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Bone-conducted microphone (BCM) senses vibrations from bones in the skull during speech to electrical audio signal. When
transmitting speech signals, bone-conduction microphones (BCMs) capture speech signals based on the vibrations of the
speaker’s skull and have better noise-resistance capabilities than standard air-conduction microphones (ACMs). BCMs have a
different frequency response than ACMs because they only capture the low-frequency portion of speech signals. When we replace
an ACMwith a BCM, we may get satisfactory noise suppression results, but the speech quality and intelligibility may suffer due to
the nature of the solid vibration. Mismatched BCM and ACM characteristics can also have an impact on ASR performance, and it
is impossible to recreate a new ASR system using voice data from BCMs. ,e speech intelligibility of a BCM-conducted speech
signal is determined by the location of the bone used to acquire the signal and accurately model phonemes of words. Deep learning
techniques such as neural network have traditionally been used for speech recognition. However, neural networks have a high
computational cost and are unable to model phonemes in signals. In this paper, the intelligibility of BCM signal speech was
evaluated for different bone locations, namely the right ramus, larynx, and right mastoid. Listener and deep learning architectures
such as CapsuleNet, UNet, and S-Net were used to acquire the BCM signal for Tamil words and evaluate speech intelligibility. As
validated by the listener and deep learning architectures, the Larynx bone location improves speech intelligibility.

1. Introduction

,e speech quality and intelligibility degrade due to ambient
noise and implant location of air-conducted and bone-
conducted devices. ,e speech intelligibility of noise-af-
fected speech improves by noise suppression techniques.
background noise, including musical noise, babbling noise,
coloured noise, and nonstationary noise. In a speech rec-
ognition system, the noise suppresses automatically by filters
such as Wiener and Kalman filter, noise subtraction tech-
niques, and speech enhancement algorithm. However, the
residual noise signal is caused by the nonlinear nature of the

noise signal. ,e residual noise seriously affects speech in-
telligibility and recognition. Traditionally, noise suppression
from speech signals has been accomplished by estimating the
power spectrum of the noise signal. Because noise signals are
nonlinear, power spectrum estimation is inaccurate. Due to
the presence of residual noise, the obtained speech signal has
reduced speech intelligibility and perception. Deep learning
methods improve speech intelligibility and perception by
suppressing nonlinear noise signals.,e early fusion and late
fusion of ensemble learning strategy along with convolu-
tional neural network enhance speech signal obtained with
bone-conducted microphone (BCM). ,e acoustic
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characteristics of BCM and air conducted microphone
(ACM) signal learned by ensemble approach and con-
volutional neural network for speech signal enhancement
[1].

,e BCM and ACM conducted speech signal obtained in
the noisy environment of 61.7 dBA to 73.9 dBA, transform to
match with each other by deep denoising autoencoder. ,e
speech recognition accuracy improves by adjusting the
weight of the speech intelligibility index [2]. ,e MED-EL
bonebridge device speech perception was evaluated with a
tone audiogram. ,e MED-EL bonebridge device has im-
proved speech perception upon implantation. ,e
implanted device’s speech perception was tested with
Freiburg monosyllable [3].

Speech perception is enabled with a transcutaneous
bone-conduction implant (BCI BB) placed near to the
mastoid bone's sinodural angle.,e speech perception of the
device evaluates with functional hearing gain. ,e BCI BB
provides better speech perception under a noisy environ-
ment [4].

,e Radioear B-71 bone vibrator and TDH-39 ear-
phoneme speech perception were evaluated under quiet,
pink, white, and babble conditions with Callsign Acquisition
Test.,e device’s speech intelligibility was tested for mastoid
and condyle locations. ,e speech intelligibility varied for
gender due to background noise validated by post hoc
analysis [5].

,e speech intelligibility of bone-conducted ultrasound
(BCU) and air-conducted ultrasound (ACU) signal of ce-
ramic vibrator placed at mastoid region was evaluated with
ANOVA test.,eACU speech intelligibility increased with a
higher sound level compared to BCU [6].

Performance evaluation of the B-72 device is with regard
to background noise, voice gender, and ear position. ,e
modified rhyme test (MRT) was conducted with Fonix FA-
12 audiometer and Telephonics TDH-39P earphoneme. ,e
MRT results show condyle region increase speech intelli-
gibility compared to the mastoid region [7].

2. Related Works

Table 1 explains the characteristics of the existing models.
Using noise-resistant recording devices is a simple way

to collect less distorted speech signals. As previously stated, a
BCM records signals via bone vibrations and is thus less
sensitive to air background noise than an ACM. However,
BCM-recorded speech signals frequently suffer from a loss of
high acoustic-frequency components, which was addressed
and partially alleviated by the BCM-to-ACM conversion
technique.

3. Methodology

,e study of speech signals and signal processing methods is
known as speech processing. Because the signals are typically
processed in digital form, speech processing can be thought
of as a subset of digital signal processing applied to speech
signals. ,e BCM speech acquires with MEMS acoustic
sensor. ,e transducer converts vibrations induced at the

bones of the skull to a spectral-rich electrical signal. ,e
bones conduct vibrations from the vocal tract during speech.
,e vocal track causes vibrations on bones such as right
ramus, larynx, and right mastoid as shown in Figure 1.

,e speech stimuli involved in the study were five
common words from the Tamil langue as shown in Table 2.
,e words are frequently used in conversation and represent
Tamil language phonetic characteristics. ,e Tamil words
spoken by male at 60 dB were recorded in a quiet envi-
ronment with microphone placed at three feet from lips
sampled at 22 kHz. Similarly, the words were recorded with
an ADMP401 microphone placed at the right ramus, larynx,
and right mastoid as shown in Figure 2. ,e ADMP401 was
positioned over bone and prevents from drifting during
speech with a headband.,e ADMP401 signal was amplified
by a class B power amplifier and recorded with Hp laptop
and Sigview software.

3.1. CapsuleNet. A capsule network trained to detect objects
in this database improved model accuracy by 45 percent
when compared to traditional CNN models.

3.2. UNet. A general convolutional neural network focuses
on image classification, where the input is an image and the
output is one label, but in biomedical cases, wemust not only
determine whether disease exists but also localise the area of
abnormality. UNet is committed to resolving this issue. It
can localise and distinguish borders by performing classi-
fication on every pixel, so the input and output are the same
sizes.

3.3. S-Net. S-Net was the first parallel neural network
implementation. It employs the data division method, and
the system employs one server and any number of clients. It
was written in the C programming language. TCP/IP sockets
are used by clients to connect to the server. Each client
receives their own thread. Each client computes update
matrices for his portion of the data (bunch-size/N), sends
them to the server, and then waits for a response. When the
server is aware of all update matrices, the main thread
updates the weight. When the update is complete, the server
sends new weights to clients via threaded client
communication.

When compared to other methods, CapsuleNet, UNet,
and S-Net recognised Tamil words accurately for BCM
signals obtained from the larynx bone.

4. Results and Discussion

,e Fourier domain analysis of BCM voice signals is from
the right ramus, larynx, and right mastoid. ,e Fourier
shows tone and phoneme variation of the speech signal. ,e
low-frequency speech signal fails to conduct through bone
compared to the high-frequency speech signal. ,e low-
frequency speech signal and phoneme distort in the right
ramus and right mastoid. However, the low- and high-
frequency signals are conducted through the larynx to



provide a clear representation of phoneme in speech signal.
Each word of speech signal records for five times from
different locations. ,e words were recorded at one-minute
interval to reduce speaker fatigue. ,e recorded speech
signal evaluates by the listener for speech intelligibility. ,e
recorded speech signal and BCM signal were assessed with a
slider scale. ,e listeners correlated recorded speech signal
and BCM signal from the right ramus, right mastoid, and
larynx with 72%, 84%, and 91% speech intelligibility. ,e
right ramus, right mastoid, and larynx conducted speech
signal showed mean speech intelligibility of 75%, 87%, and
92%, respectively. ,e BCM speech signal from the larynx
shows higher speech intelligibility compared to other re-
gions. ,e different bone locations are shown in Figure 2.
,e speech signal is acquired from the larynx bone train with
CapusleNet, UNet, and S-Net for automatic speech recog-
nition. Figure 3(a) shows the acquired speech signal of
“Amam” Tamil word. ,e speech signal spectrogram in
Figure 3(b) shows the phoneme of “Amam” word signal.,e
low-frequency component of the signal shows similar speech
intelligibility compared to the speech signal acquired
through the microphone. ,e BCM further reduces the
presence of noise in the speech signal and shows the feature
of spoken words since BCM is in direct contact with the
larynx bone. ,e magnitude response of the speech signal
shows the variation in “Amam” word phoneme in the range
of 10 to 55 dB as in Figure 3(c). ,e amplitude spectrum

signal shows the Fourier representation of the speech signal
as in Figure 3(d).,e Fourier representation of speech signal
shows the time signature of word phoneme. ,e autocor-
relation and probability distribution of the signal is shown in
Figures 3(e) and 3(f ). Similarly, the second word “Vena”
acquired speech signal is shown in Figure 4(a). ,e spec-
trogram of “Vena” signal in Figure 4(b) shows speech in-
telligibility at 4Hz. ,e magnitude of the signal ranges from
50 to 10 dB due to the initial low phoneme variation, “Ve.”
,e amplitude spectrum of speech signal shows the speech
intelligibility of word phoneme in the range of −50 to
−120 dB. ,e autocorrelation and probability distribution of
“Vena” speech signal is shown in Figures 4(e) and 4(f).
Similarly, the Tamil word “Iruku” has speech intelligibility at
5Hz, and its magnitude response changes in the range of 50
to 20 dB.,e “Illa” word has speech intelligibility at 7Hz and
magnitude response in the range of 50 to 25 dB. ,e “Enna”
word has speech intelligibility at 4.5Hz and magnitude
response in the range of 60 to 10 dB. Table 2 shows the
speech signal parameter of different Tamil words use for
analysis.

4.1. CapsuleNet. ,e CapsuleNet architecture is shown in
Figure 5 which consists of the convolutional fully connected
layer. ,e convolutional layers have 9× 9 convolutional
kernels and ReLU activation which extracts speech signal

Table 1: Related works.

Reference Sensor Problem Method

[8] Stethoscope and
acoustic sensor

Lombard reflex on nonaudible murmur
recognition in the presence of noise

Evaluation of nonaudible murmur microphone
robustness with real and simulated noisy data

[9]
Softband bone

conducted hearing
device

Analyze auditory, speech development of bilateral
microtia-affected children

,e speech development of children assesses with a
meaningful auditory integration scale and speech

intelligibility rating

[10] ,roat, acoustic
microphone

Improve throat acoustic microphone speech
recognition

,e throat and acoustic microphone correlate to
extract acoustic feature vector for speech

recognition

[11] Baha attract bone
hearing system

Speech recognition of wireless bluetooth device in
patients using a baha attract bone hearing system

and traditional hearing aid

Speech perception, recognition of Korean
sentences were performed in quiet and noisy

conditions

[12] Bonebridge™ MED-
EL

Speech recognition performance comparison of
semiimplanted bonebridge MED-EL and adhesive

bone-conduction device

Free-field audiometry test was conducted with
speech, noise produced through loud speaker

[13]
Air and bone
conduction
microphone

Evaluate enhanced speech quality signal

,e equalised bone conducted speech produced by
maximum likelihood and bone conducted
estimator for high and low SNR conditions,

respectively. ,e equalised bone conducted speech
quality evaluates with wiener gain and priori SNR

estimator

[14] Bone conducted
microphone Nonstationary noise suppression of speech signal

Supress noise in speech signal by selection of
speech codebook based on noise free bone
conducted microphone reference signal

[15] Bone conducted
microphone Low frequency noise suppression

Supress low frequency noise namely colour,
multitasker babble, and car from speech signal
with bone conducted speech. ,e low noise

frequency signal present in air-conducted speech is
replaced with bone-conducted speech

Proposed MEMS acoustic
vibration transducer Tamil word recognition

One syllable, two-syllable, and three-syllable Tamil
speech recognize with CapsuleNet, UNet, and S-

Net
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features from the BCM signal. ,e features are identified by
feature detectors. ,e features apply as input to multidi-
mensional lower order capsules. ,e lower order capsules
followed by the primary capsule are made of 32-channel
convolutional capsules. Every capsule consists of 8 con-
volutional units and produces a total of 256× 81 convolu-
tional units for speech recognition. ,e 6× 6 capsules form
32× 6× 6 primary capsules and represent by equation (1).
,e output layer consists of 16D capsule which connects to
all capsules in the layer. ,e parent capsules are zero

initialised, and all capsules have zero probability for speech
recognition. ,e learning loss and marginal loss of Cap-
suleNet minimize with Adam optimizer.

vj �
sj

�����

�����
2

1 + sj

�����

�����
2

sj

sj

�����

�����
(1)

where vj represents output produced by capsule j for input
Sj. ,e input Sj is weight adjusted by capsules to predict

Table 2: Signal parameters of different Tamil words.

Syllable Sigma Mu Crest factor Q (dB) Dynamic range (dB) Autocorrelation time (sec)
Amam 0.055079 −0.16242 15.3147 79.7327 3.0891
Vena 0.047551 −0.20297 13.6193 72.0075 3.0784
Iruku 0.043221 −0.24713 12.0106 66.6918 3.0838
Illa 0.042194 −0.14086 16.6509 75.1304 3.0865
Enna 0.050101 −0.10114 18.9488 83.7131 3.0449
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Figure 2: Bone location in skull and throat.

MEMS acoustic vibration
transducer

ADMP401 3D DAQ

Deep learning

i) CapsuleNet

ii) Unet

iii) Snet

Bone conducted speech
signal

i) Right Ramus

ii) Larynx

iii) Right mastoid

FFT analysis

Word classification

i) SVM

ii) LSSVM

iii) SVR

Figure 1: Overview of speech signal processing.
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speech outcome. ,e prediction 􏽢uj|i form by the product of
the Wij weight matrix and output ui is represented by the
following equation:

sj � 􏽘
i

cij􏽢uj/i, 􏽢uj/i � Wijui, (2)

where cij represents coupling coefficients represented by the
following equation:

cij �
exp bij􏼐 􏼑

􏽐kexp bik( 􏼁
, (3)

,e coupling coefficient in capsules forms by routing
softmax. ,e routing softmax has logits (bij) and determines
the capsule coupling among layers. ,e capsule determines
the features in the input speech signal based on the in-
stantiation vector. ,e margin loss (Lk) for multiple features
in the input signal for each capsule k is represented by the
following equation:

Lk � Tk max 0, m
+

− vk

����
����􏼐 􏼑

2
+ λ 1 − Tk( 􏼁max 0, vk

����
���� − m

−
􏼐 􏼑

2
. (4)

Figures 6(a) and 6(b) show CapsuleNet retrieved Tamil
word “Amam” for input query BCM signal. ,e CapsuleNet
recognition of BCM from larynx bone has high accuracy
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Figure 3: “Amam” speech signal waveform, spectrogram, magnitude response, amplitude spectrum, autocorrelation, and probability
distribution. (a) “Amam” speech signal. (b) “Amam” signal spectrogram. (c) “Amam” signal magnitude response. (d) “Amam” signal
amplitude spectrum. (e) “Amam” signal autocorrelation time. (f ) “Amam” signal probability distribution.
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compared to the BCM signal acquired from right ramus and
mastoid bone. ,e signal from the larynx bone has average
mean and crest factor of 15.30 dB and −0.17091 since the
speech signal characteristics do not affect by background
noise and bone conduction.

4.2. UNet. Figure 7 shows the architecture of UNet. ,e
UNet forms by a convolutional neural network (CNN) in
“U” shape.,e UNet has paths namely contraction path (or)
encoder and expansion path (or) decoder. ,e encoder
performs activation, convolution, and pooling which cap-
tures the input BCM speech signal. ,e decoder extracts
spectral features and spatial information to feature map of
the speech signal by up convolution and concatenation

process.,e feature map has rich spectral information in the
encoder phase, and the intermediate low-level features are
combined in the decoder phase are combined to form
feature channels. ,e feature samples propagate speech
information to higher layers of CNN. ,e input speech
signal is preprocessed to remove background noise and
unsampled by a factor of two to form an enhanced feature
map. ,e enhanced feature map formed from the encoder is
concatenated. ,e concatenated feature map upsamples by
two factors before applying to convolutional layers. ,e
process continues till vocal spectral content is present for
speech recognition. ,e UNet consists of a convolutional
network with two 3× 3 convolutions, pooling and rectified
linear units to perform downsampling. ,e downsampling
process increases feature channels, and upsampling at the
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Figure 6: CapsuleNet Speech recognition. (a) “Amam” query speech signal. (b) Recognised speech signal.
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decoder performs by 2× 2 convolution which reduces re-
dundant features of the speech signal. Figures 8(a) and 8(b)
show query and recognised speech signal of the Tamil word
“Vena.” ,e speech intelligibility of UNet is low for ramus
and mastoid bone. ,e larynx bone has higher speech in-
telligibility with respect to a phoneme in the speech signal.

4.3. S-Net. S-Net works with Shufflenet for feature detection
as shown in Figure 9.,e S-Net provides efficient computing
in dense convolutions (1× 1). ,e S-Net and Shufflenet use
pointwise group convolutions and channel shuffle operation
for speech input weight adjustment in feature channels. ,e
Shufflenet block consists of a 6× 6 layer with 6× 6 convo-
lution to map speech input in the feature map. ,e Shuf-
flenet performs average pooling and channel concatenation
to handle the feature dimension of input speech. ,e
Shufflenet has less complexity as it requires minimal FLOPs

and convolutions. Figures 10(a) and 10(b) show speech
recognition of S-Net for “Illai” Tamil word.,e S-Net clearly
recognises signals acquired from larynx bone compared to
other bones.

4.4. Support Vector Machine (SVM). ,e SVM is a super-
vised linear classifier. ,e SVM recognises features and
patterns in signals based on supervised learning. ,e SVM
separates dimensional data by hyperplane into a different
class. ,e hyperplane separates nonlinear data by projecting
data to higher dimensional space. ,e high-dimensional
space forms by kernel-induced feature space. ,e kernels
namely dot product, RBF, and polynomial kernel implement
to classify nonlinear data. ,e dot product, RBF, and
polynomial kernel represent by equations (5)–(7). ,e data
projection into high-dimensional space causes overfitting.
,e overfitting overcomes by the dot product. ,e SVM
performs well to classify unknown data and likelihood can
be calculated.

K(x, x)� x Æ x¢;

K x, x′( 􏼁 � x.x′, (5)

K x, x′( 􏼁 � x.x′ + 1( 􏼁
d
, (6)

where d represents positive integer degree of kernel.

K x, x′( 􏼁 � exp
− x − x′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

σ2
⎛⎝ ⎞⎠, (7)

where σ is a real number.

4.4.1. Least Square Support Vector Machine (LSSVM).
,e LSSVM is an improved version of SVM which uses the
least square cost function. ,e LSSVM uses linear equations
to train data instead of a quadratic equation as in SVM. ,e
LSSVM with RBF kernel provides accurate prediction with
minimal training time compared to SVM.

4.4.2. Support Vector Regression (SVR). SVR trains by
symmetric loss function for prediction. ,e SVR uses the
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spare solution, kernels, and support vectors for function
estimation. ,e SVR obtains from SVM by e-tube. E-tube is
an e-insensitive region of the function. ,e e-tube refor-
mulates to determine the best-valued function with minimal
prediction error. ,e e-tube predicts function such that the
tube has multiple training instances. ,e function represents
by the following equation:

min
w

1
2
‖w‖

2
, (8)

where ‖w‖ represents the magnitude of the vector being
approximated. Table 3 shows voice and BCM signal cor-
relation with LSSVM, SVM, and SVR.

5. Conclusion

,e study describes the identification of optimal bone to
provide speech intelligibility with BCM. ,e BCM speech
signal was acquired from three different bone locations
namely right ramus, larynx, and right mastoid. ,e BCM-
conducted speech signal from different bones was rated for
speech intelligibility by listeners, spectral analysis of the
signal, and deep learning architectures namely CapsuleNet,
UNet, and S-Net. ,e larynx bone-conducted speech signal
showed a mean speech intelligibility of 92%. ,e Capsu-
leNet, UNet, and S-Net recognised Tamil word accurately for
BCM signals obtained from larynx bone accurately com-
pared to other ramus and mastoid. In the future, we will

work to improve the model performance of this system and
expand its application to more severe environments.
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Figure 10: S-Net speech recognition. (a) Query speech signal. (b) Recognised speech signal.

Table 3: Voice and BCM signal correlation with LSSVM, SVM, and SVR.

Correlation between voice and BCM signal

Tamil words and syllabi
Architecture

Correlation algorithm (%)
S-Net UNet CapsuleNet

Amam (2 syllabi) 83.29 85.62 87.52

LSSVM

Vena (2 syllabi) 81.56 84.58 88.15
Iruku (2 syllabi) 82.69 87.56 92.15
Illa (2 syllabi) 83.59 87.91 93.45
Enna (2 syllabi) 83.15 88.15 91.25
Engae (2 syllabi) 82.18 88.94 93.58
Naan (2 syllabi) 83.29 89.18 94.59
Va (1 syllabi) 92.6 93.25 96.12 SVM
Engae va (3 syllabi) 91.2 92.89 97.25 SVR
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