI (15.2 vs. 13.3 TIU mg protein−1). As in Trial 1, when compared
with spring sowing, winter sowing enhanced (p < 0.01) the content of maltose (3.1 versus 2.4 g kg−1),
galactinol (2.6 versus 2.1 g kg−1), ciceritol (29.5 versus 27.7 g kg−1), and TI (16.1 versus 12.3 TIU mg
protein−1), but it reduced (p < 0.01) the raffinose content (5.0 versus 5.5 g kg−1). In contrast with what
observed in Trial 1, winter sowing significantly reduced (p < 0.01) the TIPs content (8.0 g kg−1) of
chickpea grains with respect to spring sowing (9.3 g kg−1), and the synthesis and accumulation of IP5
and IP6 was mainly affected by sowing time. The lowest seeding rate (70 seeds m−1) resulted in a
major (p < 0.01) accumulation of sucrose, raffinose, stachyose, and TSGs (16.4, 5.8, 18.3, and 74.8 g kg−1,
respectively), compared with the high seeding rate (13.6, 4.7, 16.5, and 67.9 g kg−1, respectively),
without appreciable effects on the other traits.
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The interactions between cultivar, sowing time, and seeding rate were not significant, and only
TI and stachyose seemed to be affected by the interaction between sowing date × seeding rate, and
among cultivar × sowing, date × seeding rate, respectively.

Table 2. Trial 2: Effects of cultivar (Pascià versus Sultano), sowing date (E1 versus E2) and sowing
rate (low versus high) on the content of galactosides and inositol phosphates (g kg−1 DM) and trypsin
inhibitors (TIU mg protein−1) in chickpea grains.

Cultivar (C) p
Sowing
Date (S) p

Seeding
Rate (R) p Interactions (p-Level)

P S E1 E2 L H C × S C × R S × R C × S × R

Sucrose 16.2 13.8 ns 14.9 15.1 ns 16.4 13.6 ** ns ns ns ns
Raffinose 5.0 5.4 ns 5.0 5.5 ** 5.8 4.7 ** ns ns ns ns
Stachyose 18.2 16.5 ns 16.9 17.8 ns 18.3 16.5 ** ns ns ns **
Maltose 3.2 2.3 ns 3.1 2.4 ** 2.7 2.7 ns ns ns ns ns

Galactinol 2.7 2.1 ns 2.6 2.1 ** 2.4 2.4 ns ns ns ns ns
Ciceritol 26.8 30.4 ** 29.5 27.7 ** 29.1 28.0 ns ns ns ns ns

TSGs 72.2 70.4 ns 72.0 70.7 ns 74.8 67.9 ** ns ns ns ns
IP3 0.1 0.1 ns 0.1 0.1 ns 0.1 0.1 ns ns ns ns ns
IP4 0.2 0.2 ns 0.2 0.2 ns 0.2 0.2 ns ns ns ns ns
IP5 1.0 0.9 ns 0.8 1.0 ** 0.9 0.9 ns ns ns ns ns
IP6 7.6 7.3 ns 6.8 8.0 ** 6.8 8.0 ns ns ns ns ns

TIPs 8.9 8.5 ns 8.0 9.3 ** 8.8 8.6 ns ns ns ns ns
TI 13.3 15.2 ** 16.1 12.3 ** 13.4 15.0 ns ns ns ** ns

P = Pascià, S = Sultano; E1 = winter, E2 = spring; L = 70 seed m−2, H = 110 seeds m−2; TGs = total sugars and
galactosides; IP3 = inositol trisphosphate; IP4 = inositol tetrakisphosphate; IP5 = inositol pentakisphosphate; IP6
= inositol hexaphosphate; TIPs = total inositol phosphates; TI = trypsin inhibitors. * p < 0.05; ** p < 0.01; ns =
not significant.

4. Discussion

It has been shown that leguminous plants, including chickpea, accumulate raffinose family
oligosaccharides in seeds, during yellowing and desiccation [30], and after physiological maturity [31].
These metabolites, that act as a reserve carbohydrate, play a central role in carbon allocation and
modulate some physiological processes (i.e., cold and desiccation tolerance) [32]. The RFOs are
synthesized de novo in legumes, and accumulate progressively from flowering until drying [33,34].
However, their concentration in legume seeds can depend on the cultivar, as well as the growing
conditions (i.e., soil type, fertilizer application, water shortage, air temperatures, etc.) [35].

Regarding the cultivar, we noticed that Pascià contains more sucrose and less ciceritol than
Sultano, but this is of minor importance, as they are not flatulence factors. In quantitative terms,
ciceritol and stachyose are the most represented, but only the stachyose concentration in chickpea
grains was found to be plant density-dependent, as demonstrated in Trial 2. Since the ciceritol does
not cause flatulence in monogastrics, because its chemical structure (galactosyl cyclitols) promotes
hydrolysis [36], only stachyose can exert an anti-nutritional effect. However, Sandberg et al. [37]
demonstrated that stachyose, as well as raffinose, are partially degraded and digested in the stomach
and small intestine of humans, and because they pass mostly undigested into the lower gut, they
behave as dietary fibres acting as a prebiotic, also in monogastric animals [38].

Findings obtained with Trial 2 showed that a sparser seeding rate lead to a higher concentration
of RFOs (raffinose and stachyose, in particular). This can be partially explained by the fact that a
denser canopy tends to decrease the photosynthetic capacity, because many leaves do not experience
saturating light intensities, especially when canopies present a full closure. This, in addition to the
competition for nutrients and water uptake, which are most noticeable at high seeding rate, can affect
the biosynthesis of the precursor sucrose during the early development of seeds [31] and, later, during
maturation and desiccation, the RFOs synthesis, and accumulation.

In terms of the trypsin inhibitors, the data presented in this study are consistent with other
findings that indicate that winter varieties of pulses [39] and wheat [40] can have more defensins
(including protease inhibitors) in response to cold induction and acclimation than spring varieties. Seeds
accumulate protease inhibitory compounds as they reach maturity, since they act as defensins [41],
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protecting the plant and, in particular, the seeds from predation, and against fungi and other
microorganisms, also during storage [42]. The fact that legume grains accumulate protease inhibitory
compounds late in the season could explain the lower content of trypsin inhibitors, detected in chickpea
grains, harvested in 2008 than 2007. In fact, the high biotic stress caused by Ascochyta blight (AB) from
April to early June 2008 [23], besides determining a significant yield loss (−54%), could have also
caused a low efficiency in the accumulation of such compounds. Consequently, the decrease in TI
content was more marked in the susceptible cultivar Pascià, than in the more resistant Sultano. It has
to be noted that, in 2008, the disease pressure was substantially greater than in 2007, due to almost
50% more rainfall during reproductive development (April and May). Specifically, on May 20th and
21st (2008) 80 mm-rainfall occurred and maximum relative air humidity (RH) was constantly higher
than 95% from May 18th to May 24th. In that period, plants were in the middle of flowering phase
(50% flowering detected on May 10th) which, together with podding, is the most susceptible growing
stage [43,44]. In field experiments conducted in India, the dynamics of AB infection clearly evidenced
a more rapid disease progress in plants inoculated at flowering than other stages [44]. Additionally,
during the reproductive phase, the temperature range was 8.6–31.8 ◦C with a mean of 18 ◦C, and
average RH varied from 44.8 to 92.3%, so the environmental conditions would often have been within
the optimum range for AB, as previously indicated by Jhorar et al. [45]).

A combined effect of cultivar, growing season and sowing time on TIPs and TI content has been
found in this study, suggesting that these compounds were markedly dependent on the growing
environmental conditions, and the interaction between genotype and the environment must be
accurately considered. Even though we did not find any previous research investigating simultaneously
the role of growing year, cultivar, and planting season on chickpea anti-nutritional factors, the effects,
involving year and planting season, could be related to rainfall and seasonal pattern of air temperature,
which are the most obvious environmental data changes between the two growing seasons encompassed
by this study. For instance, rainfall has been positively related to trypsin inhibitors in cowpeas farmed
in Nigeria [46]. Consistently with those results, we found a significantly higher TI content in winter
planting (256.9 ± 30.3 mm rainfall), as compared to spring (166.4 ± 32.6 mm rainfall). However, in
contrast with findings from Oluwatosin [46], we found a significantly lower TI content in 2007–2008
growing season when total rainfall was higher than in 2006–2007 growing season (287.2 mm, and
226.6 mm, respectively). These contrasting results could be attributable to the difference in total
rainfall amount, which was about 100 mm between winter and spring sowing in both years, while it
was from 30 mm to 50 mm between 2006–2007 and 2007–2008 growing seasons (winter, and spring
sowing, respectively).

In terms of TIPs content, environmental conditions markedly affected this trait, but results were
inconsistent between years. Clearly there are major shortcomings in the ability to adequately predict
the accumulation of anti-nutrient compounds in chickpea seeds on the basis of climatic conditions.
Nikolopoulou et al. [25] also found contrasting results in phytic acid and total tannins content for three
chickpea cultivars, in two subsequent seasons in Greece. Additionally, a complex and contrasting
relationship was found between anti-nutritional factors and soil characteristics for the genus Vicia
in Western Australia [47]. These findings suggest that, to better understand how climatic conditions
influence anti-nutritional content in grain legumes, multi-year and location trials should be conducted.
However, the effect of year, planting season, and variety indicate that the regulation of anti-nutrients
in grain legumes might be extremely difficult. In addition, plant defense responses to pathogens (i.e.,
to A. rabiei), through the synthesis of bioactive compounds with anti-nutritional effects involve a very
specific metabolic event, multigenic governed by resistance-quantitative trait loci (R-QTL), where some
metabolic pathways are still not well known [48].

5. Conclusions

Even though just two varieties of Kabuli chickpeas were tested, this study has shown that the
concentration of some bioactive compounds is influenced by genotype, climatic conditions, agronomic
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techniques and their interaction, leading to considerable variability in the qualitative characteristics of
this traditional pulse. Spring sowing appeared to be the best choice when cultivating to minimize some
α-galactosides and trypsin inhibitors in the Mediterranean environment. However, winter sowing
determines an overall increase in seed yield (+19%) and total protein amount per hectare as already
demonstrated by us. This demonstrates that a complex trade-off between quality and quantity of
chickpea grain has to be faced when choosing agronomic strategies, such as planting date and cultivar
selection. Seeding rate had a relatively little effect but data from multi-year trials are needed to draw
solid conclusions on this aspect.

Further studies will be focused on the effect of anti-nutritional factors occurring in the chickpea
lines, studied on animal nutrition and performance, by in vitro and in vivo trials, and to assess the
relationship between their biosynthesis in plants and infection from A. rabiei. This will provide
further evidence to assist in selecting the best chickpea cultivar, cultivation practices, and animal
feeding approaches.
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