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Globalization and climate change facilitate the spread and establishment of invasive

species throughout the world via multiple pathways. These spread mechanisms can

be effectively represented as diffusion processes on multi-scale, spatial networks. Such

network-based modeling and simulation approaches are being increasingly applied in

this domain. However, these works tend to be largely domain-specific, lacking any

graph theoretic formalisms, and do not take advantage of more recent developments

in network science. This work is aimed toward filling some of these gaps. We develop

a generic multi-scale spatial network framework that is applicable to a wide range of

models developed in the literature on biological invasions. A key question we address is

the following: how do individual pathways and their combinations influence the rate and

pattern of spread? The analytical complexity arises more from the multi-scale nature

and complex functional components of the networks rather than from the sizes of

the networks. We present theoretical bounds on the spectral radius and the diameter

of multi-scale networks. These two structural graph parameters have established

connections to diffusion processes. Specifically, we study how network properties, such

as spectral radius and diameter are influenced by model parameters. Further, we analyze

amulti-pathway diffusionmodel from the literature by conducting simulations on synthetic

and real-world networks and then use regression tree analysis to identify the important

network and diffusion model parameters that influence the dynamics.

Keywords: invasive species, network models, diffusion processes, multi-scale networks, simulation analytics,

spatial networks

1. INTRODUCTION

1.1. Background and Motivation
Many natural- and engineered complex systems can be represented as systems of interconnected
networks (Buldyrev et al., 2010; Barrett et al., 2013; Bashan et al., 2013). Such representations
are very effective at capturing relationships of different types and at different scales between the
entities comprising the complex system. There are several classes of such networks depending on
the application, including multi-layer networks, multiplex networks, and network of networks, to
name just a few. We refer the reader to Kivelä et al. (2014) for a comprehensive list. Here, we study
modeling of complex networks arising in the context of multi-scale spatial dynamical processes,
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such as biological invasions, spread of infectious diseases, and
built infrastructure (Balcan et al., 2009; Serrano et al., 2009;
Walpole et al., 2013), our focus mainly being on the properties
of dynamical processes over such networks.

In recent years, there has been a big thrust toward developing
cyberinfrastructures to address problems related to resilient
and sustainable agriculture (USDA-NSF, 2017, 2021; Microsoft,
2020). One of the greatest threats to biodiversity and food
security is the increasing rate of biological invasions (Pimentel
et al., 2005; Crowl et al., 2008; Pyšek and Richardson, 2010).
The annual economic costs arising from environmental damages
and the losses caused by invasive species run into billions of
dollars (Diagne et al., 2021). Understanding the role of natural
processes and human activities in the spatio-temporal spread
of biological invasions is of utmost importance (Cunniffe et al.,
2015).

A variety of models for biological invasions have been
proposed with the goal of studying these complex phenomena
at appropriate levels of resolution and fidelity (Pitt et al., 2009;
Carrasco et al., 2010; Smolik et al., 2010; Fitzpatrick et al.,
2012; Robinet et al., 2012; Ferrari et al., 2014; Chapman et al.,
2015; Douma et al., 2016; McNitt et al., 2019; Venkatramanan
et al., 2020). In many of these works, biological invasions
have been viewed as propagation processes over multi-scale
networks. As depicted in Figure 1, there are various pathways
or modes of dispersal. The spreading ability of the invasive
organism, environmental factors (e.g., winds, ocean currents,
and suitable environment), and anthropogenic factors (e.g.,
production and trade of host crops, and tourism) are among the
primary pathways. These pathways affect the spread at multiple
spatial and temporal scales. For example, the rate and pattern
of self-mediated spread can be significantly different from that
of human-assisted spread (Davis et al., 2001; Hoffmann and
Courchamp, 2016). The functions or mechanisms that govern the
process can vary within and across scales; the flying ability of a
pest determines how far it can naturally spread, while trade of
host crops and plant material can facilitate long distance spread.
Accordingly, there are potentially several ways to control the
phenomenon ranging from application of pesticides (farm-level)
to trade restrictions (administrative-level).

While the models referenced above have been designed and
analyzed from the perspective of biological invasions, there
has been very little work on exploring the connection to well-
known formal frameworks developed in network science. A
typical modeling effort uses networks to represent movements
of species based on data or assumptions regarding the processes
involved (or both). The resulting networks are analyzed using
basic structural properties such as degree distribution and
betweens centrality. Further, suitable diffusion models are used
to simulate the spread over this network. It is important to
understand these models from a network science perspective
in order to (i) make robust predictions, (ii) rigorously address
key aspects such as calibration, validation, verification, sensitivity
analysis, and uncertainty quantification, and (iii) leverage state-
of-the-art algorithms to address important problems pertaining
to control, monitoring, and various inference problems in the
field of network dynamical systems. The aim of this work is to

FIGURE 1 | A multi-pathway network model of a spatial diffusion process in

the context of biological invasions. The spread takes place at multiple spatial

scales, such as (i) one cell to adjacent cells due to self-mediated spread, (ii)

within a locality of high human activity, and (iii) long distance jumps facilitated

by trade and travel.

provide the first steps in developing the foundations for these
models. Through such formal grounding and abstractions one
may also be able to take advantage of existing mathematical
and computational theory, including computational paradigms
facilitating efficient mapping of models onto high-performance
software implementations that exploit modern hardware.

In this paper, we develop an abstract model for multi-pathway
spatial processes. For this model, we characterize complex spatial
diffusion processes using structural properties of the underlying
network. Next, we provide an analysis of the roles of the different
pathways on the rate and pattern of spread by applying a
complex multi-pathway diffusion model proposed in McNitt
et al. (2019), which we refer to as SPREAD (which stands for
Simulation tools for Pest Risk analysis accounting for Ecological
and Anthropogenic Drivers). Finally, we provide analyses of
structural and dynamical properties of networks through the lens
of machine learning algorithms to identify the primary drivers
of spread. A more detailed description of our contributions is
as follows.

1.2. Contributions
1.2.1. A Model for the Multi-Pathway Spatial Network
We define a grid-based model called MPSN for synthetic spatial
networks which captures the multi-scale nature of the spread
process. The synthetic network is composed of nodes of a grid
and metanodes called localities, each of which consists of a
unique set of contiguous grid nodes. Its edge set is the union
of the edge sets of three different graphs, each corresponding
to a different pathway of spread as in Figure 1. The main
purpose of proposing such a model is to bridge the gap between
simple static network models like Erdős-Rényi or Chung-Lu
graphs, and complex real-world networks that describe the
interactions in the biological invasion process. These networks,
while being significantly more complex than standard models,
are still amenable to theoretical and experimental analyses as we
demonstrate in this work.
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1.2.2. Theoretical Results on Spectral Radius and

Diameter
We derive bounds on the spectral radius and diameter of MPSN
model. These two graph invariants are important indicators of
the diffusion dynamics. The bounds highlight the importance
of inter-locality and intra-locality components of the network,
which represent the human factors in the spread.

1.2.3. Experimental Analysis of Synthetic and

Real-World Networks
We report results from extensive experiments conducted on
hundreds of synthetic networks using the MPSN model and
several real-world networks. First, we study how the MPSN
model parameters influence the spectral radius and diameter.
This is followed by running simulations for varying pathway
probabilities. In both analyses, to understand the influence
of model parameters (i.e., parameters of the network and of
the diffusion process) on the extent of spread, we view it
as a supervised learning problem. Here the feature vector is
comprised of model parameters and the observed variable is
a graph invariant (in the structural analysis) or a simulation
output (in the dynamical analysis), and we use regression trees
and random forests to identify the primary drivers of diffusion
process. Our experimental analyses help to identify the regimes
where long distance edges and locality size are highly influential
in increasing the spread.

2. RELATED WORK

2.1. Networked Representations of
Invasive Species Spread
The current state-of-the-art for modeling invasive species
involves developing risk maps using ecological niche
models (Venette et al., 2010). Such models account for
climate and biology of the invasive species and its hosts to
map the long-term establishment potential. They do not
provide a causal explanation to the extent and dispersion of
spread or explicitly account for human-mediated pathways.
However, in recent years, network diffusion models are being
increasingly applied to model the spread dynamics of invasive
species in order to account for their long distance spread.
Hernandez Nopsa et al. (2015) studied the structure of rail
networks for grain transport in the United States and Eastern
Australia to identify the shortest paths for the anthropogenic
dispersal of pests and mycotoxins, as well as the major sources,
sinks, and bridges for movement. Sutrave et al. (2012) used
an SI model (Easley and Kleinberg, 2010) to county-to-county
network to model wind speed and direction, and host density
to identify locations to monitor soybean rust, a pathogen. Koch
et al. (2014) assess the risk of forest pests due to camping
activities. Venkatramanan et al. (2020) used a Bayesian inference
method to identify the most likely spread pattern of an invasive
pest by modeling the spread as a diffusion process on a time
varying network.

2.2. Complex Multi-Pathway Dispersal
Models
Carrasco et al. (2010) considered both local and long distance
spread in a process-based spatially explicit simulation model
to study pest of the maize crop. They use phenology models
to estimate pest population size, a negative power law kernel
for self-mediated spread, and a gravity model representation
of long distance edges. Our work is based on a similar
approach by McNitt et al. (2019) who model the multi-pathway
spread by accounting for self-mediated spread and spread
within and between areas of high human activity (e.g., urban
areas). Both works account for suitability of establishment and
the distribution of host crop production. Similar modeling
approaches have been applied to study infectious diseases in
humans and livestock (Ajelli et al., 2010; Kim et al., 2018;
Venkatramanan et al., 2021).

2.3. Spectral Characterization of Network
Dynamics
Several structural properties of networks have been used to
understand the progression of a diffusion process. These include
basic properties such as degree distribution or clustering
coefficient to other properties such as graph spectrum, diameter,
and degeneracy, to name a few. The spectrum of a graph is
the set of eigenvalues of its adjacency matrix. There are several
works that relate spectrum, particularly the first eigenvalue or
spectral radius λ1(G) of the adjacency matrix of a graph G,
to disease spread in SEIR-like epidemic models (Ganesh et al.,
2005; Prakash et al., 2012). A well known result that highlights
the impact of the network structure on the dynamics is the
following: an epidemic dies out “quickly” if λ1(G) ≤ T,
where T is a threshold that depends on the disease model.
This relationship has motivated a number of works on epidemic
control where the objective is to find an optimal set of
nodes (or edges) to remove from the network that leads to
the maximum reduction in its spectral radius (Van Mieghem
et al., 2011; Saha et al., 2015; Zhang et al., 2016; Chen et al.,
2021).

2.4. Diameter and Network Dynamics
The diameter of real-world networks is an important structural
parameter used to characterize epidemics on real-world
graphs (Holme, 2013; Pastor-Satorras et al., 2015). In the
literature, average path lengths between pairs of nodes
and diameter of the network have been observed to have
an effect on the rate of diffusion. In particular, the lower
the diameter, the higher is the diffusion rate (Banos et al.,
2015; Taghvaei et al., 2020; Kamra et al., 2021). In spatial
networks, the diameter tends to be large when compared to
social networks that exhibit the small-world effect (Watts
and Strogatz, 1998), and long distance edges can be
responsible for bringing the diameter down (Barthélemy,
2011).
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2.5. Machine Learning and Simulation
Systems
From the works described above, it is clear that even simple
SIR-like processes (Easley and Kleinberg, 2010) on arbitrary
static networks are difficult to characterize. In recent years,
there have been several studies that use a combination of
extensive simulations and machine learning algorithms to
understand the phase space of complex models. Fox et al.
(2019) explored multiple ways in which such a nexus of the
two modeling approaches can be used to understand complex
systems. Lamperti et al. (2018) used extreme gradient boosted
trees for the purpose of phase space exploration of a complex
model. Our approach to apply classification and regression trees
(CART) and random forests (Breiman, 2001, 2017) is motivated
by this work. Other methods based on Gaussian emulators have
been used for calibrating agent-based models (Fadikar et al.,
2018).

3. PRELIMINARIES

3.1. Graph Theoretic Concepts
We begin with the definitions of several basic graph theoretic
concepts. Additional information regarding these concepts can
be found in West (2006); Brouwer and Haemers (2012). We
assume that graphs are simple (i.e., they have no multi-edges or
self loops).

Given an undirected graph G(V ,E), where V =
{v1, v2, . . . , vn}, the adjacency matrix AG is an n×n (symmetric)
matrix defined as follows.

AG[i, j] =











0 if i = j

1 if vi and vj are adjacent and

0 otherwise.

We use degree(vi) to denote the degree of node vi. Also, we
use δ(G) and 1(G), respectively, to denote the minimum and
maximum node degrees in G.

Consider a connected undirected graph G(V ,E) with a non-
negative weight w(e) on each edge e ∈ E. When w(e) = 1 for
each e ∈ E, we sometimes refer to G as an unweighted graph. A
shortest path between any pair of nodes vi and vj is a path such
that the total weight of all the edges in the path is a minimum
among all the paths between vi and vj. Let dG(vi, vj) denote the
length of a shortest path between vi and vj. Then, the diameter of
G is defined by

diam(G) = max{dG(vi, vj) : vi, vj ∈ V}.

IfG is not connected, then by convention, diam(G) is taken as∞.
Given an undirected graph G(V ,E) and an integer t ≥ 1, the

t-th power of G, denoted by Gt , is an undirected graph Gt(V ,Et),
where {vi, vj} ∈ Et iff there is a path with at most t edges between
vi and vj in G. Given two graphs G1(V1,E1) and G2(V2,E2), the
Kronecker product of G1 and G2, denoted by G1 × G2, is the
graph G′(V ′,E′), where V ′ = V1 × V2 and an edge {(a, b), (c, d)}
is in E′ iff {a, c} ∈ E1 and {b, d} ∈ E2.

3.2. Matrix Concepts
For any n × n symmetric matrixM with real entries, it is known
that all the n eigen values, denoted by λ1, λ2, . . ., λn, are real
(Brouwer andHaemers, 2012). Since the n×n adjacencymatrix of
an undirected graph with n nodes is symmetric and all its entries
are from {0,1}, it follows that all the eigen values of the adjacency
matrix are real. We will assume without loss of generality that
these n eigen values are ordered so that λ1 ≥ λ2 ≥ . . . ≥
λn. Thus, λ1 will be referred to as the first eigen value or the
spectral radius.

3.3. Geometric Concepts
For any pair of points a = 〈ax, ay〉 and b = 〈bx, by〉 in the

2D-plane, let dEuc(a, b) =
√

(ax − bx)2 + (ay − by)2 denote the

Euclidean distance between a and b. It is well known that the
Euclidean distance satisfies the triangle inequality: for any three
points a, b, and c, dEuc(a, b) + dEuc(b, c) ≥ dEuc(a, c). As a
generalization of this inequality, we have the following fact: if a1,
a2, . . ., an are n ≥ 3 points in the plane, then

∑n−1
i=1 dEuc(ai, ai+1)

≥ dEuc(a1, an). We will use this inequality in Section 6.

4. MULTI-PATHWAY SPATIAL NETWORK

4.1. Motivation
A number of models have been proposed for spatial networks,
where nodes and edges are embedded in a d-dimensional
space with some geometric constraints. Such a network model
acts as a reference model for comparison with real-world
networks, and is amenable to theoretical analysis and controlled
experimentation. Network models are also a principled approach
to approximate partially-known real-world networks and to
capture their variability (Gutfraind et al., 2015). Barthélemy
(2011) provides a comprehensive review of such models. Lattice
graphs and random geometric graphs are examples of some
of the simplest spatial networks. More complex models that
exhibit properties found in real-world spatial networks have
also been proposed. Most of these models have been derived
by spatial generalizations of well-known random graph models,
such as Erdős-Rényi graphs, the Watts-Strogatz model, and
the preferential attachment model Easley and Kleinberg (2010).
However, to the best of our knowledge, none of these models
is representative of networks arising out of biological spread
processes like epidemics of invasive species or infectious diseases.
While these network models have a base component that is grid-
or lattice-like, they are missing a multi-scale component due
to human-mediated pathways of spread. At the same time, the
domain specific studies are limited to simulations on a single
instance of the network that is usually constructed using a
combination of available data and spatial interactionmodels such
as the gravity model. Uncertainty quantification and sensitivity
analyses are typically limited to diffusion model parameters, not
network structure. Here, we address these gaps by developing
a model that is a realistic representation of such processes,
and analyzing its structural parameters such as spectral radius
and diameter that are well-studied in the context of diffusion
processes on networks. Later, in Sections 5 and 6, we will
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further discuss how the network model parameters affect these
structural properties.

4.2. General Structure
At a high level, some aspects of this spatial network are captured
in Figure 1. Here, we will describe the graph class G(V ,E) of
multi-pathway networks where V is a set of n vertices embedded
in some suitable, 2-dimensional space M (e.g., Euclidean
space R2, the sphere S2). The graph G = G(V ,E) is composed of
three graphs GS, GL, and GLD, where the subscripts S, L, and LD
denote corresponding pathways. With respect to Figure 1, GS

corresponds to the self-mediated spread, GL is the spread within
a locality, and GLD is the inter-locality spread or long distance
jumps. In general, G will be a loop-free, edge-labeled, and
directed multi-graph. Edges are labeled by the pathway to which
they belong with (u, v,π) encoding the edge from u to v due
to pathway π . In the case where G is undirected we will use
the notation ({u, v, },π) for undirected edges, or simply {u, v}
when the pathway is clear from the context. Let r denote the
dispersal range. The graph GS has vertex set V and an edge
between each pair of vertices v, v′ ∈ V for which d(v, v′) ≤ r
where d is some suitable metric on the embedding spaceM. Next,
let L = {L1, L2, . . .} denote a collection of nL mutually disjoint
subsets of V . For each Li ∈ L, let Ei be some edge set over Li,
and let Gi(Li,Ei) denote the corresponding locality graph. The
graph GL = GL(VL,EL) is the (disjoint) union of the graphs Gi.
Let FLD be a graph with vertex setL. We use amapping f to define
the edge set ELD of GLD via FLD by associating to each edge (ℓ, ℓ′)
of FLD a set of edges Ef (ℓ, ℓ

′) ⊂ V × V subject to the constraint
that whenever (v, v′) ∈ E(ℓ, ℓ′) we have v ∈ ℓ and v′ ∈ ℓ′. The
graphGLD has vertex setV and its edge set is the union of the sets
Ef (ℓ, ℓ

′) over all edges (ℓ, ℓ′) of FLD.

4.3. A Multi-Pathway Spatial Network
Model
Here, we define the graph model class called multi-pathway
spatial network (MPSN). Its vertex set consists of points on
a
√
n ×

√
n square lattice with integer coordinates (i, j), where

i, j ∈ {0, 1, 2, . . . ,
√
n − 1}. We will assume throughout that n

is a perfect square. Let k be a positive integer satisfying the
following conditions: (i) it is a perfect square and (ii)

√
k is a

factor of
√
n. The vertex set is partitioned into k regions, each

inducing a
√

n/k ×
√

n/k subgrid. Each region consists of one
locality with s vertices, where s has the same parity (odd or even)
as n/k. Each locality is again a square grid of size

√
s ×

√
s at

the center of that region. For a locality v, let Lv denote the set of
points on its square grid. Let L denote the set of localities.

As described above, we have three component graphs GS, GL,
and GLD. The edge set of GS is determined by the range
parameter r. Any two lattice points are adjacent inGS if they are at
a Euclidean distance of at most r. The edge set ofGL is determined
by a template graph HL, referred to as the intra-locality graph, on
a
√
s ×

√
s grid. For each locality v, let Gv denote the graph on

the vertex set Lv. Consider the bijection between the vertex sets
of Gv and HL induced by the natural ordering of their vertices
on the

√
s ×

√
s grid. Each Gv is isomorphic to HL under this

bijection. The graph GL is the union of all graphs Gv. Let FLD be

a graph defined on the localities, referred to as the inter-locality
graph. The long distance human-mediated pathway graph GLD is
defined as follows: (a, b) ∈ E(GLD) ⇐⇒ a ∈ Lu, b ∈ Lv and
(u, v) ∈ E(FLD).

We will henceforth denote this model by
MPSN(n, r, k, s,HL, FLD). In the following discussion, we
will consider scenarios where FLD is sampled from some random
graph model denoted by G. Examples of such models are Erdős-
Rényi model and the preferential attachment model (Easley and
Kleinberg, 2010). In such cases, FLD is replaced by G, and the
resulting notation is MPSN(n, r, k, s,HL,G).

4.3.1. A Note on Directed Graphs
For simplicity, we only consider the undirected version of
the multi-pathway network model. However, in real-world
applications, these are typically directed weighted graphs that
do not exhibit symmetry with respect to edge weights [see
for example the networks in McNitt et al. (2019) or Carrasco
et al. (2010)]. A natural directed version of the MPSN would
correspond to GS and GL graphs with every undirected edge
replaced by a pair of bidirectional edges and FLD being a directed
graph. Note that the resulting graph will be strongly connected.

5. SPECTRAL CHARACTERIZATION

Here, we provide bounds for the spectral radius of an MPSN
instance in terms of the spectral radii of the component networks
representing the different pathways. The main objective is to
understand the importance of each pathway in a diffusion
process through the lens of graph spectra. Our main result is
Theorem 5.1, where lower and upper bounds on the spectral
radius of the multi-pathway network are expressed in terms of
the parameters of the MPSN model.

Theorem 5.1. Let G = MPSN(n, r, k, s,HL, FLD) be a multi-
pathway spatial network. The spectral radius of G can be bounded
as follows:

max
{

r2

2 , λ1(HL), λ1(FLD)(s− 1)
}

≤ λ1(G) ≤ 4r2 + λ1(HL)+
λ1(FLD)(s− 1)

The first term of both bounds in the above result corresponds to
self-mediated spread (GS). We note that this is fully determined
by the range parameter r and not by the size of the graph.
Also, it increases as the square of the range. From an invasive
species perspective, this suggests that a species with strong flying
capability can rapidly expand its range. An example of such a
recent global invasion is that of the fall armyworm (Westbrook
et al., 2016; Day et al., 2017), which is known for its long
distance migration. The second term in the bounds corresponds
to intra-locality spread. This depends on the size and structure
of the localities. A more significant contribution comes from the
third term corresponding to the inter-locality spread pathway.
It is proportional to the spectral radius of the inter-locality
graph FLD. The denser the graph, the greater its contribution.
More importantly, it is amplified by (s−1), the size of the locality.
The main implication of this is that the higher the number of

Frontiers in Big Data | www.frontiersin.org 5 February 2022 | Volume 5 | Article 796897

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Adiga et al. Multi-scale Dynamics of Biological Invasions

areas are that are suitable for establishment of the pest in a
locality, the greater the influence of the inter-locality pathway.

The rest of the section is devoted to a proof of the above
theorem. Throughout these proofs, we will denote the edge set
of a graph G by E(G).

Lemma 5.2. The spectral radius of the short-distance pathway
network GS with n nodes and range r is 2(r2).

Proof: Note that GS is a network induced on a set of points
located on an

√
n ×

√
n grid with integer coordinates and

range parameter r. We use the notation u = 〈i, j〉 for each
vertex, where i, j ∈ {0, . . . ,

√
n − 1} are the coordinates. Let H1

denote the grid graph where each 〈i, j〉 is adjacent to 〈i± 1, j〉
and 〈i, j± 1〉. LetH2 denote the graph where each 〈i, j〉 is adjacent
to 〈i± 1, j〉, 〈i, j± 1〉, and 〈i± 1, j± 1〉. In the definitions of both
H1 and H2, edges to vertices whose coordinates do not exist
within the

√
n×

√
n grid are not added.

Claim 1: E(H⌊r⌋
1 ) ⊆ E(GS) ⊆ E(H⌊r⌋

2 ), where H⌊r⌋
1 and H

⌊r⌋
2 are

the ⌊r⌋th powers of H1 and H2, respectively.
Proof of Claim 1: We recall that dH(u, v) is the distance
between u and v in graph H and dEuc(u, v) is the Euclidean
distance between them. First, we will show that for any (u, v) ∈
E(H⌊r⌋

1 ), dEuc(u, v) ≤ r. To this end, it is enough to prove
this for u = 〈0, 0〉 and v = 〈x, y〉 since both distances are
shift invariant. For this case, dEuc(u, v)2 = x2 + y2. Since u

and v are adjacent in H
⌊r⌋
1 , v is reachable from u in at most ⌊r⌋

hops in H1. This means that x + y ≤ r, with x and y being
positive. Therefore, x2 + y2 ≤ x2 + (r − x)2 ≤ r2 + 2x(x −
r) ≤ r2, and E(H⌊r⌋

1 ) ⊆ E(GS). Now, we will show that

if x2 + y2 ≤ r2, then (u, v) ∈ E(H⌊r⌋
2 ). Since x2 + y2 ≤

r2 and x and y are integers, we have x, y ≤ ⌊r⌋. Note that
in H2, dH2 (〈0, 0〉, 〈x, y〉) = max(x, y) ≤ ⌊r⌋. This is because,
assuming without loss of generality, that x ≤ y, 〈x, y〉 is reachable
from 〈0, 0〉 by the path 〈0, 0〉〈1, 1〉 · · · 〈x, x〉〈x, x+ 1〉 · · · 〈x, y〉,
hence E(GS) ⊆ E(H⌊r⌋

2 ), completing our proof of Claim 1.
We now recall a result from spectral graph theory (Brouwer

and Haemers, 2012).

Lemma 5.3 (Brouwer and Haemers, 2012). For any undirected
graph G, δ(G) ≤ λ1(G) ≤ 1(G), where δ(G) and 1(G) denote the
minimum and maximum node degree in G.

Claim 2: (i) δ(H⌊r⌋
1 ) ≥ ⌊r⌋ (⌊r⌋ + 1)/2. (ii) 1(H⌊r⌋

2 ) ≤ 4(⌊r⌋ −
1)2 + 4(⌊r⌋).
Proof of Claim 2: To prove Part (i), note that in H

⌊r⌋
1 , the

nodes with minimum degree are the corner vertices of the grid.
Recalling that 〈0, 0〉 is a corner vertex, and any neighbor 〈x, y〉
satisfies x+ y ≤ ⌊r⌋, its degree is ⌊r⌋ (⌊r⌋ + 1)/2.

To prove Part (ii), note that in H
⌊r⌋
2 , if max(x, y) ≤ ⌊r⌋,

then 〈x, y〉 is a neighbor of 〈0, 0〉. There are ⌊r⌋2−1 such vertices.
For sufficiently large n in comparison to r, a non-corner vertex
can have a degree of up to 4(⌊r⌋ − 1)2 + 4(⌊r⌋). This completes
our proof of Claim 2.

We now continue with our proof of Lemma 5.2. As argued

earlier, E(H⌊r⌋
1 ) ⊆ E(GS) ⊆ E(H⌊r⌋

2 ). Thus, δ(H⌊r⌋
1 ) ≤ δ(GS) and

so from Lemma 5.3 and Part (i) of Claim 2, we have λ1(GS) ≥
δ(GS) ≥ ⌊r⌋ (⌊r⌋ + 1)/2 = �(r2). Likewise, 1(GS) ≤ 1(H⌊r⌋

2 ).
So from Lemma 5.3 and Part (ii) of Claim 2, we have λ1(GS) ≤
1(GS) ≤ 4(⌊r⌋ − 1)2 + 4(⌊r⌋) = O(r2). We thus conclude that
λ1(G) = 2(r2).

Lemma 5.4. Consider the local human-mediated spread pathway
network GL with n nodes, number of regions k and locality size s.
Let HL be the intra-locality graph. The set of eigenvalues of the
adjacency matrix GL is identical to the set of eigenvalues of the
adjacency matrix of HL.

Proof: By design, GL induces multiple connected components,
with each component being isomorphic toHL. The result follows.

Lemma 5.5. Consider the local human-mediated spread pathway
network GLD with n nodes, number of regions k and locality size s.
Let FLD be the inter-locality graph. The spectral radius of GLD

equals (s− 1)λ1(FLD).

Proof: We will use the definition of localities from Section 4.3
and the definition of Kronecker product of graphs from Section 3.

By definition, (a, b) ∈ E(GLD) ⇐⇒ a ∈ Lu, b ∈ Lv
and (u, v) ∈ E(FLD). Also, each Lu is of the same size s. Let GK

denote a graph on s vertices which induces a complete graph.
Now we show that the graph GLD is equivalent to the graph H
obtained as the Kronecker product of FLD andGK . SinceGK has s
nodes, we can define a bijection between V(GK) and V(L) for
any locality L. Let this bijection be denoted by πu :V(GK) → Lu.
Let (u, x), (v, y) ∈ V(H) where u, v ∈ V(FLD) and x, y ∈ V(GK).

Suppose (u, x) and (v, y) are two vertices in H, where u 6= v,
a = πu(x) and b = πv(y). We will now show that {(u, x), (v, y)} is
an edge in H iff a is adjacent to b in GLD. Suppose {(u, x), (v, y)}
is an edge in H. Since (u, x) is adjacent to (v, y), we have that u
is adjacent to v in FLD and x is adjacent to y in GK . Note that
since GK is a complete graph, the latter condition will always be
true. Since a belongs to locality u and b belongs to locality v,
it follows by the definition of GLD that a and b are adjacent as
well. Now suppose {a, b} ∈ GLD. Since the two vertices belong
to different localities, they can be adjacent only because u is
adjacent to v in FLD. Again noting that GK is a clique, x = π−1

u

and y = π−1
v are adjacent in GK . Therefore, {(u, x), (v, y)} is an

edge in H.
Since GK is a clique, its spectral radius is s − 1 (Brouwer

and Haemers, 2012). By above arguments, λ1(H) = λ1(GLD).
SinceH is a Kronecker product of FLD and GK , its spectral radius
is λ1(FLD)λ1(GK) (Brouwer and Haemers, 2012). Since λ(GK) =
s− 1, it follows that λ1(H) = (s− 1)λ1(FLD). This completes our
proof of Lemma 5.5.

From Lemmata 5.2, 5.4, and 5.5, the proof of Theorem 5.1
follows by (i) noting that the spectral radius of any graph is
at least as large as the spectral radius of any of its subgraphs,
and (ii) for any two Hermitian matrices A and B (such as the
adjacency matrices of graphs), λ1(A+ B) ≤ λ1(A)+ λ1(B).
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6. DIAMETER

In this section, we derive an upper bound on the diameter of an
MPSN instance, where the inter-locality graph is drawn from an
Erdős-Rényi model. In particular, we show that the addition of a
few long distance edges corresponding to the inter-locality graph
can lead to a significant decrease in the diameter. Our main result
is as follows.

Theorem 6.1. Let G ∈ MPSN(n, r, k, s,HL,G) be an instance of
the multi-pathway network model where FLD ∈ G is an instance of
the Erdős-Rényi random graph model G = H(k, ǫ/k) for some ǫ >

0. (i) The diameter of the graph GS (i.e., G without the inter-
and intra-locality edges) is �(

√
n/r). (ii) The diameter of G is

asymptotically almost surely O
(√

n
k
log k

)

.

This theorem implies that, for a sufficiently large k (number of
localities), even when the range r is low, a small number of long
distance edges can reduce the diameter by a significant amount.
In practice, this reduction in diameter is significant since the
value of r is small while k is a much larger integer. From an
application perspective, this suggests that even organisms with
limited flying ability can cover great distances in a few hops due
to long distance trade or travel links.

To prove Theorem 6.1, we use the following result on the
diameter of randomly perturbed graphs due to Krivelevich,
Reichman and Samotij (Krivelevich et al., 2015). Their main
observation is that if for some small ǫ > 0, approximately
ǫn random edges are added to any n-node graph, then
asymptotically almost surely, the diameter of the resulting graph
is O(log n). Formally, their result is stated as follows.

Lemma 6.2 (Krivelevich, Reichman and Samotij

(Krivelevich et al., 2015)). For every ǫ > 0, there exists
C > 0 such that the following holds. Let G be an n-vertex
connected graph, choose R ∼ G(n, ǫ

n ) and let G∗ = G ∪ R. Then,
asymptotically almost surely, the diameter of G∗ is at most C log n.

Proof of Theorem 6.1: Part (i): First, we will prove the lower
bound on the diameter of GS. On the grid over which GS

is defined, consider the two nodes x = 〈0, 0〉 and y =
〈
√
n− 1,

√
n− 1〉. The Euclidean distance between these two

nodes is dEuc(x, y)=
√

2(n− 2
√
n+ 2). It can be verified that for

n ≥ 9, dEuc(x, y) ≥
√
n. Suppose the length of a shortest path P

between x and y in GS has ξ edges. By the definition of GS, each
of these edges has a geometric length of at most r. Therefore, the
total geometric length of all these edges in P is at most rξ . Thus,
by the generalized triangle inequality (Section 3), the distance
between x and y is at most rξ . As noted above, for n ≥ 9, this

distance is at least
√
n. Thus, rξ ≥

√
n or ξ ≥

√
n
r = �(

√
n/r). In

other words, there is at least one pair of nodes inGS for which the
shortest path uses �(

√
n/r) edges. Therefore, the diameter of G

is �(
√
n/r), and this completes our proof of Part (i).

Part (ii): Recall that L is the set of localities. By definition,
there are k localities placed on a

√
k ×

√
k grid (see Figure 2).

We will first create a base graph FB on L by adding edges
between neighbors on the grid. More formally, we will assume

that the coordinates of each locality 〈x, y〉 satisfy x, y ∈
{0, 1, 2, . . . ,

√
k − 1}. In FB, a locality with coordinates 〈x, y〉

is adjacent to 〈x± 1, y± 1〉 (if nodes with those coordinates
are in the same locality). Noting that FB is connected and by
assumption, FLD ∈ H(k, ǫ/k), from Lemma 6.2, it follows that
the diameter of the graph FLD ∪ FB obtained by adding the edges
of FLD to FB is asymptotically almost surely at most c log k for
some positive constant c.

Now, we will prove the upper bound on the diameter of G.
Let u, v ∈ V be two distinct nodes on the grid. Let Lu and Lv be
the localities closest to u and v respectively. The distance from u

to the closest vertex u′ ∈ Lu is at most most 2(
√

n/k − s)/
⌈

r√
2

⌉

.

The same holds for v. As proven above, there exists a path P
of length at most c log k almost surely from u to v in FLD ∪ FB.
Let P = u−u1−u2−· · ·−ut − v. Some of the edges in this path
belong to FB and the rest to FLD. If uiui+1 belongs to FLD, then
by definition of GLD, there exist corresponding nodes ui ∈ Lui
and ui+1 ∈ Lui+1

such that u1 and u2 are adjacent in GLD and,
therefore, are adjacent in G. If on the other hand, ui and ui+1 are
adjacent in FB, then, any two vertices ui ∈ Lui ui+1 ∈ Lui+1

are at

a distance at most 2(
√

n/k − s)/
⌈

r√
2

⌉

+ 2 diam(GL). The first

term, which corresponds to inter-locality distance on the grid,
is clearly O(

√

n/k). The second term corresponds to node-to-

node distance within a locality. Note that diam(GL) ≤ s/
⌈

r√
2

⌉

.

Noting that s ≤
√
k and k ≤

√
n, it can be verified that

diam(GL) = O(
√

n/k). Thus, the length of each edge in P is

O(
√

n/k) and the number of edges in P is asymptotically almost
surely at most c log k. It follows that the length of path P from u

to v is asymptotically almost surely O
(√

n
k
log k

)

. This completes

our proof of Part (ii).

7. A MULTI-PATHWAY DIFFUSION MODEL

We now describe briefly the model that is based on the approach
of McNitt et al. (2019), referred to as the SPREAD model. We
refer to Figure 1 and Section 4 for the network representation on
which the diffusion process is based. There are three pathways
of spread. Self-mediated dispersal corresponds to diffusion from
one node to its neighboring nodes, intra-locality dispersal is
diffusion within a locality (farmer-market interactions), and
inter-locality diffusion corresponds to long distance dispersal
from one cell to another (trade). The diffusionmodel is a discrete-
time SEI process where a node transitions from E to I after ℓ time
steps. The transition from S to E is described below.

Each node v has a periodic time-varying attribute, namely its
infectivity ρ(v, t). The probability that a node can be infected
through a pathway is modeled as a negative exponential function
of infectivity and pathway parameters, which can be expressed
as edge weights between two nodes as follows. For the short-
distance dispersal, the probability that node v is infected by any
“neighbor” v′ that is at a distance at most r (range) is given by

w(v′, v, Ps, t) = 1− exp(−αsρ(v
′, t)), (1)
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FIGURE 2 | An instance of the multi-pathway spatial network model MPSN(n, r, k, s,HL, FLD). Here, number of nodes n = 144, number of regions k = 9, and locality

size s = 4. The range r = 1 resulting in a grid graph for GS. Here, the intra-locality graph HL is a clique on four vertices.

where Ps is the edge label corresponding to the pathway and αs

is a tunable pathway parameter. For two nodes v and v′ within
a locality, the probability of within intra-locality transmission
from v′ to v is given by

w(v′, v, Pℓ, t) = 1− exp(−αℓρ(v
′, t)), (2)

where Pℓ is the pathway label and αℓ is the tunable pathway
parameter. For the inter-locality transmission, the weights on
the flow network FLD influence the probability of transmission.
Suppose v ∈ Lv and v′ ∈ Lv′ ; then the probability that v is infected
by v′ through this pathway is given by

w(v′, v, Pℓd, t) = 1− exp(−αℓdFv′vρ(v
′, t)), (3)

where Pℓd is the pathway label and αℓd is the tunable
pathway parameter.

As mentioned earlier, the dynamics of the SPREAD model
follow the Susceptible-Exposed-Infectious (SEI) (Marathe and
Vullikanti, 2013), as defined below. Each node is in one of the
following states: susceptible (S), exposed (E), or infectious (I).
Let S ⊆ V denote the initial set of nodes in state I. The nodes
in S serve as the seeds for the diffusion process. At any time t,
each node u in state I infects its susceptible neighbor v with
probability equal to the weight w(u, v, P, t) via the labeled edge
(u, v, P). An exposed node (i.e., a node in state E) transitions
to the infectious state after ℓ time steps, where ℓ is the latency
period. It corresponds to the time taken for the node to transition
from being exposed to being infectious.

8. EXPERIMENTS

8.1. Outline
The extent and pattern of spread in a network depend on both
the network structure and the diffusion model properties. Our
goal here is to identify the drivers of the diffusion process. We
will study how combinations of these properties affect the spread
in the network. Specific studies are as follows.

1. We study how MPSN model parameters such as range,
number of localities and the density of the intra- and inter-
locality graphs affect the structure of the network from the
perspective of dynamics. Specifically, we analyze the evolution
of the spectral radius (λ1(G)) and diameter (diam(G)) with
respect to model parameters.

2. We analyze the networks considered above with respect to
the SPREAD diffusion model. Here, the objective is to study
how combinations of the pathway probabilities determined
by αs, αℓ, and αℓd and network model parameters affect
the spread. We also study how combinations of structural
and dynamical properties influence the spread. Further, we
investigate how representative network parameters (such as
spectral radius and diameter) are in characterizing SEI-
like diffusion processes especially when non-uniform edge
probabilities are involved.

3. Based on the insights derived from the above two studies, we
analyze the properties of several real-world commodity flow
networks (McNitt et al., 2019). These networks are temporal
and edge-weighted unlikeMPSN considered in the two studies
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TABLE 1 | List of model parameters used in the experiments for the MPSN model.

Parameters Values

Number of nodes n 4096

Number of regions k 4, 16, 64

Range r 1, 1.5, 2, . . ., 4

Locality size s 4, 16, 64

Intra-locality graph HL Complete graph, star graph

Inter-locality graph FLD G(n,p)

ǫ: (inter-locality graph edge probability ǫ/k) 0.1, 0.5, 1, 5, 10

TABLE 2 | List of real-world networks used and their attributes.

Net. Name #Nodes #Edges #Groups #Group edges

BD Bangladesh 211 6846 7 141

ID Indonesia 3296 110640 35 2181

PH Philippines 673 20108 16 450

TH Thailand 738 27666 5 48

VN Vietnam 503 16746 15 426

Each of these networks is constructed using various datasets on production, trade, and

consumption of tomatoes (McNitt et al., 2019). These networks are edge-weighted.

TABLE 3 | List of network and SPREAD model parameters used in the

experiments for the MPSN model.

Parameters Values

Number of nodes n 4096

Number of regions k 16

Range r 1, 2, 3

Locality size s 4, 16

Intra-locality graph HL Complete graph

Inter-locality graph FLD G(n,p)

ǫ: (inter-locality graph edge probability ǫ/k) 0.1, 1, 10

αs: grid pathway parameter 0, 0.001, 0.005, 0.01, 0.015, 0.01

αℓ: intra-locality pathway parameter 0, 0.001, 0.005, 0.01, 0.015, 0.01

αℓd : inter-locality pathway parameter 0, 0.001, 0.005, 0.01, 0.015, 0.01

ρ: Infectivity of a node 1 for all nodes

Edge weights 1 for all edges

ℓ: exposure delay 0

Time horizon T 6, 12, 18, 24

above. We analyze the structural properties of the temporal
snapshots of these networks.

8.2. Networks and Experiment Design
All the code used to generate the results is made publicly
available (Adiga, 2021). The parameters used to generate
synthetic networks corresponding to the MPSN model and the
characteristics of real-world datasets corresponding to domestic
trade of tomatoes are provided in Tables 1, 2, respectively. For
the synthetic networks, we considered a 64 × 64 grid of nodes.
Using a full factorial design, networks were constructed for
combinations of parameters in Table 1. For the inter-locality

graph FLD, we used the Erdős-Rényi random graph model where
the edge probabilities were chosen to be functions of the number
of nodes of FLD, which in turn is equal to the number of
regions k. However, not all combinations of parameters are
valid. Since these networks have a random graph component,
for each valid combination of parameters, we constructed 10
replicates. Thus, over 7,000 networks were constructed. We note
that while the synthetic networks considered here are undirected
and unweighted, the real-world networks considered (Table 2)
are directed and edge-weighted. In addition, these temporal
networks are also periodic: there are 12 snapshots of networks,
one for every month of the year induced by the seasonal
production and flow of commodity around the year. The details
of network construction are given in McNitt et al. (2019).

Structural properties were computed for all the synthetic
networks. A subset of these networks was used for dynamical
analysis using the diffusion model presented in Section 7. For
this, a range of parameter values corresponding to the SPREAD
diffusion model of Section 7 were used. This is listed in Table 3.
The number of simulation instances in each case was 100. Since
diffusion is modeled as an SEI process, assuming that the network
is strongly connected, the fixed points or the equilibrium points
of the system are either all nodes being in the infected state or all
nodes being in the susceptible state. Therefore, we are interested
in the state of the system at specific time steps. The observed
variable is the mean number of nodes infected by a given time
horizon or by time step T. For the initial seeding, five percent
of the nodes were chosen uniformly at random and set to the
infected state.

8.3. Structural Analysis of MPSN Model
The decision tree analysis of spectral radius λ1(G) in Figures 3, 4
indicates that the primary drivers of its value are locality size s
and the inter-locality edge probability factor ǫ. The significance
of the former can be attributed to the model. We recall that
the dominating term in the bounds provided in Theorem 5.1
is λ1(GLD) = λ1(FLD)(s − 1) consisting of the locality size and ǫ

that influences λ1(FLD). For Erdős-Rényi graphs, the spectral
radius asymptotically tends to the maximum of ǫ and the square
root of the maximum degree of the graph (Krivelevich and
Sudakov, 2003). We note that even though range r contributes
to the value of λ1(G), its influence is quite small compared to
the other parameters. Here, we recall that locality size s, λ1(HL)
and λ1(FLD) are factors related to human-mediated dispersal.
Under the assumption that the spectral radius is an indicator of
rate of dispersal, we can see the significance of these components
with respect to the diffusion process. We also note that for larger
values of locality size and ǫ, the number of regions k contributes
to the value of the spectral radius as the maximum degree of FLD
increases with k.

While diameter, like spectral radius, is closely related to
dynamics, we observe in Figures 3, 4 that the most significant
influence on its value is due to the range r; this is closely followed
by the number of regions k and ǫ. We note that doubling the
range reduces the diameter by approximately half. Greater the
number of regions and ǫ, the greater is the number of long
distance edges. Hence, the diameter goes down. We note that
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FIGURE 3 | Regression tree analysis of network properties with respect to model parameters for the MPSN model. The properties were computed for various

networks given in Table 1. (A) CART analysis: Spectral radius λ1(G). (B) CART analysis: Diameter diam (G).

unlike the case of spectral radius, locality size is not an important
factor with respect to diameter.

8.4. Dynamical Analysis of MPSN Model
These experiments correspond to diffusion using the SPREAD
model on different MPSN instances and different combinations

of pathway parameters αs, αℓ, and αℓd. The observed variable is
the mean number of infections that have occurred by a given
time T. The results of our experiments are in Figures 5, 6,
where the progressions of the diffusion process under different
conditions are plotted. A general observation is that, when the
number of infected nodes is much greater than

√
n, the rate of
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FIGURE 4 | Parameter importance using random forest analysis of network properties with respect to model parameters for the MPSN model. The properties were

computed for various networks given in Table 1. (A) Parameter sensitivity: Spectral radius λ1(G). (B) Parameter sensitivity: Diameter diam(G).

FIGURE 5 | Unraveling pathways: Here, we choose a positive value 0 ≤ c < 1. All pathway parameters αs, αℓ, and αℓd are either set to 0 or c. In the experiments, we

incrementally unravel the pathways starting the edges from the grid (αs = c, αℓ = 0, αℓd = 0), followed by intra-locality edges (αs = c, αℓ = c, αℓd = 0), and finally,

inter-locality edges (αs = c, αℓ = c, αℓd = c). For all the cases where αℓd 6= 0, the variance is higher compared to the remaining cases as these also account for 10

replicates of the networks.

spread is linear. This is because, for any infected vertex, most or
all of its neighbors are infected. In each time step, at the forefront
of the spread process, at most a constant times

√
n vertices are

available to be infected in the next time step.

8.4.1. Progression of the Diffusion Process
Our first set of experiments concern the importance of pathway
parameters given a network. Here, we fix a transmission
probability on each edge. Using the pathway parameters, we
first activate only the edges of GS. This is the baseline process
of diffusion over just the grid. From the domain perspective,
this corresponds to natural or self-mediated spread alone. Then,

we unravel the edges corresponding to GL, followed by the
edges of GLD. In Figure 5, the top left plot is the reference plot
corresponding to MPSN with s = 16, ǫ = 1, and r = 2.
We see that when only αs > 0 or in other words, only the
grid edges are activated, the spread is slow in the beginning
followed by an increase in the rate before it saturates. A similar
phenomenon is observed even when the intra-locality and inter-
locality edges are activated. We note that the rate of increase
is higher when the inter-locality edges are introduced; this
highlights the importance of long distance edges in increasing
the rate of spread. We compared the reference plot with diffusion
on networks where ǫ = 0.1 (top middle in Figure 5) and ǫ =
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FIGURE 6 | Non-uniform pathway probabilities: In each figure, there are three sets of plots. In each set, two pathway parameters are fixed while the remaining

pathway parameter value is varied from 0 to 0.01.

10.0 (top right). For ǫ = 0.1, the inter-locality edges do not
contribute to the infections, while for ǫ = 10, this pathway is
dominant. In addition, the progression of the process is very
fast in the beginning and saturates quickly, after which the
increase is almost linear. This indicates that the long distance
edges contribute to fast short-term spread, an important factor
to account for in preparing for interventions.

8.4.2. Importance of Locality Size and Range
The bottom left plot in Figure 5 corresponds to a smaller locality
size. We see that locality size significantly affects both intra-
and inter-locality spread. Reduction in locality size to 4 makes
these pathways insignificant. With increase in range (bottom
right), the diffusion through short distance pathway is rapid, and,
therefore, the process reaches saturation before either the intra-
or inter-locality pathways can make a difference.

8.4.3. Non-Uniform Probabilities
In Figure 6, we fix two pathway parameters while the third
parameter is varied. We observe that the highest increase in the
rate of spread corresponds to the short-distance parameter αs and
the least is αℓ, the intra-locality parameter. We also note that
larger the ǫ, the greater the number of long distance edges and,
therefore, the higher the increase in the rate of spread as αℓd is
increased (see top row of Figure 6).

8.4.4. Regression-Tree Analysis
We applied regression tree and random forest algorithms on the
simulation data. The first objective was to find the network and
model parameters that drive the infection. The second objective

is to determine how structural parameters such as spectral radius
and diameter influence the spread. Accordingly, we have two
sets of results in Figures 7, 8, respectively. The regression-
tree analysis succinctly captures some aspects of the results in
Figures 5, 6. As observed in the earlier plots, the rate of spread
is determined primarily by αs and range r. For smaller time steps,
the inter-locality spread is significant, particularly when αs and r
are small (Figure 7). Therefore, ǫ and locality size s are significant
predictors of spread. However, in the later time steps, due to
saturation, only the parameters that affect short-distance spread
are good predictors of spread.

8.4.5. Spectral Radius, Diameter, and Number of

Infections
In Figure 8, we note that spectral radius features only in the first
plot. This is again because spectral radius is determined primarily
by inter-locality parameters. However, for later time steps, only
diameter and αs determine the mean number of infections.
Again, this just reflects the fact that diameter and range are
correlated. Therefore, spectral radius is a good predictor of
spread during the initial phase (either first few time steps or when
the number of infections is small).

8.5. Robustness of Regression Tree
Analysis
We note that the outputs of the random forest algorithm are
influenced by hyper parameters, such as number of estimators (or
trees), maximum depth, minimum number of samples required
to split an internal node, etc. In Figure 9, we have plotted the
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FIGURE 7 | Regression tree analysis of simulation results where the independent variables are the MPSN parameters and pathway parameters of the SPREAD model

and the observed variable is the mean number of infections at different time steps T.

parameter importance based on increase in node purity (Gini
index) and increase in mean square error for node size and
number of trees. We note that the results are consistent.

8.6. Analysis of Real-World Commodity
Flow Networks
For the real-world networks, we computed the spectral radius
and diameter for the following graph. We first decomposed
the network into 12 components, one for each month of the

year. In the SPREAD model of Section 7, we note that in
Equations (1)–(3) the probability of transmission is dependent
on infectivity ρ(v, t). For the short-distance graphs GS and GL,
every outgoing edge was assigned a weight of ρ(u, t), where u
is the source node. For GLD, every outgoing edge was assigned
the weight of ρ(u, t)Fuv, where u is the locality to which
the source u belongs and Fuv is the edge weight on the
edge {u, v} in the inter-locality graph FLD. The (weighted)
adjacency matrices of these graphs were added together and the
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FIGURE 8 | Regression tree analysis of simulation results where the independent variables are the spectral radius and diameter of the networks and the observed

variable is the mean number of infections at different time steps T.

spectral radius of the resulting matrix is computed. Note that the
spectral radius is a real number as the matrix corresponds to a
strongly connected directed graph. This follows from the Perron-
Frobenius theorem (Brouwer and Haemers, 2012). We call this
theweighted spectral radius.We also computed the spectral radius
of the graph without the weights (i.e., the weight is 1 iff the ijth
entry of the adjacency matrix is non-zero). This is referred to as
the unweighted spectral radius. The diameter was computed for
the unweighted graph.

The results are in Figure 10 where the three structural
properties are plotted for different months and two range values,
namely 1 and 2. We observe that the weighted spectral radius is
very high for BD compared to other networks. In all networks,
we see variation in the spectral radius. This is due to seasonal
fluctuations in the production (which affects ρ) and, therefore,
in trade (which affects the long distance edges). The PH network
shows highest variation in the case of unweighted spectral radius.
This parameter is sensitive to the presence or absence of edges.
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FIGURE 9 | Parameter importance using random forest analysis. The analysis is performed for different hyperparameter values of the random forest model.

FIGURE 10 | Structural properties of real-world datasets from Table 2. Since these are temporal networks, the properties are plotted for 12 snapshots, each

representing a month of the year by natural order. In the top right plot, TH overlaps with VN.

During offseason, the absence of edges leads to a reduction in the
unweighted spectral radius. However, in other networks, during
offseason, only the weights decrease. We note that spectral radii
increase significantly when the range is increased.

The diameter remains constant and is very high unlike
what was observed in MPSN. The primary reason for
this is that the trade flows do not follow a random graph
pattern. The presence of a few areas of production implies
many outgoing edges from a small number of localities
to other localities that are major areas of consumption.
This implies that the rate of spread could be highly
dependent on the seed nodes. Thus, if the seed nodes
correspond to high production areas, then the spread will
be rapid.

9. SUMMARY AND FUTURE WORK

Motivated by the need to obtain a better understanding of the
spread of biological invasions, we proposed an abstract multi-
pathway diffusion model. Using structural properties of the
underlying networks, we characterized complex spatial diffusion
processes over networks. We also investigated the role of the
different pathways in determining the rate and pattern of
spread. In addition, we analyzed the structural and dynamical
properties of networks using data mining algorithms such as
regression trees.

Our methods provide just the first step in understanding
how multiple pathways and diffusion parameters determine the
extent and pattern of the spread of biological invasions. There
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are several additional directions for future research. First, one can
investigate the role of other structural parameters of the graphs
generated by multi-pathway model (e.g., clustering coefficient,
k-core sizes, closeness centrality (Easley and Kleinberg, 2010))
in determining properties of the spread process. A second
direction is to investigate the suitability of other epidemic models
proposed in the literature (Marathe and Vullikanti, 2013) for
biological invasions. A third direction is to incorporate more
realistic models like the gravity model and scale-free graphs
for inter-locality spread. Finally, it may be of interest to refine
the abstract multi-pathway model to allow the generation of
temporal networks which play an important role in practice.
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