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Anaplastic lymphoma
kinase-special immunity
and immunotherapy

Ye Guo, Hanfei Guo, Yongfei Zhang and Jiuwei Cui*

Cancer Center, The First Hospital of Jilin University, Changchun, China
Alterations in the anaplastic lymphoma kinase (ALK) gene play a key role in the

development of various human tumors, and targeted therapy has transformed

the treatment paradigm for these oncogene-driven tumors. However, primary

or acquired resistance remains a challenge. ALK gene variants (such as gene

rearrangements and mutations) also play a key role in the tumor immune

microenvironment. Immunotherapy targeting the ALK gene has potential

clinical applications. Here, we review the results of recent studies on the

immunological relevance of ALK-altered tumors, which provides important

insights into the development of tumor immunotherapies targeting this large

class of tumors.
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Introduction

Over the past few decades, the anaplastic lymphoma kinase (ALK) gene has been widely

known for its role in human tumorigenesis (1). Various rearrangements (fusions), mutations,

amplification, and alternative splicing of theALK gene have been found in anaplastic large cell

lymphoma (ALCL), inflammatory myofibroblastoma (IMT), non-small cell lung cancer

(NSCLC), and other human tumors (2–4) (Table 1). Currently, ALK gene variants are

considered drug targets for these tumors. However, primary or acquired resistance to tyrosine

kinase inhibitors is almost unavoidable (5). Although immunotherapy in recent years has

provided new hope for patients with a variety of tumors with poor treatment efficacy, the

response of these patients with ALK gene abnormalities to immunotherapy has not been

clarified. A large retrospective study showed that patients with at least one oncogenic driver

alteration (RET, ROS1, EGFR, or ALK) are less likely to benefit from immune checkpoint

inhibitor (ICI) monotherapy (6). Until recently, several preclinical and clinical studies

suggested that ALK rearrangement may be involved in innate and adaptive immunity

through various pathways and is associated with T cell activation, cytokine release, and tumor
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immune escape (7). In addition, chimeric antigen receptor (CAR-T)

therapies and tumor vaccines targeting ALK rearrangements are

under development.

Therefore, clarifying whether preferred targeted therapy,

immunotherapy, or targeted combination immunotherapy is the

optimal clinical treatment strategy for such patients is important.

Hence, this topic will be the focus of future research in the field of

ALK-altered tumor immunotherapy. This article reviews the

progress on the knowledge of ALK gene variants in the field of

immunotherapy to better understand the mechanism of ALK in

the human immune response and may provide new treatment

strategies for patients with ALK gene variants.
Physiologic role of the ALK
oncogene and its genetic
aberrations in cancer

ALK, consisting of 1,620 amino acids, is a member of the

insulin receptor tyrosine kinase (RTK) superfamily, and its gene is

located on chromosome 2p23 (8). ALK plays an important role in

the growth and development of the mammalian nervous system;

however, its expression decreases significantly after birth and

remains at a low level in adulthood (9). The tissue expression of
Frontiers in Immunology 02
ALK in human adults is restricted to the brain, with minimal

expression in the lung, colon, small intestine, and testis, as indicated

by the expression data of the human protein atlas and several

immunohistochemical studies (10). When somatic variations occur,

ALK is expressed in tissues that do not originally express ALK, and

as such the cells are abnormally activated, resulting in uncontrolled

cell proliferation and tumor formation (2, 11). Because ALK

expression is restricted to the nervous system, a highly immune-

privileged organ, the ALK protein is a potential antigen for the

immune system. Similarly, tumor-specific ALK fusions or mutants

may also be recognized as neoantigens in the body. Thus, ALK-

altered cancer cells may potentially trigger antibody responses in

patients. ALK is also involved in innate immunity against microbial

pathogens (12, 13). Preclinical and clinical studies have shown that

upregulation of immune-related molecules, such as programmed

cell death ligand-1 (PD-L1), is commonly observed in ALK-altered

tumors (14, 15).
ALK variants affect the tumor
microenvironment (TME)

The mechanisms by which ALK-altered tumors lead to

immune resistance may include affecting T cell immune
TABLE 1 Summary of ALK variants.

Variation type Tumor (ALK positive rate) Primary variation site (percentage of all ALK positive tumor)

Fusion Anaplastic large cell lymphoma (ALCL) (60%) NPM-ALK (80%), TPM3-ALK (12-18%)

Non-small cell lung cancer (NSCLC) (3-7%) EML4-ALK (80%)

Inflammatory myofibroblastoma (IMT) (50%) TPM3/4-ALK (95%)

Diffuse large B-cell lymphoma (DLBCL) (rare) CLTC-ALK

Acute myelomonocytic leukemia (AML) (rare) RANBP2-ALK

Breast cancer (2.4%) EML4-ALK

Colorectal cancer (0.05-0.19%) EML4-ALK, SPTBN1-ALK

Renal cell carcinoma (<1%) TPM3-ALK, VCL-ALK

Thyroid carcinomas (1-3%) STRN-ALK (50%), EML4-ALK (39%)

Epithelioid fibrous histiocytoma (88%) SQSTM1-ALK (52%), VCL-ALK (30%)

Spitz tumors (10%) DCTN1-ALK, TPM3-ALK (over 90%)

Ovarian cancer (rare) FN1-ALK, EML4-ALK

Esophageal squamous cell carcinoma (ESCC) (rare) TPM4-ALK

Pancreatic cancer (rare) EML4-ALK (over 50%)

Mutation Neuroblastoma (15%) F1174, F1245, R1275 (85%)

Anaplastic thyroid cancer (ATC) (11%) L1198F, G1201E

ALK inhibitor-resistant NSCLC (30-50%) L1196M

ALK inhibitor-resistant ALCL G1269A

ALK inhibitor-resistant IMT F1174L

Overexpression Melanoma, Ovarian cancer, NSCLC, Breast cancer, Neuroblastoma, Astrocytoma, Glioblastoma, Ewing’s sarcoma, Colorectal cancer,
Retinoblastoma, Rhabdomyosarcoma
So far, ALK fusions have been found in more than 10 kinds of tumors (both hematopoietic neoplasms and solid tumors), and more than 100 fusion partners have been reported. In most
cases, ALK fusions arise from the fusion of 3′ half of ALK, which retains its kinase catalytic domain, and the 5′ portion of a different gene that provides its promoter; The mutations of ALK
are located in the kinase domain; ALK overexpression has been reported in various cancer types and cell lines, but its mechanism and its relationship with tumor drivers are still unclear.
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responses, regulating cytokine secretion, activating

immunosuppressive cells, and upregulating the expression of

heterogeneous immune checkpoints (Figure 1).
Effects of ALK variants on T cell response

In ALK-positive ALCL patients, CD30 is continuously

expressed in tumor cells. Compared with CD30- tumors,

CD30+ tumors are characterized by downregulation of
Frontiers in Immunology 03
molecules involved in T cell differentiation/activation

(including CD28, CD52, and CD69) and T cell receptor (TCR)

signaling (16). CD3 and TCR are negatively expressed in more

than 75% of cases, and CD8 expression is rare in T cells (17). In

addition, two immunogenic ALK epitopes (P280-89 and p375-

86) were identified to elicit cytotoxic T cell (CTL) responses in

vitro, in vivo, and in human peripheral blood lymphocytes

(PBLs) (18). The anti-ALK CTL generated from the PBL of

healthy donors induces an antigen-specific HLA-A2.1 restricted

response, which can effectively kill endogenous ALK-expressing
A

B

FIGURE 1

Summary of the immune-suppressive microenvironment induced by ALK-rearrangement. (A) Schematic diagram of the special immune TME of
ALK-positive tumor. In ALK-positive tumors, CD30 is expressed continuously, and TCR signaling is inhibited. In the TME, the types of T cells
changed, that is, the number of resting memory CD4+ T cells increased, while CD8+ T cells and activated memory CD4+ T cells were lacking.
A variety of immunosuppressive cytokines are up-regulated, thereby inhibiting the killing ability of T cells and NK cells to tumor cells, and
promoting the function of immunosuppressive cells. The special TME accumulates more Treg cells and TAM cells to promote immune evasion;
(B) Mechanism of ALK rearrangement upregulating PD-L1 expression, which plays an essential role in mediating the process of PD-L1
expression. ALK-rearranged protein can activate STAT3, PI3K-AKT-mTOR, and MEK-ERK signaling networks, which upregulate PD-L1 expression
through transcription factors acting on the promoter region of PD-L1 gene. Activated mTOR can also recruit PD-L1 transcripts to active
polysomes at the post-transcriptional level. The JAK-STAT3-LATS-YAP/TAZ-PD-L1 signaling pathway has gradually been shown to play an
important role in mediating ALK-induced upregulation of PD-L1 in multiple cancer cell lines. Conversely, blocking the activation of the ALK
pathway inhibits the expression of PD-L1.
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tumor targets. Subsequent studies using a mouse model of

vaccination identified that, in healthy donors, CD8+ T cells

mainly show a naive phenotype, whereas effector and memory

CD8+ T cells are detected in ALK-positive ALCL patients (19).

ALK-specific CD4+ T cells are detected in HLA-preselected

ALCL patients using ALK-derived peptides (20). Recent

studies have shown that the in vitro transduction of normal

human CD4+ T lymphocytes by NPM-ALK leads to

immortalization and malignant transformation (21). Moreover,

tumor cells have the morphology and immunophenotype of

primary anaplastic large cell lymphoma (21). In ALK+ NSCLC

patients, Jin et al. (22) found that tumors are characterized by

enriched resting memory CD4+ T cells (P<0.001), as well as a

lack of CD8+ T cells (P<0.01), and activated memory CD4+ T

cells (P=0.001).
Relationship between ALK variants
and cytokines

Various pro-inflammatory cytokines and their receptors are

significantly upregulated in ALK-positive tumors, including IL-

1b, IL-2, soluble IL-2 receptor (sIL-2R), IL-6, IL-7, IL-8, IL-9, IL-
10, IL-17a, IL-22, interferon (IFN)-g, TNF-a, TNFSF10,

TNFSF13, hepatocyte growth factor (HGF), CD30, and TRAP1

(23–26). IL-9 and IL-22 activate oncogenic signaling via the

JAK3-STAT3 pathway, and neutralizing antibodies against them

may inhibit the survival and clonogenicity of ALK+ ALCL cells

(27, 28). Furthermore, NPM-ALK promotes the expression of

other immunosuppressive signals through the activation of

STAT3, including IL-10 and transforming growth factor b
(TGFb) (29). Compared with ALK- ALCL, ALK+ ALCL

patients are enriched for the expression of signatures of HIF1-

a target genes, IL10-induced genes, and H-ras/K-ras induced

genes (30).
ALK variants activate immunosuppressive
cells

Upregulation of IL6 and IL10 expression in ALK+ tumors

reduce the antigen-presenting activity of dendritic cells in the

TME and inhibits the function of T and NK cells (31, 32),

resulting in ALK+ tumors responding to T cells and innate

immunity negative effects. Upregulation of CSF1 and CCL18

expression in ALK+ tumors increase M2 tumor−associated

macrophages (TAMs) in the TME that contribute to immune

evasion (33–35). Previous studies have identified that ALK-

mediated activation of TMEM173 (transmembrane protein

173, also known as STING) in macrophages and monocytes is

related to the pathogenesis of sepsis caused by infection, and has

the potential to activate macrophages and monocytes (12, 36).
Frontiers in Immunology
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Recently, Jan et al. compared the immune gene expression

profiles and the levels of specific immune cell populations in

ALK+ and ALK- lung adenocarcinoma patients. In ALK+

tumors, the proportion of regulatory T cells was significantly

increased (P < 0.0005) (35). Further analysis revealed that ALK+

tumors recruit CXCR4+ Tregs by upregulating CXCL12 and

CCL22 (35, 37, 38). These studies all showed that ALK variants

can activate immune suppressive cells, presenting a challenge to

immune-related treatment of patients with ALK+ tumors.
ALK variants affect the expression of
immunosuppressive molecules

Mutant ALK upregulates the expression of PD-L1, which

may potentially confer an immunosuppressive TME,

contributing to tolerance and immune evasion in cancer (39,

40). Marzec et al. (29) showed that, in an ALK+ ALCL cell

model, NPM-ALK activates the transcription of STAT3 on the

PD-L1 promoter. Using CRISPR/Cas9 library screening, Zhang

et al. determined that PD-L1 induction is dependent on the

NPM-ALK oncoprotein activation of STAT3, as well as a

signalosome containing GRB2/SOS1, which activates the

MEK-ERK and PI3K-AKT signaling pathways. These signaling

networks ultimately induce PD-L1 expression through the

action of the transcription factors IRF4 and BATF3 on the

enhancer region of the PD-L1 gene (41). A recent clinical

study conducted by the MD Anderson Cancer Center of 95

patients with ALCL showed that the positive rate of PD-L1 in

ALK+ ALCL patients is higher than that in ALK- cases (76% and

42%, respectively) (42). The same phenomenon was observed in

patients with ALK+ NSCLC. Both in vitro and in vivo

experiments have shown that the expression level of PD-L1 is

positively associated with the presence of EML4-ALK in NSCLC

specimens (43–46). EML4-ALK modulates PD-L1 expression

via common downstream signaling pathways mediated by PI3K-

AKT-mTOR, MEK-ERK, and STAT3 (44, 47, 48). Activated

mTOR recruits PD-L1 transcripts to active polysomes at the

post-transcriptional level, thereby increasing the level of PD-L1

protein without significantly increasing the mRNA levels (49,

50). STAT3 increases PD-L1 transcription by directly binding to

the promoter region of the CD274 gene (located at the 9p24.1

locus) (47). Recently, Nouri et al. (51) identified, through the

kinome-wide screen of Hippo pathway regulators, that YAP/

TAZ are critical in mediating ALK-induced upregulation of PD-

L1 in multiple cancer cell lines. Moreover, ALK may cause

enhanced immune evasion and tumorigenesis through the

JAK-STAT3-LATS-YAP/TAZ-PD-L1 signaling pathway.

Importantly, ALK inhibitors and ALK siRNAs effectively

inhibit ALK fusion-induced PD-L1 expression in NSCLC cell

models. These results confirmed the effect of ALK on PDL1

expression in NSCLC (44, 52).
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Current landscape of immunotherapy
of ALK-altered tumors

Various preclinical and clinical efforts are underway to

identify mechanisms related to the interaction of the ALK

gene with the tumor immune microenvironment. ICIs

targeting programmed cell death ligand-1 (PD-1), PD-L1, and

cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are

currently the most advanced immunotherapies and have

transformed the treatment paradigm for a variety of tumors,

including lung cancer. However, there is no firm conclusion

regarding the therapeutic effect of ICIs in patients with ALK-

altered tumors. Research on tumor vaccines and chimeric
Frontiers in Immunology 05
antigen receptor T-Cell (CAR-T cell) therapy targeting ALK

are also underway (Table 2).
Immune checkpoint inhibitors (ICIs)

In recent years, ICIs have shown remarkable therapeutic

effects in various tumors. Moreover, as mentioned above, ALK

variants induce the upregulation of PD-L1 expression in ALK-

positive tumors. Based on these findings and in vitro drug trials,

some scholars have speculated that anti-PD-1/PD-L1 therapy

may be a promising option for NSCLC patients with upregulated

PD-L1 carrying the EML4-ALK fusion gene (53). However,

whether the high expression of PD-L1 affects the prognosis of
TABLE 2 Summary of ongoing trials with immunotherapy in ALK+ tumors (source: www.clinicaltrials.gov, last accessed: 30 Mar 2022).

Clinical
Trial
Identifier

Phase Tumor Study Title Setting N Experimental
Arm

Control
Arm(s)

Primary
Outcome (s)

NCT04042558 II NSCLC A Study Evaluating Platinum-Pemetrexed-
Atezolizumab (+/-Bevacizumab) for Patients With
Stage IIIB/IV Non-squamous Non-small Cell Lung
Cancer With EGFR Mutations, ALK Rearrangement or
ROS1 Fusion Progressing After Targeted Therapies
(GFPC 06-2018)

PD-L1/anti-
angiogenesis

149 Carboplatin +
Pemetrexed +
Atezolizumab +
Bevacizumab

Carboplatin +
Pemetrexed +
Atezolizumab

ORR

NCT03991403 III NSCLC Study of Atezolizumab in Combination With
Carboplatin + Paclitaxel +Bevacizumab vs With
Pemetrexed + Cisplatin or Carboplatin With Stage IV
NON-SQUAMOUS NON-SMALL CELL LUNG
CANCER With EGFR(+) or ALK(+)

PD-L1/anti-
angiogenesis

228 Atezolizumab
+Carboplatin +
Paclitaxel
+Bevacizumab

Pemetrexed
+Carboplatin/
cisplatin

PFS

NCT02393625 I NSCLC A Multi-center, Open-label Study to Assess the Safety
and Efficacy of Combination Ceritinib (LDK378) and
Nivolumab in Adult Patients With Anaplastic
Lymphoma Kinase (ALK)-Positive Non-small Cell
Lung Cancer (NSCLC)

PD-1 57 Ceritinib+Nivolumab MTD and/or
Recommended
Dose for
Expansion; ORR

NCT04425135 II non-
squamous
NSCLC

Phase II Single-arm Clinical Study of Camrelizumab
Combined With Apatinib Mesylate and Standard
Chemotherapy (Pemetrixed +Carboplatin) in Patients
With Tyrosine Kinase Inhibitor Failure in ALK-
positive Advanced NSCLC

PD-1/anti-
angiogenesis

59 Camrelizumab +apatinib mesylate
+Pemetrixed + Carboplatin

ORR

NCT03703050 II ALCL Phase II Trial of Nivolumab for Pediatric and Adult
Relapsing/Refractory ALK+ Anaplastic Large Cell
Lymphoma, for Evaluation of Response in Patients
With Progressive Disease (Cohort 1) or as
Consolidative Immunotherapy in Patients in Complete
Remission After Relapse (Cohort 2)

PD-1 38 Nivolumab Best objective
response rate;
PFS

NCT02462538 I/II ALCL A “Window of Opportunity” Trial With Brentuximab
Vedotin and Imatinib in Patients With Relapsed or
Refractory ALK+ Anaplastic Large Cell Lymphoma or
Patients Ineligible for Chemotherapy

CD30 10 Brentuximab vedotin + Imatinib AEs

NCT02799095 I/II Advanced
Solid
Tumors*

A Phase 1/2 Study of ALKS 4230 Administered
Intravenously as Monotherapy and in Combination
With Pembrolizumab in Subjects With Advanced Solid
Tumors - ARTISTRY-1

IL-2 347 ALKS 4230 +
pembrolizumab

ALKS 4230 DLT; AEs; ORR

NCT03861793 I/II Advanced
Solid
Tumors*

A Phase 1/2 Study of ALKS 4230 Administered
Subcutaneously as Monotherapy and in Combination
With Pembrolizumab in Subjects With Advanced Solid
Tumors - ARTISTRY-2 (001)

IL-2 185 ALKS 4230
+Pembrolizumab

ALKS 4230 AEs; ORR
ORR, Objective response rate; PFS, Progression-free survival; AEs, Adverse events; MTD, Maximum tolerated dose; *All eligible patients can be included in the group, no genetic
requirements.
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ALK+ patients remains inconclusive, and further research is

needed (42, 54).

ICI monotherapy
Data from prior randomized studies indicate that

immunotherapies are less effective in patients with ALK+

tumors than in those with wild-type tumors, regardless of PD-

L1 expression level (55, 56). In a global “real world” study,

Mazieres et al. (6) retrospectively analyzed ALK+ NSCLC

patients from 10 countries and found that the objective

response rate is 0% using ICI monotherapy. The proportion of

ALK+ patients who experienced rapid progression within 2

months was 45.5%, which was much higher than that of

patients with the wild-type gene. More recently, a multicenter

retrospective study showed limited activity in patients with stage

III unresectable NSCLC with driver genomic alterations treated

with durvalumab (PD-L1 inhibitor) after chemoradiotherapy,

especially in the ALK rearrangement subgroup. The median

progression-free survival (PFS) was not reached (11.3-NR) in the

KRAS-mutation vs. 8.1 month in the EGFR-mutation vs. 7.8

month in the BRAF-mutation/ALK rearrangement (P = 0.02)

(57). Therefore, current research on ALK-positive patients has

mainly focused on ALK inhibitor resistance (58). For patients

with NSCLC, the ATLANTIC trial established an independent

cohort of EGFR+/ALK+ patients to evaluate durvalumab as a

third line or later treatment. The proportion of patients who

achieved a response was generally lower in the cohort of patients

with EGFR+/ALK+ NSCLC than in those with EGFR−/ALK−

NSCLC. Nevertheless, the proportion of EGFR+/ALK+ patients

with at least 25% of tumor cells expressing PD-L1 who achieved

an objective response was not substantially lower than that in

EGFR−/ALK− patients (12.2% vs 16.4%) (59). Recently, there

was a report of a case of a 48-year-old man with ALK+ NSCLC

who displayed a complete response for 16 months to nivolumab

(PD-1 inhibitor) therapy in a third line setting after ceritinib

(second-generation ALK inhibitor) and platin-based

chemotherapy (60). Another case report showed that patients

with ALK+ ALCL (PD-L1 positive) who were refractory to

chemotherapy and ALK inhibitors demonstrated prolonged

responses to nivolumab (61, 62). Further clinical trials are

needed to verify the effectiveness of ICIs in patients with ALK

+ ALCL.

Some studies have analyzed the reasons for the poor effects

of ICIs. A majority of ALK-positive NSCLCs lack concurrent

PD-L1 expression and high levels of CD8+ tumor infiltrating

lymphocytes (TILs) (63). The combined analyses of PD-L1 and

CD8+ TILs show a remarkably higher proportion of PD-L1-/

TIL- tumors and a lower proportion of PD-L1+/TIL+ tumors in

ALK+ groups than in wild-type patients (P = 0.001), suggesting

an uninflamed phenotype with immunological ignorance (22).

Although a significant number of PD-1 positive CD8+ T cells

were found in the ALK-positive tumor bed in early lung
Frontiers in Immunology 06
adenocarcinoma (64), these PD-1 expressing CD8+ T cells

were functionally impaired (65) and did not express

interferon-g mRNA, which could upregulate PD-L1 expression

in tumor cells (66, 67). These results indicate that the ALK-

positive TME suppresses the immune function of CD8+ TILs

through a PD-1/PD-L1 independent mechanism, which might

lead to the inability of ALK-positive tumors to respond to PD-1/

PD-L1-based immunotherapy (64). Tumor mutational burden

(TMB) is an effective marker for predicting the efficacy of ICI

treatment. The median TMB of ALK-positive tumor samples is

only 2.29 mutations/Mb (ranging from 0.76 to 16.79 mutations/

Mb) (68). The TMB (in mutations/Mb) of NSCLC patients with

alteration in ALK is significantly lower than in those without (2.1

vs 7.0 mutations/Mb; P < 0.001) (69). These results suggest that

the limited benefits of ICI monotherapy are attributable to the

low levels of functional CD8+ TILs and TMB.

ICIs combined with ALK tyrosine kinase
inhibitors (ALK-TKIs)

A preclinical study showed that in vitro application of

ceritinib combined with a PD-L1 inhibitor in the treatment of

ALK-rearranged NSCLC promotes lymphocyte proliferation

and activation, inhibits PD-L1 expression, and enhances

lymphocyte cytotoxicity and cell death. In the in vivo

xenograft model, tumor volumes treated with a combination

of ceritinib and a PD-L1 inhibitor (91.9%) are significantly

smaller than those treated with ceritinib (84.9%) or PD-L1

(20.0%) alone (70). Some clinical trials have explored the use

of ICIs in combination with ALK inhibitors (71, 72). The

primary study was a phase 1/2 study (CheckMate 370) on the

safety and tolerability of nivolumab plus crizotinib (first-

generation ALK inhibitor) as a first-line treatment for patients

with advanced ALK+ NSCLC. The high proportion (38%) of

severe hepatotoxicity caused the trial to close prematurely and

fail (73). Another phase Ib study evaluated the safety and

pre l iminary ant i tumor act iv i ty o f cr i zot in ib plus

pembrolizumab (PD-1 inhibitor) as a first-line therapy in

patients with ALK+ NSCLC. Although this combination

showed antitumor activity, the incidence of dose-limiting

toxicities is high, especially with a higher frequency of severe

transaminase level increase. Because the study was terminated

early, the recommended phase II dose could not be determined

(74). Therefore, for a well-designed trial, selecting a suitable

combination of partner and treatment population is extremely

important. Felip et al. (75) presented the results of a phase Ib

trial examining ceritinib plus nivolumab in previously treated or

treatment-naive ALK+ NSCLC. This combination appears to

elicit activity, and high PD-L1 expression may be enriched in

patients more likely to respond. Based on more toxicity findings,

especially rash, a protocol amendment to switch to sequential

treatment is being investigated in which ceritinib is administered

as monotherapy for two cycles before combining it with
frontiersin.org
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nivolumab. Two additional phase Ib studies presented at ASCO

meeting show promising efficacy and acceptable safety profile of

this sequential therapy. In previously treated ALK+ NSCLC, the

combination of avelumab (anti-PD-L1) and lorlatinib (third-

generation ALK inhibitor) showed no dose-limiting toxicity

(76). In treatment-naive ALK+ NSCLC, alectinib (second-

generation ALK inhibitor) should be administered 1 week

prior to combination with atezolizumab (PD-L1 inhibitor).

The objective response rate was 81% (95% CI 58.1–94.6), with

a median PFS of 21.7 months and a median DOR of 20.3 months

(77). In addition, Chalmers et al. presented a phase I trial of a

combination of ipilimumab (a CTLA-4 inhibitor) and crizotinib

in ALK+ NSCLC. The median PFS and overall survival (OS)

were prolonged, but owing to the small number of enrolled cases

(three cases), continued observation was necessary (78).

Although a particularly large advantage in ORR was not

observed in most combination therapies, given the long-term

benefits of ICIs treatment, it remains to be seen whether PFS and

OS outcomes can be prolonged in the future.

ICIs combined with anti-angiogenesis therapy
In the IMpower130 study, for ALK inhibitor-pretreated

patients with ALK-sensitizing alterations, atezolizumab plus

chemotherapy did not show improved overall survival versus

chemotherapy alone (79). However, data from the IMpower150

study showed that the addition of atezolizumab to bevacizumab

(angiogenesis inhibitor) plus chemotherapy resulted in significant

improvements in PFS and OS (80). In IMpower150, the median

PFS for patients with EGFR+/ALK+ status in the atezolizumab plus

bevacizumab and chemotherapy (ABCP) group was 9.7 months

compared with the PFS of 6.1 months in the bevacizumab plus

chemotherapy (BCP) group (HR 0.59, 95% CI, 0.37–0.94). OS data

were immature (not reached vs. 17.5 months; HR, 0.54; 95% 0.29–

1.03). The 6- and 12-month PFS rates in the ABCP group were 65%

and 37%, respectively, compared to 53% and 21% in the BCP group

(80, 81). Therefore, after ALK inhibitor resistance, ABCP may be

the first choice for patients with ALK+ NSCLC who are still capable

of tolerating intensive therapy. The combination of ICIs and anti-

vascular endothelial growth factor (VEGF) agents has significantly

improved clinical outcomes in a variety of tumors compared with

standard treatments (82). Multiple studies have further analyzed the

synergistic mechanism between angiogenic factors such as VEGF

and PD-(L)1 inhibitors, which is attributed to VEGF-mediated

immunosuppression in the TME (83, 84). In addition to inducing

vascular abnormalities, angiogenic factors also suppress antigen

presentation and immune effector cells or augment the

immunosuppressive activity of regulatory T cells, myeloid-derived

suppressor cells, and tumor-associated macrophages (85–88). In the

PI3K/AKT/mTOR pathway, ALK signaling promotes VEGF

expression in tumors, which might enhance the sensitivity of

ALK+ patients to bevacizumab (89). In ALK+ patients, CD8+ T

cell tumor infiltration decreases (84) and regulatory T cells
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increase (90) after ALK inhibitor treatment, which induces a

lower response rate to ICIs. In several clinical biomarker studies,

the combination of bevacizumab and atezolizumab has been proven

to overcome ICIs resistance by reversing VEGF-mediated

immunosuppression and promoting CD8+ TIL in tumors (91–

93). There are also reports that bevacizumab combined with

targeted therapy can overcome ALK inhibitor resistance (94, 95).

A recent study showed that VEGFR2 inhibition, a promising

treatment strategy for oncogene-driven NSCLC, not only inhibits

tumor angiogenesis but also exerts direct antiproliferative effects on

cancer cells (96). In summary, it can be inferred that ICIs combined

with anti-angiogenesis may be a promising treatment method.
ALK vaccine

Owing to the characteristics of ALK expression in the body,

it has long been considered a potential tumor-associated antigen

(TAA) (97). There are immunogenic regions located in the ALK

kinase domain that can trigger specific T cell responses restricted

by HLA alleles (98, 99). These findings provide a basis for

peptide vaccine immunotherapy for ALK-driven tumors.

Using an ALK+ ALCL mouse model, Chiarle et al. showed

that DNA vaccines with plasmids encoding a part of the ALK

cytoplasmic domain elicit ALK-specific interferon-gamma

responses and CD8+ T cell-mediated cytotoxicity. The

combination of chemotherapy and ALK DNA vaccination

significantly enhances the survival of mice challenged with ALK

+ lymphomas (100). In mouse models of ALK+ NSCLC, this ALK

DNA vaccine induced strong systemic and intratumoral immune

responses, significantly reducing tumor growth and extending the

survival of treated mice. The combination of this vaccine and ALK

TKI is also effective and significantly delayed tumor relapse after

TKI treatment. In addition, immunotherapies, such as anti-PD-1/

PD-L1 or anti-CTLA, can be used to enhance the benefits of ALK

TKI and ALK vaccine combination therapy (101). Another ALK

vaccine is based on ALK-overlapping peptides in splenocytes from

ALK-vaccinated mice. The vaccine significantly delayed the

progression of primary lung tumors in EML4-ALK transgenic

mice (102). One of the technologies under study is the use of

stabilized multilamellar lipid vesicles with cross-linked lipid

bilayers containing an antigenic ALK variant. They can deliver

antigens alone in the presence of adjuvants to form an efficient

vaccine for ALK-positive glioblastomas (103). Recently, an in vitro

test applied a novel anti-epidermal growth factor vaccine (anti-

EGF VacAbs) in ALK+ NSCLC cell lines. The anti-EGF VacAbs

target the B-cells to generate antibodies that neutralize circulating

EGF, thus preventing its binding to EGFR. They potentiate the

antitumor effects of ALK-TKIs, significantly enhancing the

blockade of downstream oncogenic activation pathways, and

delaying the emergence of resistance (104). These experimental

results provide a powerful strategy for the treatment of ALK-
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driven tumors. With the continuous progress in its research, ALK

vaccines will soon enter clinical trials.
CAR-T cells & TCR-T cells

T cells engineered to express chimeric antigen receptors

(CARs) have demonstrated significant activity against many

tumors, and CAR-T cells have recently joined a rapidly

growing repertoire of immunotherapeutics. Because ALK

fusion protein is mainly expressed inside the cell, CAR-T

therapy targeting ALK is currently mainly tested in

neuroblastoma. It has been found that T cells expressing a

CAR incorporating the single-chain variable fragment against

the ALK extracellular domain lyse ALK-positive neuroblastoma

cell lines. However, CAR functionality is regulated by target

antigen and CAR density, and low expression of either

contributes to the limited anti-tumor efficacy of ALK CAR-T

(105, 106). More specific immunotherapies targeting ALCL

surface markers include anti-CD30 CAR-T cells. CD30-specific

CAR-T cells have been tested in mouse models and clinical trials

have been initiated (107). In one case report, a patient with

relapsed ALK+ ALCL achieved remission after CD30-specific

CAR-T cell treatment (108). Another trial under investigation is

the induction of an immunologic response in a tumor patient

using mature dendritic cells transfected with a nucleic acid

composition encoding NPM-ALK as a tumor antigen and

loaded with a corresponding tumor antigen composition (103).

With the revolutionary breakthroughs in the field of TCR

therapy in recent years, an increasing number of ALK epitopes/

peptides may become suitable targets for directed

immunotherapy (109, 110). An ongoing study is screening for

autologous or allogeneic T cell receptor-transgenic T cells to test

against ALK+/- patient-derived and cancer cell lines using in

vitro and in vivomodels to assess the potential utility of cytotoxic

TCR-directed immunotherapies (111).
Conclusion and prospects

In summary, ALK variants play an important role in a

variety of tumors, including both hematological and solid

tumors. The development and application of ALK inhibitors

have made outstanding contributions to the treatment of ALK

+ tumor patients, and it is still the main choice for first-line

treatment (112). However, to date, resistance to ALK inhibitors

has proven unavoidable in all cases (113). For TKIs resistant

patients, the exploration of immunotherapy is currently a

promising treatment direction. According to the special

immunosuppressive microenvironment of ALK+ tumors,
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there are still huge challenges in the development and

application of immunotherapeutic interventions. Based on

the results of current clinical studies, ICIs monotherapy is

not the preferred treatment option for TKI-resistant patients.

We urgently need to explore better combined treatment

options to change tumor immunosuppression to control

tumors (114), such as immunotherapy combined with

targeted therapy or anti-angiogenesis therapy. Nevertheless,

there are still many obstacles in the process of exploration,

including the understanding of the specific effects of ALK on

the immune microenvironment and development of novel

immunotherapy methods. Numerous studies are exploring

new treatments and ways to optimize the application of

immunotherapy, which may lead to greater survival benefits

for the patients (Table 2).
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